Space Chronicle a British Interplanetary Society Publication General Issue
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Back to the the Future? 07> Probing the Kuiper Belt
SpaceFlight A British Interplanetary Society publication Volume 62 No.7 July 2020 £5.25 SPACE PLANES: back to the the future? 07> Probing the Kuiper Belt 634089 The man behind the ISS 770038 Remembering Dr Fred Singer 9 CONTENTS Features 16 Multiple stations pledge We look at a critical assessment of the way science is conducted at the International Space Station and finds it wanting. 18 The man behind the ISS 16 The Editor reflects on the life of recently Letter from the Editor deceased Jim Beggs, the NASA Administrator for whom the building of the ISS was his We are particularly pleased this supreme achievement. month to have two features which cover the spectrum of 22 Why don’t we just wing it? astronautical activities. Nick Spall Nick Spall FBIS examines the balance between gives us his critical assessment of winged lifting vehicles and semi-ballistic both winged and blunt-body re-entry vehicles for human space capsules, arguing that the former have been flight and Alan Stern reports on his grossly overlooked. research at the very edge of the 26 Parallels with Apollo 18 connected solar system – the Kuiper Belt. David Baker looks beyond the initial return to the We think of the internet and Moon by astronauts and examines the plan for a how it helps us communicate and sustained presence on the lunar surface. stay in touch, especially in these times of difficulty. But the fact that 28 Probing further in the Kuiper Belt in less than a lifetime we have Alan Stern provides another update on the gone from a tiny bleeping ball in pioneering work of New Horizons. -
Space UK Earth’S Surface Water
Issue #49 IN THIS ISSUE: Staring at the Sun MYSTERIOUS Helpline from Space Weightless in the Clouds MERCURY Contents News Cornwall Calling Space Weather Watcher Mapping the Route to Mars Honour for UK Astronaut New Satellite Tracks Pollution UK-France Space Deal In Pictures The Sun Features Mysterious Mercury Zero-G Science Helpline from Space Education Resources UK Space History Skylark Made in the UK Earth-i Info News Cornwall Calling The first Moon landing Cornwall Calling Credit: NASA Cornwall could soon be Antennas at Goonhilly beamed communicating with the Moon and images of the 1969 Moon landing Mars, following the announcement and, shortly after it was built in that the world’s first commercial deep 1985, the 32-metre Goonhilly-6 space communication base will be at antenna carried the historic Live Aid the Goonhilly Earth Station. concert broadcast to TV viewers An £8.4 million investment will see a around the world. two-year upgrade of the Goonhilly-6 A Space Industry Bill, announced antenna so it can communicate as part of the Queen’s speech in One of the large dishes at Goonhilly with future robotic and crewed 2017, will introduce new powers missions to the Moon and Mars. The to allow rocket and spaceplane Credit: Goonhilly Cornwall and Isles of Scilly Local launches from UK soil. Goonhilly is Enterprise Partnership’s Growth Deal also offering spacecraft tracking and the European Space Agency and communications facilities as (ESA) – which the UK Space Agency part of the Spaceport Cornwall contributes to – funded the contract, funding bid. which will allow Goonhilly to support “We see huge opportunities for ESA’s worldwide network of spacecraft the developing space sector in monitoring ground stations. -
Development of Turbopump for LE-9 Engine
Development of Turbopump for LE-9 Engine MIZUNO Tsutomu : P. E. Jp, Manager, Research & Engineering Development, Aero Engine, Space & Defense Business Area OGUCHI Hideo : Manager, Space Development Department, Aero Engine, Space & Defense Business Area NIIYAMA Kazuki : Ph. D., Manager, Space Development Department, Aero Engine, Space & Defense Business Area SHIMIYA Noriyuki : Space Development Department, Aero Engine, Space & Defense Business Area LE-9 is a new cryogenic booster engine with high performance, high reliability, and low cost, which is designed for H3 Rocket. It will be the first booster engine in the world with an expander bleed cycle. In the designing process, the performance requirements of the turbopump and other components can be concurrently evaluated by the mathematical model of the total engine system including evaluation with the simulated performance characteristic model of turbopump. This paper reports the design requirements of the LE-9 turbopump and their latest development status. Liquid oxygen 1. Introduction turbopump Liquid hydrogen The H3 rocket, intended to reduce cost and improve turbopump reliability with respect to the H-II A/B rockets currently in operation, is under development toward the launch of the first H3 test rocket in FY 2020. In rocket development, engine is an important factor determining reliability, cost, and performance, and as a new engine for the H3 rocket first stage, an LE-9 engine(1) is under development. A rocket engine uses a turbopump to raise the pressure of low-pressure propellant supplied from a tank, injects the pressurized propellant through an injector into a combustion chamber to combust it under high-temperature and high- pressure conditions. -
Combustion Tap-Off Cycle
College of Engineering Honors Program 12-10-2016 Combustion Tap-Off Cycle Nicole Shriver Embry-Riddle Aeronautical University, [email protected] Follow this and additional works at: https://commons.erau.edu/pr-honors-coe Part of the Aeronautical Vehicles Commons, Other Aerospace Engineering Commons, Propulsion and Power Commons, and the Space Vehicles Commons Scholarly Commons Citation Shriver, N. (2016). Combustion Tap-Off Cycle. , (). Retrieved from https://commons.erau.edu/pr-honors- coe/6 This Article is brought to you for free and open access by the Honors Program at Scholarly Commons. It has been accepted for inclusion in College of Engineering by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Honors Directed Study: Combustion Tap-Off Cycle Date of Submission: December 10, 2016 by Nicole Shriver [email protected] Submitted to Dr. Michael Fabian Department of Aerospace Engineering College of Engineering In Partial Fulfillment Of the Requirements Of Honors Directed Study Fall 2016 1 1.0 INTRODUCTION The combustion tap-off cycle is also known as the “topping cycle” or “chamber bleed cycle.” It is an open liquid bipropellant cycle, usually of liquid hydrogen and liquid oxygen, that combines the fuel and oxidizer in the main combustion chamber. Gases from the edges of the combustion chamber are used to power the engine’s turbine and are expelled as exhaust. Figure 1.1 below shows a picture representation of the cycle. Figure 1.1: Combustion Tap-Off Cycle The combustion tap-off cycle is rather unconventional for rocket engines as it has only been put into practice with two engines. -
Trade Studies Towards an Australian Indigenous Space Launch System
TRADE STUDIES TOWARDS AN AUSTRALIAN INDIGENOUS SPACE LAUNCH SYSTEM A thesis submitted for the degree of Master of Engineering by Gordon P. Briggs B.Sc. (Hons), M.Sc. (Astron) School of Engineering and Information Technology, University College, University of New South Wales, Australian Defence Force Academy January 2010 Abstract During the project Apollo moon landings of the mid 1970s the United States of America was the pre-eminent space faring nation followed closely by only the USSR. Since that time many other nations have realised the potential of spaceflight not only for immediate financial gain in areas such as communications and earth observation but also in the strategic areas of scientific discovery, industrial development and national prestige. Australia on the other hand has resolutely refused to participate by instituting its own space program. Successive Australian governments have preferred to obtain any required space hardware or services by purchasing off-the-shelf from foreign suppliers. This policy or attitude is a matter of frustration to those sections of the Australian technical community who believe that the nation should be participating in space technology. In particular the provision of an indigenous launch vehicle that would guarantee the nation independent access to the space frontier. It would therefore appear that any launch vehicle development in Australia will be left to non- government organisations to at least define the requirements for such a vehicle and to initiate development of long-lead items for such a project. It is therefore the aim of this thesis to attempt to define some of the requirements for a nascent Australian indigenous launch vehicle system. -
Jacques Tiziou Space Collection
Jacques Tiziou Space Collection Isaac Middleton and Melissa A. N. Keiser 2019 National Air and Space Museum Archives 14390 Air & Space Museum Parkway Chantilly, VA 20151 [email protected] https://airandspace.si.edu/archives Table of Contents Collection Overview ........................................................................................................ 1 Administrative Information .............................................................................................. 1 Biographical / Historical.................................................................................................... 1 Scope and Contents........................................................................................................ 2 Arrangement..................................................................................................................... 2 Names and Subjects ...................................................................................................... 2 Container Listing ............................................................................................................. 4 Series : Files, (bulk 1960-2011)............................................................................... 4 Series : Photography, (bulk 1960-2011)................................................................. 25 Jacques Tiziou Space Collection NASM.2018.0078 Collection Overview Repository: National Air and Space Museum Archives Title: Jacques Tiziou Space Collection Identifier: NASM.2018.0078 Date: (bulk 1960s through -
Dsc Pub Edited
1968 93) few craters, much like the mare sites, Surveyor 7 although the general area was rougher. About Nation: U.S. (43) 21 hours after landing, ground controllers Objective(s): lunar soft-landing fired a pyrotechnic charge to drop the alpha- Spacecraft: Surveyor-G scattering instrument on the lunar surface. Spacecraft Mass: 1,040.1 kg When the instrument failed to move, con- Mission Design and Management: NASA JPL trollers used the robot arm to force it down. Launch Vehicle: Atlas-Centaur (AC-15 / Atlas The scoop on the arm was used numerous 3C no. 5903C / Centaur D-1A) times for picking up soil, digging trenches, Launch Date and Time: 7 January 1968 / and conducting at least sixteen surface- 06:30:00 UT bearing tests. Apart from taking 21,274 pho- Launch Site: ETR / launch complex 36A tographs (many of them in stereo), Surveyor Scientific Instruments: 7 also served as a target for Earth-based 1) imaging system lasers (of 1-watt power) to accurately 2) alpha-scattering instrument measure the distance between Earth and the 3) surface sampler Moon. Although it was successfully reacti- 4) footpad magnet vated after the lunar night, Surveyor 7 Results: Since Surveyors 1, 3, 5, and 6 success- finally shut down on 21 February 1968. In fully fulfilled requirements in support of total, the five successful Surveyors returned Apollo, NASA opted to use the last remaining more than 87,000 photos of the lunar surface Surveyor for a purely scientific mission out- and demonstrated the feasibility of soft- side of exploring a potential landing site for landing a spacecraft on the lunar surface. -
Deep Space Chronicle Deep Space Chronicle: a Chronology of Deep Space and Planetary Probes, 1958–2000 | Asifa
dsc_cover (Converted)-1 8/6/02 10:33 AM Page 1 Deep Space Chronicle Deep Space Chronicle: A Chronology ofDeep Space and Planetary Probes, 1958–2000 |Asif A.Siddiqi National Aeronautics and Space Administration NASA SP-2002-4524 A Chronology of Deep Space and Planetary Probes 1958–2000 Asif A. Siddiqi NASA SP-2002-4524 Monographs in Aerospace History Number 24 dsc_cover (Converted)-1 8/6/02 10:33 AM Page 2 Cover photo: A montage of planetary images taken by Mariner 10, the Mars Global Surveyor Orbiter, Voyager 1, and Voyager 2, all managed by the Jet Propulsion Laboratory in Pasadena, California. Included (from top to bottom) are images of Mercury, Venus, Earth (and Moon), Mars, Jupiter, Saturn, Uranus, and Neptune. The inner planets (Mercury, Venus, Earth and its Moon, and Mars) and the outer planets (Jupiter, Saturn, Uranus, and Neptune) are roughly to scale to each other. NASA SP-2002-4524 Deep Space Chronicle A Chronology of Deep Space and Planetary Probes 1958–2000 ASIF A. SIDDIQI Monographs in Aerospace History Number 24 June 2002 National Aeronautics and Space Administration Office of External Relations NASA History Office Washington, DC 20546-0001 Library of Congress Cataloging-in-Publication Data Siddiqi, Asif A., 1966 Deep space chronicle: a chronology of deep space and planetary probes, 1958-2000 / by Asif A. Siddiqi. p.cm. – (Monographs in aerospace history; no. 24) (NASA SP; 2002-4524) Includes bibliographical references and index. 1. Space flight—History—20th century. I. Title. II. Series. III. NASA SP; 4524 TL 790.S53 2002 629.4’1’0904—dc21 2001044012 Table of Contents Foreword by Roger D. -
Espinsights the Global Space Activity Monitor
ESPInsights The Global Space Activity Monitor Issue 6 April-June 2020 CONTENTS FOCUS ..................................................................................................................... 6 The Crew Dragon mission to the ISS and the Commercial Crew Program ..................................... 6 SPACE POLICY AND PROGRAMMES .................................................................................... 7 EUROPE ................................................................................................................. 7 COVID-19 and the European space sector ....................................................................... 7 Space technologies for European defence ...................................................................... 7 ESA Earth Observation Missions ................................................................................... 8 Thales Alenia Space among HLS competitors ................................................................... 8 Advancements for the European Service Module ............................................................... 9 Airbus for the Martian Sample Fetch Rover ..................................................................... 9 New appointments in ESA, GSA and Eurospace ................................................................ 10 Italy introduces Platino, regions launch Mirror Copernicus .................................................. 10 DLR new research observatory .................................................................................. -
Desind Finding
NATIONAL AIR AND SPACE ARCHIVES Herbert Stephen Desind Collection Accession No. 1997-0014 NASM 9A00657 National Air and Space Museum Smithsonian Institution Washington, DC Brian D. Nicklas © Smithsonian Institution, 2003 NASM Archives Desind Collection 1997-0014 Herbert Stephen Desind Collection 109 Cubic Feet, 305 Boxes Biographical Note Herbert Stephen Desind was a Washington, DC area native born on January 15, 1945, raised in Silver Spring, Maryland and educated at the University of Maryland. He obtained his BA degree in Communications at Maryland in 1967, and began working in the local public schools as a science teacher. At the time of his death, in October 1992, he was a high school teacher and a freelance writer/lecturer on spaceflight. Desind also was an avid model rocketeer, specializing in using the Estes Cineroc, a model rocket with an 8mm movie camera mounted in the nose. To many members of the National Association of Rocketry (NAR), he was known as “Mr. Cineroc.” His extensive requests worldwide for information and photographs of rocketry programs even led to a visit from FBI agents who asked him about the nature of his activities. Mr. Desind used the collection to support his writings in NAR publications, and his building scale model rockets for NAR competitions. Desind also used the material in the classroom, and in promoting model rocket clubs to foster an interest in spaceflight among his students. Desind entered the NASA Teacher in Space program in 1985, but it is not clear how far along his submission rose in the selection process. He was not a semi-finalist, although he had a strong application. -
Tim Peake Tells All Slim Satellite for Star Wars
Spaceflight A British Interplanetary Society Publication Tim Peake tells all Slim satellite for Star Wars Fantastic Philae! SAMPLE Apollo 15’s room with a view Vol 57 No 1 January 2015 £4.50 www.bis-space.com 1.indd 441 11/27/2014 9:48:17 AM CONTENTS Editor: Published by the British Interplanetary Society David Baker, PhD, BSc, FBIS Volume 57 No. 1 January 2015 Sub-editor: Ann Page 18 Antares Falters Production Assistant: As the forensic engineering analysis of the failure of an Antares Ben Jones rocket on 28 October reaches its preliminary conclusions, what was Spaceflight Promotion: responsible for the catastrophic loss of more than 2 tonnes of cargo Suszann Parry for the ISS and what impact will it have on the future for Orbital SPACEFLIGHT OFFICE Sciences? 27/29 South Lambeth Road, London, SW8 1SZ, England. 19-22 The Apollo 15 Standup EVA Tel: +44 (0)20 7735 3160 Space historian Joel W Powell digs out the details on Apollo 15 Fax: +44 (0)20 7587 5118 commander Dave Scott’s unique survey of the Hadley Apennine Email: [email protected] landing site from his position standing on the ascent engine cover, www.bis-space.com head and shoulders out the top of the Lunar Module Falcon. ADVERTISING 23-25 Tim Peake Speaks of Principia Tel: +44 (0)1424 883401 Spaceflight’s Nick Spall talks to British astronaut Tim Peake about Email: [email protected] his Principia mission, now less than a year away from launch on a DISTRIBUTION Soyuz spacecraft to the ISS where he will remain for approximately six Spaceflight may be received worldwide by months. -
Lives in Astronomy
LIVES IN ASTRONOMY John Scales Avery January 2, 2020 2 Contents 1 EARLY HISTORY OF ASTRONOMY 7 1.1 Prehistoric Europe . .7 1.2 Ancient India and China . 12 1.3 Mesopotamia, 4000 BC . 12 1.4 Ancient Egypt . 15 1.5 Eratosthenes . 19 1.6 Aristarchus . 19 2 COPERNICUS, BRAHE, KEPLER AND GALILEO 25 2.1 Copernicus . 25 2.2 Tycho Brahe . 27 2.3 Johannes Kepler . 31 2.4 Galileo . 35 3 NEWTON 47 3.1 Newton . 47 3.2 Lagrange and Laplace . 56 3.3 Hamilton . 60 4 HUYGENS, RØMER AND MAXWELL 63 4.1 Christiaan Huygens: The wave theory of light . 63 4.2 Ole Rømer: The velocity of light . 67 4.3 James Clerk Maxwell: Light as electromagnetic waves . 70 5 EINSTEIN 75 5.1 Family background . 75 5.2 Special relativity theory . 80 5.3 General relativity . 81 5.4 Schwartzschild's solutions: Black holes . 84 6 LEVITT AND HUBBLE 89 6.1 Henrietta Swan Leavitt . 89 6.2 Edwin Hubble . 92 3 4 CONTENTS 6.3 The Hubble Space Telescope . 97 7 RADIO ASTRONOMY 109 7.1 Early history of radio astronomy . 109 7.2 Sir Martin Ryle and Anthony Hewish . 111 7.3 Jocelyn Bell Burnell . 114 7.4 Quasars, pulsars, and neutron stars . 116 7.5 Penzias and Wilson . 119 8 CHANDRASEKHAR 125 8.1 Early life and career . 125 8.2 Magnetohydrodynamics . 126 8.3 The formation and evolution of stars . 129 8.4 Black holes: The Chandrasekhar limit . 133 8.5 Chandrasekhar's Nobel Prize in Physics . 133 9 HAWKING, PENROSE AND HIGGS 139 9.1 Penrose-Hawking singularity theorems .