1 Phase Retrieval with Application to Optical Imaging Yoav Shechtman∗y, Yonina C. Eldarz, Oren Cohen∗, Henry N. Chapmanx{k, Jianwei Miao∗∗ and Mordechai Segev∗ ∗Department of Physics Technion, Israel Institute of Technology, Israel 32000 yDepartment of Chemistry, Stanford University, Stanford, California 94305, USA zDepartment of Electrical Engineering, Technion, Israel Institute of Technology, Israel 32000 xCenter for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany {University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany kCenter for Ultrafast Imaging, 22607 Hamburg, Germany ∗∗Department of Physics and Astronomy, and California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA Email:
[email protected] I. INTRODUCTION a known quadratic phase factor. Thus, measuring the far- field, magnitude and phase, would facilitate recovery of the The problem of phase retrieval, namely – the recovery of a optical image (the wavefield). However, as noted above, the function given the magnitude of its Fourier transform - arises optical phase cannot be measured directly by an electronic in various fields of science and engineering, including electron detector. Here is where algorithmic phase retrieval comes into microscopy, crystallography, astronomy, and optical imaging. play, offering a means for recovering the phase given the Exploring phase retrieval in optical settings, specifically when measurement of the magnitude of the optical far-field and the light originates from a laser, is natural, because optical some prior knowledge. detection devices (e.g., ccd cameras, photosensitive films, the human eye) cannot measure the phase of a light wave. This is because, generally, optical measurement devices that rely on converting photons to electrons (current) do not allow direct The purpose of this review article is to provide a con- recording of the phase: the electromagnetic field oscillates at temporary review of phase retrieval in optical imaging.