Mammals of Nebraska Checklist, Key, and Bibliography
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Woodland Vole Microtus Pinetorum
woodland vole Microtus pinetorum Kingdom: Animalia FEATURES Phylum: Chordata The woodland vole has red-brown body fur with Class: Mammalia light red-brown fur on the belly. The head-body Order: Rodentia length is about three to four inches. The claws on the front feet are larger than the ones on the back Family: Cricetidae feet. The tail is very short, and the eyes are tiny. ILLINOIS STATUS common, native BEHAVIORS The woodland vole may be found statewide in Illinois. This rodent lives on the forest floor in dry woods with oaks, hickories and maples. It also lives in roadside vegetation, orchards, pastures and weedy fields. The woodland vole eats berries, roots, nuts, seeds, wild onions and a variety of green vegetation. It is active day and night. This vole uses burrows under the soil that it digs or that were dug by other small mammals. It digs with the front feet, using the hind feet to push the loose soil behind it. representative specimen The head is used to push loose dirt out of the burrow. The nest is built in a burrow or under an object on the ground that can be reached by a branch of the burrow. Several woodland voles may use the same nest. Two mating seasons occur in a year with young born from March through April and August through November. A litter contains two or three young. Young are helpless at birth but develop rapidly, living on their own at about three weeks of ILLINOIS RANGE age. Sexual maturity is attained between two and three months of age. -
The Beaver's Phylogenetic Lineage Illuminated by Retroposon Reads
www.nature.com/scientificreports OPEN The Beaver’s Phylogenetic Lineage Illuminated by Retroposon Reads Liliya Doronina1,*, Andreas Matzke1,*, Gennady Churakov1,2, Monika Stoll3, Andreas Huge3 & Jürgen Schmitz1 Received: 13 October 2016 Solving problematic phylogenetic relationships often requires high quality genome data. However, Accepted: 25 January 2017 for many organisms such data are still not available. Among rodents, the phylogenetic position of the Published: 03 March 2017 beaver has always attracted special interest. The arrangement of the beaver’s masseter (jaw-closer) muscle once suggested a strong affinity to some sciurid rodents (e.g., squirrels), placing them in the Sciuromorpha suborder. Modern molecular data, however, suggested a closer relationship of beaver to the representatives of the mouse-related clade, but significant data from virtually homoplasy- free markers (for example retroposon insertions) for the exact position of the beaver have not been available. We derived a gross genome assembly from deposited genomic Illumina paired-end reads and extracted thousands of potential phylogenetically informative retroposon markers using the new bioinformatics coordinate extractor fastCOEX, enabling us to evaluate different hypotheses for the phylogenetic position of the beaver. Comparative results provided significant support for a clear relationship between beavers (Castoridae) and kangaroo rat-related species (Geomyoidea) (p < 0.0015, six markers, no conflicting data) within a significantly supported mouse-related clade (including Myodonta, Anomaluromorpha, and Castorimorpha) (p < 0.0015, six markers, no conflicting data). Most of an organism’s phylogenetic history is fossilized in their heritable genomic material. Using data from genome sequencing projects, particularly informative regions of this material can be extracted in sufficient num- bers to resolve the deepest history of speciation. -
Ground Squirrels Live in Burrows That Are Litter Size: Five to Seven
L-1909 6/13 Controlling GROUND SQUIRRELDamage round squirrels are small, burrowing rodents earthen dikes with their burrows. Their burrow- found throughout the state, with the excep- ing and gnawing behavior also can cause damage G tion of extreme East Texas. There are five in irrigated areas. different species in Texas. These are the thirteen- lined ground squirrel, Mexican ground squirrel, spotted ground squirrel, rock squirrel, and the Texas antelope ground squirrel. Most ground Biology and Reproduction squirrels prefer grassy areas such as pastures, Rock squirrels golf courses, cemeteries and parks. Rock squir- Adult weight: 1½ to 1¾ pounds. rels are nearly always found in rocky cliffs, Total length: 18 to 21 inches. boulders, and canyon walls. The rock squirrel Color: Varies from dark gray to black. and thirteen-lined ground squirrel are the two species that most commonly cause damage by Tail: 7 to 10 inches, somewhat bushy. their burrowing and gnawing. Gestation period: Approximately 30 days. Ground squirrels live in burrows that are Litter size: Five to seven. usually 2 to 3 inches in diameter and 15 to 20 Number of litters: Possibly two per year, feet long. The burrow system usually has two usually born from April to August. entrances. Dirt piles around the entry holes are seldom evident. Rock squirrels and thirteen- Life span: 4 to 5 years. lined ground squirrels may hibernate during the Thirteen-lined ground squirrels coldest periods of winter. Adult weight: 5 to 9 ounces. Damage Total length: 7 to 12 inches. Ground squirrels normally do not cause Color: Light to dark brown with 13 stripes extensive damage in urban areas. -
Mammal Species Native to the USA and Canada for Which the MIL Has an Image (296) 31 July 2021
Mammal species native to the USA and Canada for which the MIL has an image (296) 31 July 2021 ARTIODACTYLA (includes CETACEA) (38) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei - Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Eschrichtius robustus - Gray Whale 7. Megaptera novaeangliae - Humpback Whale BOVIDAE - cattle, sheep, goats, and antelopes 1. Bos bison - American Bison 2. Oreamnos americanus - Mountain Goat 3. Ovibos moschatus - Muskox 4. Ovis canadensis - Bighorn Sheep 5. Ovis dalli - Thinhorn Sheep CERVIDAE - deer 1. Alces alces - Moose 2. Cervus canadensis - Wapiti (Elk) 3. Odocoileus hemionus - Mule Deer 4. Odocoileus virginianus - White-tailed Deer 5. Rangifer tarandus -Caribou DELPHINIDAE - ocean dolphins 1. Delphinus delphis - Common Dolphin 2. Globicephala macrorhynchus - Short-finned Pilot Whale 3. Grampus griseus - Risso's Dolphin 4. Lagenorhynchus albirostris - White-beaked Dolphin 5. Lissodelphis borealis - Northern Right-whale Dolphin 6. Orcinus orca - Killer Whale 7. Peponocephala electra - Melon-headed Whale 8. Pseudorca crassidens - False Killer Whale 9. Sagmatias obliquidens - Pacific White-sided Dolphin 10. Stenella coeruleoalba - Striped Dolphin 11. Stenella frontalis – Atlantic Spotted Dolphin 12. Steno bredanensis - Rough-toothed Dolphin 13. Tursiops truncatus - Common Bottlenose Dolphin MONODONTIDAE - narwhals, belugas 1. Delphinapterus leucas - Beluga 2. Monodon monoceros - Narwhal PHOCOENIDAE - porpoises 1. Phocoena phocoena - Harbor Porpoise 2. Phocoenoides dalli - Dall’s Porpoise PHYSETERIDAE - sperm whales Physeter macrocephalus – Sperm Whale TAYASSUIDAE - peccaries Dicotyles tajacu - Collared Peccary CARNIVORA (48) CANIDAE - dogs 1. Canis latrans - Coyote 2. -
Time Budgets of Wyoming Ground Squirrels, Spermophilus Elegans
Great Basin Naturalist Volume 41 Number 2 Article 9 6-30-1981 Time budgets of Wyoming ground squirrels, Spermophilus elegans David A. Zegers University of Colorado, Boulder Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Zegers, David A. (1981) "Time budgets of Wyoming ground squirrels, Spermophilus elegans," Great Basin Naturalist: Vol. 41 : No. 2 , Article 9. Available at: https://scholarsarchive.byu.edu/gbn/vol41/iss2/9 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. TIME BUDGETS OF WYOMING GROUND SQUIRRELS, SPERMOPHILUS ELEGANS David A. Zegers' .\bstract.— Time budget of free-living adult Spermophiltts elegans differed significantly from that of juveniles in the Front Range of the Rockies during 1974-1975. No differences were found between males and females. Hour of day. day since emergence, air temperature, cloud cover, and presence of predators all correlated with the frequency of various components of the time budget. Study of time budgets is important in com- binocular, and a 20X telescope to observe the prehending the roles of animals in ecosystems squirrels from a blind. The animals were as well as understanding their basic patterns marked for individual recognition from a dis- of behavior. Time budgets constructed for a tance using a unique combination of freeze few ground .squirrels [the Columbian ground brands (Hadow 1972) located at one or two squirrel, Spemiophihis columbianus (Betts of the spots on the animal's body. -
Zeitschrift Für Säugetierkunde)
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Mammalian Biology (früher Zeitschrift für Säugetierkunde) Jahr/Year: 1981 Band/Volume: 47 Autor(en)/Author(s): diverse Artikel/Article: Evolution in ground squirrels 198-215 © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/ Evolution in ground squirrels II. Biochemical comparisons in Holarctic populations of Spermophilus By C. F. Nadler, R. S. Hoffmann, N. N.Vorontsov, J. W. Koeppl, L. Deutsch, and R. I. Sukernik Department of Mediane, Northwestern University Medical School, Chicago, Museum of Natural History and Department of Systematics and Ecology, University of Kansas, Lawrence, Institute of Developmental Biology, Academy of Sciences of the USSR, Moscow, and Institute of Cytology and Genetics, Siherian Branch, Academy of Sciences of the USSR, Novosibirsk Receipt of Ms. 16. 12. 1981 Abstract A comparison of biochemical similarities among 21 of 23 recognized species in the subgenus Spermophilus was made. Thirteen proteins, representing at least 18 loci were studied, and electromor- phic variations described. A phenogram and a Wagner network of genetic resemblance are presented, and, together with morphological, chromosomal, and distributional data, used to Interpret the systematics of Spermophilus. Two lineages diverged in North America, the Nearctic "small-eared" and "big-eared" ground squirrels. Most of the Recent species in these lineages evolved during the late Pleistocene. Introduction Ground squirrels {Spermophilus = Citellus) are widely distributed in and restricted to North America and Eurasia, and probably comprise the most recently evolved of the terrestrial squirrels (Black 1963, 1972). Up to tvi^enty-three species are currently recog- nized in the subgenus Spermophilus (sensu lato): 12 in the Palearctic, and 10 in the Nearctic, with one additional species shared (Gromov et al. -
Wildlife Ruby Lake Natillntllwildlife Refuge
I 49. 44/2: R 82/3/993 P RLE Wildlife Ruby lake NatillntllWildlife Refuge ZIMMERMAN LIBRARY UNIV. OF NEW MEXteo FEB 1 0 1994 U.S. Regional Depos1to A Refuge for Nesting and Migrating Waterfowl and Other Wildlife The Habitat Ruby Lake National Wildlife Refuge was established in The refuge, at an elevation of 6,000 feet, consists of an 1938. It encompasses 37,632 acres at the south end of extensive bulrush marsh interspersed with pockets of Ruby Valley. This land was once covered by a 200 foot open water. Fish are abundant. Islands scattered deep, 300,800-acre lake known as Franklin Lake. Today throughout provide good nesting habitat for many bird 12,000 acres of marsh remain on the refuge. Just north of species. the refuge, a 15,000-acre seasonal wetland is now referred to as Franklin Lake. Over 200 springs flow into the marsh along its west border _...)/ creating riparian habitat which is used by many songbirds, To Elko �� and Welle snipe, rail and small mammals. They also provide a water FRANKLIN source for larger mammals. With slight increases in LAKE elevation, wet meadows gradate into grasslands and sagebrush-rabbitbrush habitat. Pinon pines and juniper cover the slopes of the Ruby Mountains that rise to 11,000 feet along the west side of the refuge. Canyons provide habitat for a variety of wildlife. Rock cliffs provide raptors with nesting and perching sites. A mountainside of dead trees, home for ROAD cavity dwelling birds, was the result of a 1979 wildfire. BRESSMAN CABIN LOOP MAIN BOAT LANDING -4,__,,� ·�I! I N � 0 3 Miles 0 2 4 Kilometer� RANCH dead pinon tree General Key BIRDS bam ,wallow � Season 6 The following bird list includes 207 species observed on Sp - Spring (March through May) or near the refuge. -
Journal of the Helminthological Society of Washington 63(2) 1996
July 1996 Number 2 Of of Washington A semiannual journal of research devoted to Helminthology and all branches of Parasitology Supported in part by the Brayton H. Ransom Memorial Trust Fund D. C. KRITSKY, W. A. :B6EC3ER, AND M, JEGU. NedtropicaliMonogehoidea/lS. An- — cyrocephalinae (Dactylogyridae) of Piranha and Their Relatives (Teleostei, JSer- rasalmidae) from Brazil and French Guiana: Species of Notozothecium Boeger and Kritsky, 1988, and Mymarotheciumgem. n. ..__ _______ __, ________ ..x,- ______ .s.... A. KOHN, C. P. SANTOS, AND-B. LEBEDEV. Metacdmpiella euzeti gen. n., sp, n., and I -Hargicola oligoplites~(Hargis, 1951) (Monogenea: Allodiscpcotylidae) from Bra- " zilian Fishes . ___________ ,:...L".. _______ j __ L'. _______l _; ________ 1 ________ _ __________ ______ _ .' _____ . __.. 176 C. P. SANTO?, T. SOUTO-PADRGN, AND R. M. LANFREDI. Atriasterheterodus (Levedev and Paruchin, 1969) and Polylabris tubicimts (Papema and Kohn, 1964) (Mono- ' genea) from Diplodus argenteus (Val., 1830) (Teleostei: Sparidae) from Brazil 181 . I...N- CAIRA AND T. BARDOS. Further Information on :.Gymnorhynchus isuri (Trypa- i/:norhyncha: Gymnorhynchidae) from the Shortfin Make Shark ...,.'. ..^_.-"_~ ____. ; 188 O. M. AMIN AND W. L.'MmcKLEY. Parasites of Some Fisji Introduced into an Arizona Reservoir, with Notes on Introductions — . ____ : ______ . ___.i;__ L____ _ . ______ :___ _ .193 O. M. AMIN AND O. SEY. Acanthocephala from Arabian Gulf Fishes off Kuwait, with 'Descriptions of Neoechinorhynchus dimorphospinus sp. n. XNeoechinorhyrichi- dae), Tegorhyrichus holospinosus sp. n. (l\lio&&ntid&e),:Micracanthorynchina-ku- waitensis sp. n. (Rhadinorhynchidae), and Sleriidrorhynchus breviclavipraboscis gen. n., sp. p. (Diplosentidae); and Key to Species of the Genus Micracanthor- . -
Hymenolepis Nana Is a Ubiquitous Parasite, Found Throughout Many Developing and Developed Countries
Characterisation of Community-Derived Hymenolepis Infections in Australia Marion G. Macnish BSc. (Medical Science) Hons Division of Veterinary and Biomedical Sciences Murdoch University Western Australia This thesis is presented for the degree of Doctor of Philosophy of Murdoch University 2001 I declare that this thesis is my own account of my research and contains as its main work which has not been submitted for a degree at any other educational institution. ………………………………………………. (Marion G. Macnish) Characterisation of Community-Derived Hymenolepis Infections in Australia ii Abstract Hymenolepis nana is a ubiquitous parasite, found throughout many developing and developed countries. Globally, the prevalence of H. nana is alarmingly high, with estimates of up to 75 million people infected. In Australia, the rates of infection have increased substantially in the last decade, from less than 20% in the early 1990’s to 55 - 60% in these same communities today. Our knowledge of the epidemiology of infection of H. nana is hampered by the confusion surrounding the host specificity and taxonomy of this parasite. The suggestion of the existence of two separate species, Hymenolepis nana von Siebold 1852 and Hymenolepis fraterna Stiles 1906, was first proposed at the beginning of the 20th century. Despite ongoing discussions in the subsequent years it remained unclear, some 90 years later, whether there were two distinct species, that are highly host specific, or whether they were simply the same species present in both rodent and human hosts. The ongoing controversy surrounding the taxonomy of H. nana has not yet been resolved and remains a point of difference between the taxonomic and medical literature. -
Download Vol. 13, No. 4
BULLETIN OF THE FLORIDA STATE MUSEUM BIOLOGICAL SCIENCES Volume 13 Number 4 THE MAMMAL FAUNA OF SCHULZE CAVE, F EDWARDS COUNTY, TEXAS Walter W. Dalquest, Edward Roth, and Frank Judd 354\ UNIVERSITY OF FLORIDA Gainesville 1969 Numbers of the BULLETIN OF THE FLORIDA STATE MUSEUM are pub- lished at irregular intervals. Volumes contain about 800 pages and are not necessarily completed in any one calendar year. WALTER AUF'FENBERG, Managing Editor OLIVER L. AUSTIN, JR., Editor Consultants for this isstie: THOMAS PATTON ELIZABETH WING Communications concerning purchase or exchange of the publication and all manuscripts should be addressed to the Managing Editor of the Bulletin, Florida State Museum, Seagle Building, Gainesville, Florida 32601. Published June 8, 1969 Price for this issue $.90 THE MAMMAL FAUNA OF SCHULZE CAVE, EDWARDS COUNTY, TEXAS WALTER W. DALQUEST, EDWARD ROTH, AND FRANK JUDD SYNOPSIS: Vertebrate remains from two levels in Schulze Cave, Edwards County, Texas, are analyzed. The younger materials probably date from ca. 5,000 B.P. to 8,800 B.P. The fauna is essentially modern, but the absence of the armadillo collared peccary, ringtail, and rock squirrel is thought to be significant. The older materials probably date from ca. 11,000 B.P. to 8;000 B.P. The mam- malian fauna of these Pleistocene sediments includes 62 species, of which 8 are extinct, 19 are not now regident on the Edwards Plateau, and 40 still live in the general area of the cave. Three species have not previously been reported from Pleistocene deposits in Texas: vagrant shrew, eastern chipmunk, and western jumping mouse. -
Effect of Urban Habitat Use on Parasitism in Mammals
Effect of urban habitat use on parasitism royalsocietypublishing.org/journal/rspb in mammals: a meta-analysis Courtney S. Werner1 and Charles L. Nunn1,2 1Department of Evolutionary Anthropology, and 2Duke Global Health Institute, Duke University, Durham, Evidence NC, USA synthesis CSW, 0000-0002-0442-9811; CLN, 0000-0001-9330-2873 Rates of urbanization are increasing globally, with consequences for the Cite this article: Werner CS, Nunn CL. 2020 dynamics of parasites and their wildlife hosts. A small subset of mammal Effect of urban habitat use on parasitism in species have the dietary and behavioural flexibility to survive in urban mammals: a meta-analysis. Proc. R. Soc. B settings. The changes that characterize urban ecology—including landscape 287: 20200397. transformation, modified diets and shifts in community composition—can http://dx.doi.org/10.1098/rspb.2020.0397 either increase or decrease susceptibility and exposure to parasites. We used a meta-analytic approach to systematically assess differences in endo- parasitism between mammals in urban and non-urban habitats. Parasite prevalence estimates in matched urban and non-urban mammal populations Received: 22 February 2020 from 33 species were compiled from 46 published studies, and an overall Accepted: 14 April 2020 effect of urban habitation on parasitism was derived after controlling for study and parasite genus. Parasite life cycle type and host order were investi- gated as moderators of the effect sizes. We found that parasites with complex life cycles were less prevalent in urban carnivore and primate populations than in non-urban populations. However, we found no difference in urban and Subject Category: non-urban prevalence for parasites in rodent and marsupial hosts, or differ- Global change and conservation ences in prevalence for parasites with simple life cycles in any host taxa. -
Multiple Molecular Evidences for a Living Mammalian Fossil
Multiple molecular evidences for a living mammalian fossil Dorothe´ e Huchon†‡, Pascale Chevret§¶, Ursula Jordanʈ, C. William Kilpatrick††, Vincent Ranwez§, Paulina D. Jenkins‡‡, Ju¨ rgen Brosiusʈ, and Ju¨ rgen Schmitz‡ʈ †Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; §Department of Paleontology, Phylogeny, and Paleobiology, Institut des Sciences de l’Evolution, cc064, Universite´Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France; ʈInstitute of Experimental Pathology, University of Mu¨nster, D-48149 Mu¨nster, Germany; ††Department of Biology, University of Vermont, Burlington, VT 05405-0086; and ‡‡Department of Zoology, The Natural History Museum, London SW7 5BD, United Kingdom Edited by Francisco J. Ayala, University of California, Irvine, CA, and approved March 18, 2007 (received for review February 11, 2007) Laonastes aenigmamus is an enigmatic rodent first described in their classification as a diatomyid suggests that Laonastes is a 2005. Molecular and morphological data suggested that it is the living fossil and a ‘‘Lazarus taxon.’’ sole representative of a new mammalian family, the Laonastidae, The two research teams also disagreed on the taxonomic and a member of the Hystricognathi. However, the validity of this position of Laonastes. According to Jenkins et al. (2), Laonastes family is controversial because fossil-based phylogenetic analyses is either the most basal group of the hystricognaths (Fig. 2A)or suggest that Laonastes is a surviving member of the Diatomyidae, nested within the hystricognaths (Fig. 2B). According to Dawson a family considered to have been extinct for 11 million years. et al. (3), Laonastes and the other Diatomyidae are the sister According to these data, Laonastes and Diatomyidae are the sister clade of the family Ctenodactylidae (i.e., gundies), a family that clade of extant Ctenodactylidae (i.e., gundies) and do not belong does not belong to the Hystricognathi, but to which it is to the Hystricognathi.