Arthropod Cuticle: Time-Lapse 3D Imaging to Assess Toughening and Failure Mechanisms

Total Page:16

File Type:pdf, Size:1020Kb

Arthropod Cuticle: Time-Lapse 3D Imaging to Assess Toughening and Failure Mechanisms Arthropod cuticle: Time-lapse 3D imaging to assess toughening and failure mechanisms A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering. 2019 Daniel Sykes School of Natural Sciences Department of Materials TABLE OF CONTENTS INTRODUCTION: 11 Fracture mechanics of arthropod cuticle 13 Toughening mechanisms in composite materials 15 The use of X-ray computed tomography to investigate microstructure 19 Aims of Papers 1, 2, 3 & 4 22 Alternative format 23 References 25 PAPER 1: Arthropod cuticle: a biological material with diverse mechanical properties 31 PAPER 2: Time-lapse three-dimensional imaging of crack propagation in beetle cuticle 84 PAPER 3: Preservation of mechanical properties in locust tibiae for in situ time-lapse three-dimensional imaging 93 PAPER 4: Effect of hydration on crack propagation in beetle elytra using time-lapse three-dimensional imaging 112 DISCUSSION: 140 Development of a methodology for in situ mechanical testing of hydration-sensitive biological materials 145 Toughness in arthropod cuticle 146 Future work 148 Conclusions 152 References 153 APPENDIX A: Supplementary information 159 Word count: 46,267 2 ABSTRACT Thesis title: Arthropod cuticle: Time-lapse 3D imaging to assess toughening and failure mechanisms Name: Daniel Sykes Institution: University of Manchester Degree Title: Doctor of Philosophy Date: June 2019 This thesis concentrates on one of the least studied mechanical properties of cuticle – toughness. In particular, it investigates how cuticle microstructure impacts crack propagation, and the toughening mechanisms cuticle possesses to protect the vulnerable soft tissues contained within the exoskeleton. I use time-lapse 3D nCT imaging with in situ mechanical tests to investigate toughness and damage progression in arthropod cuticle. In addition, I develop new methodologies of standardised sample preparation and hydration preservation to perform quantitative analysis of fresh locust tibiae and beetle elytra. The results obtained in this thesis have shown that it is possible with these techniques to analyse toughening in fresh and dry cuticles, by qualitative visualisation of the interaction between microstructure and crack propagation and quantitative measurement of toughness values from standardised test samples. It was shown that microstructure is responsible for the numerous extrinsic toughening mechanisms present in cuticle, of which many were previously unreported, and that hydration is responsible for improving the effectiveness and frequency of their occurrence. Furthermore, it was found that the exocuticle contributes little to toughness and that the difference in angle between the crack direction and the fibre orientations of a lamina directly affected the toughening capability of that lamina. To summarise, this thesis displays how a combined approach using state-of-the-art 3D imaging, in situ mechanical testing, sample preparation and hydration preservation techniques can provide us with new insights in how arthropod cuticle shape, microstructure, composition and mechanical properties interact. 3 DECLARATION No portion of the work referred to in the thesis has been submitted in support of an application for another degree or qualification of this or any other university or other institute of learning. COPYRIGHT STATEMENT I. The author of this thesis (including any appendices and/or schedules to this thesis) owns certain copyright or related rights in it (the "Copyright") and she has given the University of Manchester certain rights to use such Copyright, including for administrative purposes. II. Copies of this thesis, either in full or in extracts and whether in hard or electronic copy, may be made only in accordance with the Copyright, Designs and Patents Act 1988 (as amended) and regulations issued under it or, where appropriate, in accordance with licensing agreements which the University has from time to time. This page must form part of any such copies made. III. The ownership of certain Copyright, patents, designs trademarks and other intellectual property (the "Intellectual Property") and any reproductions of copyright works in this thesis, for example graphs and tables ("Reproductions"), which may be described in this thesis, may not be owned by the author and may be owned by third parties. Such Intellectual Property and Reproductions cannot and must not be made available for use without the prior written permission of the owner(s) of the relevant Intellectual Property and/or Reproductions. IV. Further information on the conditions under which disclosure, publication and commercialisation of this thesis, the Copyright and any Intellectual Property and/or Reproductions described in it may take place is available in the University IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420), in any relevant Thesis restriction declarations deposited in the University Library, The University Library’s regulations (see http://www.library.manchester.ac.uk/about/regulations/) and in The University’s policy on Presentation of Theses. 4 ACKNOWLEDGEMENTS I would like to thank everyone who has helped and supported me during my PhD. Firstly, I would like to thank my supervisors Russell Garwood, Philip Withers and Shelley Rawson for their help and guidance throughout my project, their suggestions for solutions to the problems I encountered and their recommendations on how to improve my experiments, manuscripts and figures. I would also like to thank my colleagues and ex- colleagues Stuart Morse, Julia Behnsen, James Carr, Rob Bradley, Rebecca Hartwell and Chris Egan. During our shared time at the University of Manchester they provided invaluable help, guidance and recommendations. I am very grateful to my parents, Christopher Sykes and Sandra Sykes, and my brother, Gary Sykes, for their continual encouragement and support. The last three and a half years would have been impossible for me without it. I would particularly like to thank my parents for their support from a young age to achieve my ambitions, from waking up in the early hours every day to transport me to the train station so I could go to Greenhead college; to supporting me in my decision to study in Southampton and supporting me throughout my time there; to the continual help, visits and support they have given me during my time at the Natural History Museum and the University of Manchester. I would also like to thank my extended family, my grandma, my uncles and aunties: Tracey, Simon and Lynne, my cousins: Evie, Alice, Karen, Suzanne, Jade, Holly and Nick, and my dearly missed grandparents: Molly, Cyril and Donald. Although I have not been able to spend as much time with them during my PhD as I would have liked, the time I did manage to have was a really appreciated respite from my PhD. 5 Some of my greatest support during my PhD has come from my friendships that started during my undergraduate studies. Benjamin Evans, Rebecca Summerfield, Charlotte Brooks, Kasimir Marks, Anna Mogridge, James Mogridge, Ella Smith and Adam Lomax are great friends who I also wish I had more time with in the last three and a half years, but the time I have had has helped me immeasurably. I developed many lasting friendships during my time at the Natural History Museum that have been a great support to me, but I would like to particularly thank Natasha Vasiliki Almeida. She has been an unwavering support and the similarities between the courses of our PhDs meant her help has been invaluable and vital at all times. I would also like to thank the friends I have made here in Manchester and ones I already had that arrived here before me. Russell Garwood, Charlotte Brassey, James O’Sullivan and all the members of Bill Seller’s lab have made me feel welcome here. I would particularly like to thank Thomas Puschel Rouliez, who has been a great distraction from my PhD by being a true friend and allowing me to have fun and relax once in a while. Without a doubt the most important person during my PhD and in my life is Fernanda Bribiesca Contreras. Since we met in our first year of PhD she has been an undying source of love, support, happiness, kindness and inspiration. She has inspired me to be a better person and scientist by example, and has made my life a happier and more enjoyable one. Even in the toughest times, she has always known how to make me laugh away pain and make everything easier. Muchas gracias Fer por todo, te amo mucho y estoy muy emocionado de pasar mi vida contigo. 6 THE AUTHOR Daniel Sykes Research interests My main research focus is on studying the links between biological forms and structures and their function. I apply computed tomography and advanced 3D image analyses to produce 3D volumetric data of the external form and internal structure of biological materials. Education Ph.D Materials Thesis topic: Arthropod cuticle: Time-lapse 3D imaging to assess toughening and failure mechanisms School of Materials, University of Manchester, UK. Supervisors: Prof. Philip J. Withers, Dr. Russell J. Garwood and Dr. Shelley D. Rawson M.Sci Marine Biology Dissertation topic: Three-dimensional (3D) imaging of polychaete internal anatomy using micro-computed X-ray tomography University of Southampton, UK Supervisor: Dr. Gordon L.J. Paterson Refereed journal publications 1. Paterson GL, Sykes D, Faulwetter S, Merk R, Ahmed F, Hawkins LE, Dinley J, Ball AD, Arvanitidis C. 2014. The pros and cons of using micro-computed tomography in gross and micro-anatomical assessments of polychaetous annelids. Memoirs of Museum Victoria 71:237–46. 2. Reumont BM von, Campbell LI, Richter S, Hering L, Sykes D, Hetmank J, Jenner RA, Bleidorn C. 2014. A Polychaete’s Powerful Punch: Venom Gland Transcriptomics of Glycera Reveals a Complex Cocktail of Toxin Homologs. Genome Biology and Evolution 6:2406–2423. DOI: 10.1093/gbe/evu190. 7 3. Amon DJ, Sykes D, Ahmed F, Copley JT, Kemp KM, Tyler PA, Young CM, Glover AG.
Recommended publications
  • Learning in Stomatopod Crustaceans
    International Journal of Comparative Psychology, 2006, 19 , 297-317. Copyright 2006 by the International Society for Comparative Psychology Learning in Stomatopod Crustaceans Thomas W. Cronin University of Maryland Baltimore County, U.S.A. Roy L. Caldwell University of California, Berkeley, U.S.A. Justin Marshall University of Queensland, Australia The stomatopod crustaceans, or mantis shrimps, are marine predators that stalk or ambush prey and that have complex intraspecific communication behavior. Their active lifestyles, means of predation, and intricate displays all require unusual flexibility in interacting with the world around them, imply- ing a well-developed ability to learn. Stomatopods have highly evolved sensory systems, including some of the most specialized visual systems known for any animal group. Some species have been demonstrated to learn how to recognize and use novel, artificial burrows, while others are known to learn how to identify novel prey species and handle them for effective predation. Stomatopods learn the identities of individual competitors and mates, using both chemical and visual cues. Furthermore, stomatopods can be trained for psychophysical examination of their sensory abilities, including dem- onstration of color and polarization vision. These flexible and intelligent invertebrates continue to be attractive subjects for basic research on learning in animals with relatively simple nervous systems. Among the most captivating of all arthropods are the stomatopod crusta- ceans, or mantis shrimps. These marine creatures, unfamiliar to most biologists, are abundant members of shallow marine ecosystems, where they are often the dominant invertebrate predators. Their common name refers to their method of capturing prey using a folded, anterior raptorial appendage that looks superficially like the foreleg of a praying mantis.
    [Show full text]
  • Chapter 14 1. Specialization of Regions of the Body for Specific
    Chapter 14 1. Specialization of regions of the body for specific functions, as seen in arthropods, is called A) tagmatization. B) metamerism. C) truncation. D) differentiation. E) cephalization. 2. Members of class __________ are among the most numerous crustaceans, and are both marine and freshwater in distribution. A) Cirripedia B) Copepoda C) Branchiopoda D) Malacostraca E) Isopoda 3. Which type of crustacean do many zoologists believe to have the greatest number of individuals of any type of animal on the planet? A) isopods B) fairy shrimp C) brine shrimp D) copepods E) barnacles 4. Which of the following phyla of animals are not ecdysozoan? A) Arthropoda B) Nematoda C) Gastrotricha D) Nematomorpha E) Kinorhyncha 5. Which of the following is not a synapomorphy that unites the members of the ecdysozoan clade? A) the blastopore develops into the anus B) loss of epidermal cilia C) possession of a cuticle D) shedding of cuticle through ecdysis E) all of the above are synapomorphies shared by ecdysozoans Page 1 6. The __________ is the outer layer of the arthropod exoskeleton, and it is composed of a waterproofing waxy lipoprotein. A) lipocuticle B) mesocuticle C) epicuticle D) endocuticle E) sclerocuticle 7. The tough, leathery polysaccharide in the arthropod procuticle is A) lipoprotein. B) calcium carbonate. C) scleroprotein. D) chitin. E) glycogen. 8. The arthropod skeleton hardens by __________, which is a formation of chemical bonds between protein chains. A) carbonization B) tagmatization C) calcification D) chitinization E) sclerotization 9. Sensory receptors called __________ occur in the arthropod exoskeleton in the form of pegs, bristles, and lenses.
    [Show full text]
  • Research Interests Related to the Cambridge-MIT Institute
    Nanoscale Structural Design Principles of Biocomposite Exoskeletons As a Guide for New Energy-Absorbing Materials Technologies Team 1 : Energy Absorbing Materials : Multiscale Design and Evaluation of Nanostructured Materials for Ballistic and Blast Protection MIT Institute for Soldier Technologies (ISN) Christine Ortiz, Assistant Professor Massachusetts Institute of Technology, Department of Materials Science and Engineering WWW : http://web.mit.edu/cortiz/www/ August 2002 I. Background : Structural Design Principles and Energy Absorbing Mechanisms From millions of years of evolution, nature has ingeniously figured out innumerate structural design principles to produce multifunctional, and in many cases stimulus-responsive, materials with superior mechanical properties[1-6]. Examples of these include exoskeletons of many invertebrate animals such as mollusks, arthropods (e.g. crustaceans such as crabs, insects), cnidaria (e.g. corals), and structural components of mammals such as turtle shell, rhinocerous horn, bovine hoof horn, deer antlers, elephant tusks, and teeth. Most tough biological materials are complex, hierarchical, multilayered nanocomposites that undergo a wide variety of different energy-absorbing toughening mechanisms at many length scales. Some of these mechanisms in both biological and synthetic composite materials [7-10] are shown in Figure 1 and include; 1) rupture of "sacrificial" weaker bonds in the macromolecular component (e.g. Mollusk shell nacre), 2) extension, pull-out, and/or ligament formation of a macromolecular component bridging an interface (e.g. Mollusk shell nacre), 3) void formation (e.g. via cavitation of rubber particles in a thermoset composite or stress whitening in semicrystalline polymers) leading to bulk plastic deformation, crack blunting, pinning and branching, 4) localized plastic deformation ahead of a crack tip (e.g.
    [Show full text]
  • Cómo Citar El Artículo Número Completo Más Información Del
    Acta zoológica mexicana ISSN: 0065-1737 ISSN: 2448-8445 Instituto de Ecología A.C. García, Mauricio; Camacho, Jesús; Dorado, Idelma Dos nuevas especies de Termitaradus Myers, 1924 (Hemiptera: Termitaphididae), de Venezuela y observaciones sobre la familia Acta zoológica mexicana, vol. 32, núm. 3, 2016, pp. 348-358 Instituto de Ecología A.C. Disponible en: http://www.redalyc.org/articulo.oa?id=57549165012 Cómo citar el artículo Número completo Sistema de Información Científica Redalyc Más información del artículo Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto ISSN 0065-1737 (NUEVA SERIE) 32(3) 2016 DOS NUEVAS ESPECIES DE TERMITARADUS MYERS, 1924 (HEMIPTERA: TERMITAPHIDIDAE), DE VENEZUELA Y OBSERVACIONES SOBRE LA FAMILIA TWO NEW SPECIES OF TERMITARADUS MYERS, 1924 (HEMIPTERA: TERMITAPHIDIDAE) OF VENEZUELA, AND OBSERVATIONS ON THE FAMILY Mauricio GARCÍA,¹ Jesús CAMACHO² e Idelma DORADO² ¹ Centro de Investigaciones Biológicas (CIB), Facultad de Humanidades y Educación, Edificio de Postgrado, Universidad del Zulia, Apdo. 526, A-4001, Venezuela. ² Museo de Artrópodos de la Universidad del Zulia (MALUZ). Departamento Fitosanitario, Facultad de Agronomía, Universidad del Zulia, Apdo. 526, Maracaibo A-4001, Zulia, Venezuela. <[email protected]>; <[email protected]>; <[email protected]> Recibido: 28/03/2016; aceptado: 30/08/2016 Editor asociado responsable: Alfonso Neri García Aldrete García, M., Camacho, J. & Dorado, I. (2016). Dos nuevas especies García, M., Camacho, J. & Dorado, I. (2016). Two new species of de Termitaradus Myers, 1924 (Hemiptera: Termitaphididae), de Termitaradus Myers, 1924 (Hemiptera: Termitaphididae) of Ven- Venezuela y observaciones sobre la familia.
    [Show full text]
  • Lessons from Genome Skimming of Arthropod-Preserving Ethanol Benjamin Linard, P
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication Lessons from genome skimming of arthropod-preserving ethanol Benjamin Linard, P. Arribas, C. Andújar, A. Crampton-Platt, A. P. Vogler To cite this version: Benjamin Linard, P. Arribas, C. Andújar, A. Crampton-Platt, A. P. Vogler. Lessons from genome skimming of arthropod-preserving ethanol. Molecular Ecology Resources, Wiley/Blackwell, 2016, 16 (6), pp.1365-1377. 10.1111/1755-0998.12539. hal-01636888 HAL Id: hal-01636888 https://hal.archives-ouvertes.fr/hal-01636888 Submitted on 17 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Lessons from genome skimming of arthropod-preserving 2 ethanol 3 Linard B.*1,4, Arribas P.*1,2,5, Andújar C.1,2, Crampton-Platt A.1,3, Vogler A.P. 1,2 4 5 1 Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 6 5BD, UK, 7 2 Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot 8 SL5 7PY, UK, 9 3 Department
    [Show full text]
  • Nail Anatomy and Physiology for the Clinician 1
    Nail Anatomy and Physiology for the Clinician 1 The nails have several important uses, which are as they are produced and remain stored during easily appreciable when the nails are absent or growth. they lose their function. The most evident use of It is therefore important to know how the fi ngernails is to be an ornament of the hand, but healthy nail appears and how it is formed, in we must not underestimate other important func- order to detect signs of pathology and understand tions, such as the protective value of the nail plate their pathogenesis. against trauma to the underlying distal phalanx, its counterpressure effect to the pulp important for walking and for tactile sensation, the scratch- 1.1 Nail Anatomy ing function, and the importance of fi ngernails and Physiology for manipulation of small objects. The nails can also provide information about What we call “nail” is the nail plate, the fi nal part the person’s work, habits, and health status, as of the activity of 4 epithelia that proliferate and several well-known nail features are a clue to sys- differentiate in a specifi c manner, in order to form temic diseases. Abnormal nails due to biting or and protect a healthy nail plate [1 ]. The “nail onychotillomania give clues to the person’s emo- unit” (Fig. 1.1 ) is composed by: tional/psychiatric status. Nail samples are uti- • Nail matrix: responsible for nail plate production lized for forensic and toxicology analysis, as • Nail folds: responsible for protection of the several substances are deposited in the nail plate nail matrix Proximal nail fold Nail plate Fig.
    [Show full text]
  • Linkage Mechanics and Power Amplification of the Mantis Shrimp's
    3677 The Journal of Experimental Biology 210, 3677-3688 Published by The Company of Biologists 2007 doi:10.1242/jeb.006486 Linkage mechanics and power amplification of the mantis shrimp’s strike S. N. Patek1,*, B. N. Nowroozi2, J. E. Baio1, R. L. Caldwell1 and A. P. Summers2 1Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA and 2Ecology and Evolutionary Biology, University of California–Irvine, Irvine, CA 92697-2525, USA *Author for correspondence (e-mail: [email protected]) Accepted 6 August 2007 Summary Mantis shrimp (Stomatopoda) generate extremely rapid transmission is lower than predicted by the four-bar model. and forceful predatory strikes through a suite of structural The results of the morphological, kinematic and modifications of their raptorial appendages. Here we mechanical analyses suggest a multi-faceted mechanical examine the key morphological and kinematic components system that integrates latches, linkages and lever arms and of the raptorial strike that amplify the power output of the is powered by multiple sites of cuticular energy storage. underlying muscle contractions. Morphological analyses of Through reorganization of joint architecture and joint mechanics are integrated with CT scans of asymmetric distribution of mineralized cuticle, the mantis mineralization patterns and kinematic analyses toward the shrimp’s raptorial appendage offers a remarkable example goal of understanding the mechanical basis of linkage of how structural and mechanical modifications can yield dynamics and strike performance. We test whether a four- power amplification sufficient to produce speeds and forces bar linkage mechanism amplifies rotation in this system at the outer known limits of biological systems.
    [Show full text]
  • Biochemical Divergence Between Cavernicolous and Marine
    The position of crustaceans within Arthropoda - Evidence from nine molecular loci and morphology GONZALO GIRIBET', STEFAN RICHTER2, GREGORY D. EDGECOMBE3 & WARD C. WHEELER4 Department of Organismic and Evolutionary- Biology, Museum of Comparative Zoology; Harvard University, Cambridge, Massachusetts, U.S.A. ' Friedrich-Schiller-UniversitdtJena, Instituifiir Spezielte Zoologie und Evolutionsbiologie, Jena, Germany 3Australian Museum, Sydney, NSW, Australia Division of Invertebrate Zoology, American Museum of Natural History, New York, U.S.A. ABSTRACT The monophyly of Crustacea, relationships of crustaceans to other arthropods, and internal phylogeny of Crustacea are appraised via parsimony analysis in a total evidence frame­ work. Data include sequences from three nuclear ribosomal genes, four nuclear coding genes, and two mitochondrial genes, together with 352 characters from external morphol­ ogy, internal anatomy, development, and mitochondrial gene order. Subjecting the com­ bined data set to 20 different parameter sets for variable gap and transversion costs, crusta­ ceans group with hexapods in Tetraconata across nearly all explored parameter space, and are members of a monophyletic Mandibulata across much of the parameter space. Crustacea is non-monophyletic at low indel costs, but monophyly is favored at higher indel costs, at which morphology exerts a greater influence. The most stable higher-level crusta­ cean groupings are Malacostraca, Branchiopoda, Branchiura + Pentastomida, and an ostracod-cirripede group. For combined data, the Thoracopoda and Maxillopoda concepts are unsupported, and Entomostraca is only retrieved under parameter sets of low congruence. Most of the current disagreement over deep divisions in Arthropoda (e.g., Mandibulata versus Paradoxopoda or Cormogonida versus Chelicerata) can be viewed as uncertainty regarding the position of the root in the arthropod cladogram rather than as fundamental topological disagreement as supported in earlier studies (e.g., Schizoramia versus Mandibulata or Atelocerata versus Tetraconata).
    [Show full text]
  • Arachnida, Solifugae) with Special Focus on Functional Analyses and Phylogenetic Interpretations
    HISTOLOGY AND ULTRASTRUCTURE OF SOLIFUGES Comparative studies of organ systems of solifuges (Arachnida, Solifugae) with special focus on functional analyses and phylogenetic interpretations HISTOLOGIE UND ULTRASTRUKTUR DER SOLIFUGEN Vergleichende Studien an Organsystemen der Solifugen (Arachnida, Solifugae) mit Schwerpunkt auf funktionellen Analysen und phylogenetischen Interpretationen I N A U G U R A L D I S S E R T A T I O N zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald vorgelegt von Anja Elisabeth Klann geboren am 28.November 1976 in Bremen Greifswald, den 04.06.2009 Dekan ........................................................................................................Prof. Dr. Klaus Fesser Prof. Dr. Dr. h.c. Gerd Alberti Erster Gutachter .......................................................................................... Zweiter Gutachter ........................................................................................Prof. Dr. Romano Dallai Tag der Promotion ........................................................................................15.09.2009 Content Summary ..........................................................................................1 Zusammenfassung ..........................................................................5 Acknowledgments ..........................................................................9 1. Introduction ............................................................................
    [Show full text]
  • Evaluation of the Chemical Defense Fluids of Macrotermes Carbonarius
    www.nature.com/scientificreports OPEN Evaluation of the chemical defense fuids of Macrotermes carbonarius and Globitermes sulphureus as possible household repellents and insecticides S. Appalasamy1,2*, M. H. Alia Diyana2, N. Arumugam2 & J. G. Boon3 The use of chemical insecticides has had many adverse efects. This study reports a novel perspective on the application of insect-based compounds to repel and eradicate other insects in a controlled environment. In this work, defense fuid was shown to be a repellent and insecticide against termites and cockroaches and was analyzed using gas chromatography-mass spectrometry (GC– MS). Globitermes sulphureus extract at 20 mg/ml showed the highest repellency for seven days against Macrotermes gilvus and for thirty days against Periplaneta americana. In terms of toxicity, G. sulphureus extract had a low LC50 compared to M. carbonarius extract against M. gilvus. Gas chromatography–mass spectrometry analysis of the M. carbonarius extract indicated the presence of six insecticidal and two repellent compounds in the extract, whereas the G. sulphureus extract contained fve insecticidal and three repellent compounds. The most obvious fnding was that G. sulphureus defense fuid had higher potential as a natural repellent and termiticide than the M. carbonarius extract. Both defense fuids can play a role as alternatives in the search for new, sustainable, natural repellents and termiticides. Our results demonstrate the potential use of termite defense fuid for pest management, providing repellent and insecticidal activities comparable to those of other green repellent and termiticidal commercial products. A termite infestation could be silent, but termites are known as destructive urban pests that cause structural damage by infesting wooden and timber structures, leading to economic loss.
    [Show full text]
  • Introduction; Environment & Review of Eyes in Different Species
    The Biological Vision System: Introduction; Environment & Review of Eyes in Different Species James T. Fulton https://neuronresearch.net/vision/ Abstract: Keywords: Biological, Human, Vision, phylogeny, vitamin A, Electrolytic Theory of the Neuron, liquid crystal, Activa, anatomy, histology, cytology PROCESSES IN BIOLOGICAL VISION: including, ELECTROCHEMISTRY OF THE NEURON Introduction 1- 1 1 Introduction, Phylogeny & Generic Forms 1 “Vision is the process of discovering from images what is present in the world, and where it is” (Marr, 1985) ***When encountering a citation to a Section number in the following material, the first numeric is a chapter number. All cited chapters can be found at https://neuronresearch.net/vision/document.htm *** 1.1 Introduction While the material in this work is designed for the graduate student undertaking independent study of the vision sensory modality of the biological system, with a certain amount of mathematical sophistication on the part of the reader, the major emphasis is on specific models down to specific circuits used within the neuron. The Chapters are written to stand-alone as much as possible following the block diagram in Section 1.5. However, this requires frequent cross-references to other Chapters as the analyses proceed. The results can be followed by anyone with a college degree in Science. However, to replicate the (photon) Excitation/De-excitation Equation, a background in differential equations and integration-by-parts is required. Some background in semiconductor physics is necessary to understand how the active element within a neuron operates and the unique character of liquid-crystalline water (the backbone of the neural system). The level of sophistication in the animal vision system is quite remarkable.
    [Show full text]
  • Development and Characterization of Eleven Microsatellite Markers for A
    Int. J. Indust. Entomol. 35(2) 97-99 (2017) IJIE ISSN 1598-3579, http://dx.doi.org/10.7852/ijie.2017.35.2.97 Development and characterization of eleven microsatellite markers for a popular pet stag beetle, Dorcus hopei (Coleoptera, Lucanidae) using paired-end Illumina shotgun sequencing Taeman Han, Seung-Hyun Kim, In Gyun Park, and Haechul Park* Applied Entomology Division, Department of Agricultural Biology, National Institute of Agricultural Science, Nongsaengmyeong-ro 166, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of KOREA Abstract Eleven polymorphic microsatellite loci were developed and characterized for Dorcus hopei Received : 12 Sep 2017 in this study. The number of alleles varied from 2 to 21. The observed heterozygosity Revised : 29 Sep 2017 and expected heterozygosity ranged from 0.1058 to 0.9744 and 0.0997 to 0.8941, Accepted : 17 Oct 2017 respectively. Two loci showed low polymorphism, while the rest were highly polymorphic. Keywords: Six loci deviated from Hardy-Weinberg Equilibrium. The set of markers will provide Dorcus hopei, effective tools for examining the population genetic structures and be helpful for managing Lucanidae, wild population in D. hopei. microsatellite, © 2017 The Korean Society of Sericultural Sciences genetic diversity, Int. J. Indust. Entomol. 35(2), 97-99 (2017) Korea Introduction Materials and Methods A stag beetle, Dorcus hopei belonging to the family Genomic DNA (gDNA) was extracted from thorax muscle Lucanidae is a famous insect pet and widely reared by many tissue of a wild male (voucher no. 8421, collecting date: 9th April insect fanciers between Korea and Japan. In Japan, to increase 2013) using a DNeasy Blood and Tissue kit (QIAGEN).
    [Show full text]