Tracking the Evolution of Language and Speech
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Early Modern Human from the Pes¸Tera Cu Oase, Romania
An early modern human from the Pes¸tera cu Oase, Romania Erik Trinkaus*†, Oana Moldovan‡,S¸ tefan Milota§, Adrian Bıˆlga˘r¶, Laurent¸iu Sarcina§, Sheela Athreyaʈ, Shara E. Bailey**, Ricardo Rodrigo††, Gherase Mircea§, Thomas Higham‡‡, Christopher Bronk Ramsey‡‡, and Johannes van der Plicht§§ *Department of Anthropology, Campus Box 1114, Washington University, St. Louis, MO 63130; ‡Institutul de Speologie ‘‘Emil Racovit¸a˘ ,’’ Clinicilor 5, P.O. Box 58, 3400 Cluj, Romania; §Pro Acva Grup, Strada˘Surduc 1, 1900 Timis¸oara, Romania; ¶Strada˘Decebal 1, 1500 Drobeta Turnu Severin, Romania; ʈDepartment of Anthropology, Texas A&M University, College Station TX 77843; **Department of Anthropology, George Washington University, 2110 G Street, Washington, DC 20052; ††Centro Nacional da Arqueologia Na´utica e Subaqua´tica, Instituto Portugueˆs de Arqueologia, Avenida da India 136, 1300 Lisboa, Portugal; ‡‡Research Laboratory for Archaeology and the History of Art, University of Oxford, 6 Keble Road, Oxford OX1 3QJ, United Kingdom; and §§Centrum voor Isotopen Onderzoek, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands Contributed by Erik Trinkaus, August 8, 2003 The 2002 discovery of a robust modern human mandible in the Pes¸tera cu Oase, southwestern Romania, provides evidence of early modern humans in the lower Danubian Corridor. Directly accelerator mass spectrometry radiocarbon (14C)-dated to 34,000– 36,000 14C years B.P., the Oase 1 mandible is the oldest definite early modern human specimen in Europe and provides perspec- tives on the emergence and evolution of early modern humans in the northwestern Old World. The moderately long Oase 1 mandi- ble exhibits a prominent tuber symphyseos and overall proportions that place it close to earlier Upper Paleolithic European specimens. -
Human Evolution: a Paleoanthropological Perspective - F.H
PHYSICAL (BIOLOGICAL) ANTHROPOLOGY - Human Evolution: A Paleoanthropological Perspective - F.H. Smith HUMAN EVOLUTION: A PALEOANTHROPOLOGICAL PERSPECTIVE F.H. Smith Department of Anthropology, Loyola University Chicago, USA Keywords: Human evolution, Miocene apes, Sahelanthropus, australopithecines, Australopithecus afarensis, cladogenesis, robust australopithecines, early Homo, Homo erectus, Homo heidelbergensis, Australopithecus africanus/Australopithecus garhi, mitochondrial DNA, homology, Neandertals, modern human origins, African Transitional Group. Contents 1. Introduction 2. Reconstructing Biological History: The Relationship of Humans and Apes 3. The Human Fossil Record: Basal Hominins 4. The Earliest Definite Hominins: The Australopithecines 5. Early Australopithecines as Primitive Humans 6. The Australopithecine Radiation 7. Origin and Evolution of the Genus Homo 8. Explaining Early Hominin Evolution: Controversy and the Documentation- Explanation Controversy 9. Early Homo erectus in East Africa and the Initial Radiation of Homo 10. After Homo erectus: The Middle Range of the Evolution of the Genus Homo 11. Neandertals and Late Archaics from Africa and Asia: The Hominin World before Modernity 12. The Origin of Modern Humans 13. Closing Perspective Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS The basic course of human biological history is well represented by the existing fossil record, although there is considerable debate on the details of that history. This review details both what is firmly understood (first echelon issues) and what is contentious concerning humanSAMPLE evolution. Most of the coCHAPTERSntention actually concerns the details (second echelon issues) of human evolution rather than the fundamental issues. For example, both anatomical and molecular evidence on living (extant) hominoids (apes and humans) suggests the close relationship of African great apes and humans (hominins). That relationship is demonstrated by the existing hominoid fossil record, including that of early hominins. -
Course Business Origin of Modern Humans
5/7/2014 Course Business • Today is the last lecture, an emotional day for us all • Final exam, next week; 6:30-9:00, same room Lecture Lab Text Book Australopiths Australopith Ch. 11 Diet Early Homo & Oldowan Early Homo Ch. 12 H. erectus: anatomy & behavior; Out of Africa 1 Homo erectus Ch. 13 Archaic H. sapiens: anatomy & behavior Late Homo Ch. 14 Neanderthal: anatomy & behavior Ch. 15 Modern H. sapiens: anatomy & behavior; Out of Africa 2 1 Origin of modern humans • Anatomically modern Homo sapiens • Behaviorally modern Homo sapiens • When, where, why? 2 1 5/7/2014 Hominin Date Ranges • Early hominins: 7.0 – 4.4 Ma • Gracile australopiths: 4.2 – 2.0 Ma • Robust australopiths: 2.3 – 1.2 Ma • Early Homo (H. habilis and H. rudolphensis): 2.0 – 1.6 Ma • Homo erectus: 1.8 mya – 50 ka • Archaic Homo sapiens (H. heidelbergensis): 600 – 125 ka • Homo neanderthalensis: 150 – 30 ka • Homo floresiensis: 90-11 ka • Anatomically modern Homo sapiens (AMHs): 195 ka 3 Modern human It’s complete!! Homo neanderthalensis Homo floresiensis Archaic Homo sapiens Paranthropus boisei Paranthropus robustus Homo erectus Homo rudolfensis Homo habilis Paranthropus aethiopicus Australopithecus africanus Australopithecus afarensis Australopithecus anamensis Ardipithecus (?) 4 2 5/7/2014 Cranial features of Homo sapiens: • Gracile skull (and postcranial anatomy) • Limited brow ridges, no superstructures • Rounded cranium with maximum breadth high on the vault • Orthognathic face • Small teeth and jaws • Obvious chin 5 Figure 14.01 6 3 5/7/2014 Diepkloof Rock Shelter -
There Is Very Little Evidence of Either Artwork Or Ritual Behavior in Lower Paleolithic Contexts with Two Exceptions
There is very little evidence of either artwork or ritual behavior in Lower Paleolithic contexts with two exceptions: – A small pebble of volcanic rock with evidence of human work on it found at Berekhat Ram, Golan Heights – It appears to be a representation of a human female – At over 230,000 years old, perhaps the earliest representation of a human female – Evidence for special treatment of the dead found in a cave at Atapuerca – The complete remains of 27 individuals recovered from this inaccessible cave – The excavators argue that the individuals were placed in the cave as part of a funerary ritual 300,000 years ago • Found on Golan Heights, near Syrian border • Acheulean, either H. erectus or archaic H. sapiens? • Dated to ca. 250,000 years b.p.! • neanderthal adj 1: ill-mannered and coarse and contemptible in behavior or appearance; "was boorish and insensitive"; "the loutish manners of a bully"; "her stupid oafish husband"; "aristocratic contempt for the swinish multitude" [syn: boorish, loutish, oafish, swinish] Dictionary.com 130,000 – 35/30,000 years ago Large cranial capacity Large browridge Receding chin Short, robust stature Cold adaptations Diorama of Neanderthals, American Museum (1930s) Cro-Magnon (1) La Chappelle (1) braincase in modern humans is supraorbital torus present relatively shorter, occipital bun present forehead rounder and higher prognathism 1. Neanderthals and modern humans evolved separately from populations of Homo erectus, possibly through local intermediate species 2. The common ancestor of modern humans and Neanderthals was a distinct species that itself evolved from Homo erectus and lived 700,000-300,000 years ago 3. -
An Anthropological Assessment of Neanderthal Behavioural Energetics
DEPARTMENT OF ARCHAEOLOGY, CLASSICS & EGYPTOLOGY An Anthropological Assessment of Neanderthal Behavioural Energetics. Thesis submitted in accordance with the requirements of the University of Liverpool for the Degree of Doctor in Philosophy by Andrew Shuttleworth. April, 2013. TABLE OF CONTENTS……………………………………………………………………..i LIST OF TABLES……………………………………………………………………………v LIST OF FIGURES…………………………………………………………………………..vi ACKNOWLEDGMENTS…………………………………………………………………...vii ABSTRACT…………………………………………………………………………………viii TABLE OF CONTENTS 1. INTRODUCTION...........................................................................................................1 1.1. Introduction..............................................................................................................1 1.2. Aims and Objectives................................................................................................2 1.3. Thesis Format...........................................................................................................3 2. THE NEANDERTHAL AND OXYEGN ISOTOPE STAGE-3.................................6 2.1. Discovery, Geographic Range & Origins..............................................................7 2.1.1. Discovery........................................................................................................7 2.1.2. Neanderthal Chronology................................................................................10 2.2. Morphology.............................................................................................................11 -
The Context of Human Genetic Evolution Robert Foley1
Downloaded from genome.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press PERSPECTIVE The Context of Human Genetic Evolution Robert Foley1 Human Evolutionary Biology Research Group, Department of Biological Anthropology, and King’s College Research Centre Human Diversity Project University of Cambridge, Cambridge, CB2 3DZ, UK The debate on modern human origins has often focused on the relationship between genes and fossils. Although more and more genetic evidence has been accumulating in favor of a recent African origin for modern humans, it has been assumed by many that the fossil evidence remains ambiguous. On the contrary, it has been clear for some time that the fossil evidence does not support the multiregional model: Fossils and archeology indicate a pattern of multiple dispersals from and beyond Africa, against which the genetic data can be compared. The continuing value of paleobiology is in complementing genetic information by revealing the context of human evolution: locating the dispersals and extinctions of populations in time and space, correlating these events with the environmental forces that shaped them, and providing an increasingly detailed understanding of the morphology and technology of early humans. Molecular biology has revolutionized the study of relatively small population (effective population human evolution. The importance of fossils as the size between 5000 and 50,000 individuals) (Rogers primary source of information about our past has and Harpending 1992; Harpending et al. 1993; Nei been steadily undermined as it has become possible and Takahata 1993; Harpending 1994). That size to infer detailed aspects of recent human history represents a bottleneck in the hominid lineage dat- from the distribution and frequency of genes found ing back no more than 200,000 years (Cann et al. -
What's in a Neanderthal
WHAT’S IN A NEANDERTHAL: A COMPARATIVE ANALYSIS Taylorlyn Stephan Oberlin College Dept. of Anthropology Advised by Prof. Amy Margaris TABLE OF CONTENTS I. Abstract – pg. 3 II. Introduction – pg. 3-4 III. Historical Background – pg. 4-5 a. Fig. 1 – pg. 5 IV. Methods – pg. 5-8 a. Figs. 2 and 3 – pg. 6 V. Genomic Definitions – pg. 8-9 VI. Site Introduction – pg. 9-10 a. Fig 4 – pg. 10 VII. El Sidron – pg. 10-14 a. Table – pg. 10-12 b. Figs. 5-7 – pg. 12 c. Figs. 8 and 9 – pg. 13 VIII. Mezmaiskaya – pg. 14-18 a. Table – pg. 14-16 b. Figs. 10 and 11 – pg. 16 IX. Shanidar – pg. 18-22 a. Table – pg. 19-20 b. Figs. 12 and 13 – pg.21 X. Vindija – pg. 22-28 a. Table – pg. 23-25 b. Fig. 14 – pg. 25 c. Figs. 15-18 – pg. 26 XI. The Neanderthal Genome Project – pg. 28-32 a. Table – pg. 29 b. Fig. 19 – pg. 29 c. Figs. 20 and 21 – pg. 30 XII. Discussion – pg. 32- 36 XIII. Conclusion – pg. 36-38 XIV. Bibliography – pg. 38-42 2 ABSTRACT In this analysis, I seek to understand how three separate lines of evidence – skeletal morphology, archaeology, and genomics – are used separately and in tandem to produce taxonomic classifications in Neanderthal and paleoanthropological research more generally. To do so, I have selected four sites as case studies: El Sidrón Cave, Mezmaiskaya Cave, Shanidar Cave, and Vindija Cave. El Sidrón, Mezmaiskaya, and Vindija all have detailed archaeological records and have yielded Neanderthal DNA. -
Human Origin Sites and the World Heritage Convention in Eurasia
World Heritage papers41 HEADWORLD HERITAGES 4 Human Origin Sites and the World Heritage Convention in Eurasia VOLUME I In support of UNESCO’s 70th Anniversary Celebrations United Nations [ Cultural Organization Human Origin Sites and the World Heritage Convention in Eurasia Nuria Sanz, Editor General Coordinator of HEADS Programme on Human Evolution HEADS 4 VOLUME I Published in 2015 by the United Nations Educational, Scientific and Cultural Organization, 7, place de Fontenoy, 75352 Paris 07 SP, France and the UNESCO Office in Mexico, Presidente Masaryk 526, Polanco, Miguel Hidalgo, 11550 Ciudad de Mexico, D.F., Mexico. © UNESCO 2015 ISBN 978-92-3-100107-9 This publication is available in Open Access under the Attribution-ShareAlike 3.0 IGO (CC-BY-SA 3.0 IGO) license (http://creativecommons.org/licenses/by-sa/3.0/igo/). By using the content of this publication, the users accept to be bound by the terms of use of the UNESCO Open Access Repository (http://www.unesco.org/open-access/terms-use-ccbysa-en). The designations employed and the presentation of material throughout this publication do not imply the expression of any opinion whatsoever on the part of UNESCO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The ideas and opinions expressed in this publication are those of the authors; they are not necessarily those of UNESCO and do not commit the Organization. Cover Photos: Top: Hohle Fels excavation. © Harry Vetter bottom (from left to right): Petroglyphs from Sikachi-Alyan rock art site. -
Arguments That Prehistorical and Modern Humans Belong to the Same Species
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 doi:10.20944/preprints201905.0038.v1 Arguments that Prehistorical and Modern Humans Belong to the Same Species Rainer W. Kühne Tuckermannstr. 35, 38118 Braunschweig, Germany e-mail: [email protected] May 2, 2019 Abstract called either progressive Homo erectus or archaic Homo sapiens. I argue that the evidence of the Out-of-Africa A more primitive group of prehistorical hu- hypothesis and the evidence of multiregional mans is sometimes classified as Homo erec- evolution of prehistorical humans can be un- tus, but mostly classified as belonging to dif- derstood if there has been interbreeding be- ferent species. These include Homo anteces- tween Homo erectus, Homo neanderthalensis, sor, Homo cepranensis, Homo erectus, Homo and Homo sapiens at least during the preced- ergaster, Homo georgicus, Homo heidelbergen- ing 700,000 years. These interbreedings require sis, Homo mauretanicus, and Homo rhodesien- descendants who are capable of reproduction sis. Sometimes the more primitive Homo habilis and therefore parents who belong to the same is regarded as belonging to the same species as species. I suggest that a number of prehistori- Homo ergaster. cal humans who are at present regarded as be- A further species is Homo floresiensis, a dwarf longing to different species belong in fact to one form known from Flores, Indonesia. This species single species. shows some anatomical characteristics which are similar to those of the more primitive humans Keywords Homo ergaster and Homo georgicus and other Homo sapiens, Homo neanderthalensis, Homo anatomical characteristics which are similar to erectus, Homo floresiensis, Neandertals, Deniso- those of Homo sapiens [1][2][3]. -
The Genome of the Offspring of a Neanderthal Mother and A
LETTER https://doi.org/10.1038/s41586-018-0455-x The genome of the offspring of a Neanderthal mother and a Denisovan father Viviane Slon1,7*, Fabrizio Mafessoni1,7, Benjamin Vernot1,7, Cesare de Filippo1, Steffi Grote1, Bence Viola2,3, Mateja Hajdinjak1, Stéphane Peyrégne1, Sarah Nagel1, Samantha Brown4, Katerina Douka4,5, Tom Higham5, Maxim B. Kozlikin3, Michael V. Shunkov3,6, Anatoly P. Derevianko3, Janet Kelso1, Matthias Meyer1, Kay Prüfer1 & Svante Pääbo1* Neanderthals and Denisovans are extinct groups of hominins present-day human DNA fragments constitute at most 1.7% of the data that separated from each other more than 390,000 years ago1,2. (Supplementary Information 2). Here we present the genome of ‘Denisova 11’, a bone fragment To determine from which hominin group Denisova 11 originated, from Denisova Cave (Russia)3 and show that it comes from an we compared the proportions of DNA fragments that match derived individual who had a Neanderthal mother and a Denisovan father. alleles from a Neanderthal genome (‘Altai Neanderthal’, also known as The father, whose genome bears traces of Neanderthal ancestry, ‘Denisova 5’) or a Denisovan genome (Denisova 3), both determined came from a population related to a later Denisovan found in the from bones discovered in Denisova Cave6,8, as well as from a present- cave4–6. The mother came from a population more closely related day African genome (Mbuti)6 (Supplementary Information 4). At to Neanderthals who lived later in Europe2,7 than to an earlier informative sites1, 38.6% of fragments from Denisova 11 carried alleles Neanderthal found in Denisova Cave8, suggesting that migrations matching the Neanderthal genome and 42.3% carried alleles matching of Neanderthals between eastern and western Eurasia occurred the Denisovan genome (Fig. -
2010 Conference
1 2 Thursday 8th April Chair: Name 10.00-10.20 Ian Candy Sedimentology and Palaeoenvironments of the Wroxham Formation: The geological context of the earliest humans in Britain 10.20-10.40 Simon Parfitt, Simon Lewis Where the wild things are. New evidence for early & Nick Ashton humans from East Anglia and the North Sea 10.40-11.00 Simon Lewis et al. The Ancestral River Thames in Norfolk: palaeogeography and human presence 11.00-11.10 Questions Chair: Name 11.10-11.40 Coffee 11.40-12.00 Justin Dix and Fraser Sturt Submerged Early Middle Pleistocene Palaeo- landscapes of the Thames Estuary 12.00-12.20 Mike Field Recent work at Happisburgh Site 1 12.20-12.40 Richard Preece & Simon The age of the Middle Pleistocene succession in Parfitt Norfolk and its relevance for Palaeolithic archaeology 12.40-1.00 Kirsty Penkman Dating the early Palaeolithic: the new aminostratigraphy 1.00-1.10 Questions Chair: Name 1.10-2.10 Lunch 2.10-2.30 Andreu Ollé et al. Experimental knapping and butchery: replicating Boxgrove 2.30-2.50 Laura Basell Tony Brown, A mixed assemblage and fluvio-periglacial Phil Toms, Chris Norman & sedimentation at Doniford, North Somerset Rob Hosfield 2.50-3.10 Rob Hosfield & Nick Mapping the human record in the British early Ashton Palaeolithic: evidence from the Solent River system 3.10-3.20 Questions 3.20-3.50 Tea Chair: Name 3.50-4.10 Kathy MacDonald Environmental tolerances of the earliest occupants of Europe: a review of the Leiden workshop and implications for future research 4.10-4.30 Matt Pope Human tool using behaviour and -
Neanderthals and the Modern Human Colonization of Europe
review article Neanderthals and the modern human colonization of Europe Paul Mellars Department of Archaeology, Cambridge University, Downing Street, Cambridge, CB2 3DZ, UK ........................................................................................................................................................................................................................... The fate of the Neanderthal populations of Europe and western Asia has gripped the popular and scientific imaginations for the past century. Following at least 200,000 years of successful adaptation to the glacial climates of northwestern Eurasia, they disappeared abruptly between 30,000 and 40,000 years ago, to be replaced by populations all but identical to modern humans. Recent research suggests that the roots of this dramatic population replacement can be traced far back to events on another continent, with the appearance of distinctively modern human remains and artefacts in eastern and southern Africa. he most significant contributions to these issues over an entirely separate biological species from modern humans is at the past decade have come from detailed studies of present more controversial1,2. the DNA structure of present-day human populations in different areas of the world, combined with the The archaeological record gradually accumulating recovery of residual traces of One important issue in current research is exactly what patterns of T‘ancient’ DNA extracted from a number of Neanderthal and early culture and technology were associated