1987-1991Dtcproceedings-OCR.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Husbandry and Captive Breeding of the Bated by Slow Or Indirect Shipping
I\IJtIlD AND T'II'LT' Iil1,TUKTS j r8- I.r I o, ee+,, JilJilill fl:{:r;,i,,'J,:*,1;l: dehydration, and thermal exposure of improper or protracted warehousing on either or both sides of the Atlantic, exacer- Husbandry and Captive Breeding of the bated by slow or indirect shipping. These situations may also Parrot-Beaked Tortoise, have provided a dramatic stress-related increase in parasite Homopus areolatus or bacterial loads, or rendered pathogens more virulent, thereby adversely affecting the health and immunity levels Jnuns E. BIRZYKI of the tortoises. With this in mind, 6 field-collected tortoises | (3 project 530 l,{orth Park Roacl, Lct Grctnge Pcrrk, Illinois 60525 USA males, 3 females) used in this were airfreighted directly from South Africa to fully operational indoor cap- The range of the parrot-beaked tortoise, Hontopus tive facilities in the USA. A number of surplus captive areolatus, is restricted to the Cape Province in South Africa specirnens (7) were also available, and these were included (Loveridge and Williams, 1957; Branch, 1989). It follows in the study group. the coastline of the Indian Ocean from East London in the Materials ancl MethocLr. - Two habitat enclosures mea- east, around the Cape of Good Hope along the Atlantic surin-e 7 x2 feet (2.1 x 0.6 m) were constructed of plywood Ocean, north to about Clanwilliam. This ran-qe is bordered in and each housed two males and either four or five females. the northeast by the very arid Great Karoo, an area receiving These were enclosed on all sides, save for the front, which less than 250 mm of rain annually, and in the north by the had sliding ..elass doors. -
Body Condition Assessment – As a Welfare and Management Assessment Tool for Radiated Tortoises (Astrochelys Radiata)
Body condition assessment – as a welfare and management assessment tool for radiated tortoises (Astrochelys radiata) Hullbedömning - som ett verktyg för utvärdering av välfärd och skötsel av strålsköldpadda (Astrochelys radiata) Linn Lagerström Independent project • 15 hp Swedish University of Agricultural Sciences, SLU Department of Animal Environment and Health Programme/Education Uppsala 2020 2 Body condition assessment – as a welfare and management tool for radiated tortoises (Astrochelys radiata) Hullbedömning - som ett verktyg för utvärdering av välfärd och skötsel av strålsköldpadda (Astrochelys radiata) Linn Lagerström Supervisor: Lisa Lundin, Swedish University of Agricultural Sciences, Department of Animal Environment and Health Examiner: Maria Andersson, Swedish University of Agricultural Sciences, Department of Animal Environment and Health Credits: 15 hp Level: First cycle, G2E Course title: Independent project Course code: EX0894 Programme/education: Course coordinating dept: Department of Aquatic Sciences and Assessment Place of publication: Uppsala Year of publication: 2020 Cover picture: Linn Lagerström Keywords: Tortoise, turtle, radiated tortoise, Astrochelys radiata, Geochelone radiata, body condition indices, body condition score, morphometrics Swedish University of Agricultural Sciences Faculty of Natural Resources and Agricultural Sciences Department of Animal Environment and Health 3 Publishing and archiving Approved students’ theses at SLU are published electronically. As a student, you have the copyright to your own work and need to approve the electronic publishing. If you check the box for YES, the full text (pdf file) and metadata will be visible and searchable online. If you check the box for NO, only the metadata and the abstract will be visiable and searchable online. Nevertheless, when the document is uploaded it will still be archived as a digital file. -
The Conservation Biology of Tortoises
The Conservation Biology of Tortoises Edited by Ian R. Swingland and Michael W. Klemens IUCN/SSC Tortoise and Freshwater Turtle Specialist Group and The Durrell Institute of Conservation and Ecology Occasional Papers of the IUCN Species Survival Commission (SSC) No. 5 IUCN—The World Conservation Union IUCN Species Survival Commission Role of the SSC 3. To cooperate with the World Conservation Monitoring Centre (WCMC) The Species Survival Commission (SSC) is IUCN's primary source of the in developing and evaluating a data base on the status of and trade in wild scientific and technical information required for the maintenance of biological flora and fauna, and to provide policy guidance to WCMC. diversity through the conservation of endangered and vulnerable species of 4. To provide advice, information, and expertise to the Secretariat of the fauna and flora, whilst recommending and promoting measures for their con- Convention on International Trade in Endangered Species of Wild Fauna servation, and for the management of other species of conservation concern. and Flora (CITES) and other international agreements affecting conser- Its objective is to mobilize action to prevent the extinction of species, sub- vation of species or biological diversity. species, and discrete populations of fauna and flora, thereby not only maintain- 5. To carry out specific tasks on behalf of the Union, including: ing biological diversity but improving the status of endangered and vulnerable species. • coordination of a programme of activities for the conservation of biological diversity within the framework of the IUCN Conserva- tion Programme. Objectives of the SSC • promotion of the maintenance of biological diversity by monitor- 1. -
The Use of Extant Non-Indigenous Tortoises As a Restoration Tool to Replace Extinct Ecosystem Engineers
OPINION ARTICLE The Use of Extant Non-Indigenous Tortoises as a Restoration Tool to Replace Extinct Ecosystem Engineers Christine J. Griffiths,1,2,3,4 Carl G. Jones,3,5 Dennis M. Hansen,6 Manikchand Puttoo,7 Rabindra V. Tatayah,3 Christine B. Muller,¨ 2,∗ andStephenHarris1 Abstract prevent the extinction and further degradation of Round We argue that the introduction of non-native extant tor- Island’s threatened flora and fauna. In the long term, the toises as ecological replacements for extinct giant tortoises introduction of tortoises to Round Island will lead to valu- is a realistic restoration management scheme, which is able management and restoration insights for subsequent easy to implement. We discuss how the recent extinctions larger-scale mainland restoration projects. This case study of endemic giant Cylindraspis tortoises on the Mascarene further highlights the feasibility, versatility and low-risk Islands have left a legacy of ecosystem dysfunction threat- nature of using tortoises in restoration programs, with par- ening the remnants of native biota, focusing on the island ticular reference to their introduction to island ecosystems. of Mauritius because this is where most has been inferred Overall, the use of extant tortoises as replacements for about plant–tortoise interactions. There is a pressing need extinct ones is a good example of how conservation and to restore and preserve several Mauritian habitats and restoration biology concepts applied at a smaller scale can plant communities that suffer from ecosystem dysfunction. be microcosms for more grandiose schemes and addresses We discuss ongoing restoration efforts on the Mauritian more immediate conservation priorities than large-scale offshore Round Island, which provide a case study high- ecosystem rewilding projects. -
Turtles #1 Among All Species in Race to Extinction
Turtles #1 among all Species in Race to Extinction Partners in Amphibian and Reptile Conservation and Colleagues Ramp Up Awareness Efforts After Top 25+ Turtles in Trouble Report Published Washington, DC (February 24, 2011)―Partners in Amphibian and Reptile Conservation (PARC), an Top 25 Most Endangered Tortoises and inclusive partnership dedicated to the conservation of Freshwater Turtles at Extremely High Risk the herpetofauna--reptiles and amphibians--and their of Extinction habitats, is calling for more education about turtle Arranged in general and approximate conservation after the Turtle Conservation Coalition descending order of extinction risk announced this week their Top 25+ Turtles in Trouble 1. Pinta/Abingdon Island Giant Tortoise report. PARC initiated a year-long awareness 2. Red River/Yangtze Giant Softshell Turtle campaign to drive attention to the plight of turtles, now the fastest disappearing species group on the planet. 3. Yunnan Box Turtle 4. Northern River Terrapin 5. Burmese Roofed Turtle Trouble for Turtles 6. Zhou’s Box Turtle The Turtle Conservation Coalition has highlighted the 7. McCord’s Box Turtle Top 25 most endangered turtle and tortoise species 8. Yellow-headed Box Turtle every four years since 2003. This year the list included 9. Chinese Three-striped Box Turtle/Golden more species than previous years, expanding the list Coin Turtle from a Top 25 to Top 25+. According to the report, 10. Ploughshare Tortoise/Angonoka between 48 and 54% of all turtles and tortoises are 11. Burmese Star Tortoise considered threatened, an estimate confirmed by the 12. Roti Island/Timor Snake-necked Turtle Red List of the International Union for the 13. -
Aldabrachelys Arnoldi (Bour 1982) – Arnold's Giant Tortoise
Conservation Biology of Freshwater Turtles and Tortoises: A Compilation ProjectTestudinidae of the IUCN/SSC — AldabrachelysTortoise and Freshwater arnoldi Turtle Specialist Group 028.1 A.G.J. Rhodin, P.C.H. Pritchard, P.P. van Dijk, R.A. Saumure, K.A. Buhlmann, J.B. Iverson, and R.A. Mittermeier, Eds. Chelonian Research Monographs (ISSN 1088-7105) No. 5, doi:10.3854/crm.5.028.arnoldi.v1.2009 © 2009 by Chelonian Research Foundation • Published 18 October 2009 Aldabrachelys arnoldi (Bour 1982) – Arnold’s Giant Tortoise JUSTIN GERLACH 1 1133 Cherry Hinton Road, Cambridge CB1 7BX, United Kingdom [[email protected]] SUMMARY . – Arnold’s giant tortoise, Aldabrachelys arnoldi (= Dipsochelys arnoldi) (Family Testudinidae), from the granitic Seychelles, is a controversial species possibly distinct from the Aldabra giant tortoise, A. gigantea (= D. dussumieri of some authors). The species is a morphologi- cally distinctive morphotype, but has so far not been genetically distinguishable from the Aldabra tortoise, and is considered synonymous with that species by many researchers. Captive reared juveniles suggest that there may be a genetic basis for the morphotype and more detailed genetic work is needed to elucidate these relationships. The species is the only living saddle-backed tortoise in the Seychelles islands. It was apparently extirpated from the wild in the 1800s and believed to be extinct until recently purportedly rediscovered in captivity. The current population of this morphotype is 23 adults, including 18 captive adult males on Mahé Island, 5 adults recently in- troduced to Silhouette Island, and one free-ranging female on Cousine Island. Successful captive breeding has produced 138 juveniles to date. -
Can Unwanted Suburban Tortoises Rescue Native Hawaiian Plants?
CAN UNWANTED SUBURBAN TORTOISES RESCUE NATIVE HAWAIIAN PLANTS? by David A. Burney, James O. Juvik, Lida Pigott Burney, and Tomas Diagne 104 THE TORTOISE ・ 2012 hrough a series of coincidences, surplus pet tortoises in Hawaii may end up offering a partial solution to the seemingly insurmountable challenge posed by invasive plants in the Makauwahi Cave Reserve Ton Kaua`i. This has come about through a serendipitous intersection of events in Africa, the Mascarene Islands, North America, and Hawaii. The remote Hawaiian Islands were beyond the reach of naturally dispersing island tortoises, but the niches were apparently still there. Giant flightless ducks and geese evolved on these islands with tortoise-like beaks and other adaptations as terrestrial “meso-herbivores.” Dating of these remarkable fossil remains shows that they went extinct soon after the arrival of Polynesians at the beginning of the last millennium leaving the niches for large native herbivores entirely empty. Other native birds, including important plant pollinators, and some plant species have also suffered extinction in recent centuries. This trend accelerated after European settlement ecosystem services and a complex mix of often with the introduction of many invasive alien plants conflicting stakeholder interests clearly requires and the establishment of feral ungulate populations new paradigms and new tools. such as sheep, goats, cattle, and European swine, as Lacking any native mammalian herbivores, the well as other insidious invasives such as deer, rats, majority of the over 1,000 native Hawaiian plant mongoose, feral house cats, and even mosquitoes, species on the islands have been widely regarded which transmit avian malaria to a poorly resistant in the literature as singularly lacking in defensive native avifauna. -
Review of Manouria Impressa from Laos
UNEP-WCMC technical report Review of Manouria impressa from Lao People’s Democratic Republic (Version edited for public release) 2 Review of Manouria impressa from Lao People’s Democratic Republic Prepared for The European Commission, Directorate General Environment, Directorate E - Global & Regional Challenges, LIFE ENV.E.2. – Global Sustainability, Trade & Multilateral Agreements , Brussels, Belgium Published January 201 4 Copyright European Commission 2014 Citation UNEP-WCMC. 2014. Review of Manouria impressa from Lao People’s Democratic Republic . UNEP-WCMC, Cambridge. The UNEP World Conservation Monitoring Centre (UNEP-WCMC) is the specialist biodiversity assessment of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organization. The Centre has been in operat ion for over 30 years, combining scientific research with policy advice and the development of decision tools. We are able to provide objective, scientifically rigorous products and services to help decision - makers recognize the value of biodiversity and a pply this knowledge to all that they do. To do this, we collate and verify data on biodiversity and ecosystem services that we analyze and interpret in comprehensive assessments, making the results available in appropriate forms for national and internatio nal level decision -makers and businesses. To ensure that our work is both sustainable and equitable we seek to build the capacity of partners where needed, so that they can provide the same services at national and regional scales. The contents of this re port do not necessarily reflect the views or policies of UNEP, contributory organisations or editors. The designations employed and the presentations do not imply the expressions of any opinion whatsoever on the part of UNEP, the European Commission or con tributory organisations, editors or publishers concerning the legal status of any country, territory, city area or its authorities, or concerning the delimitation of its frontiers or boundaries. -
Evolution and the Galápagos Tortoise
Connected Experience: Evolution and the Galápagos Tortoise GRADE LEVELS 6th-8th; California Content Standards for 7th and High School Biology SUBJECTS Life Sciences DURATION Pre-Visit: 30 minutes Academy: 15 minutes Post-Visit: 15 minutes SETTING Classroom; Islands of Evolution exhibit at the Academy Objectives Students will: 1. learn how natural selection played a role in the diversification of tortoises on the Galápagos Islands. 2. collect data on Galápagos tortoise morphology of specimens on display at the museum. 3. connect a tortoise’s physical adaptations with the island habitat most likely to support it Materials world map or globe tortoise and habitat visual aids, printed on paper or overhead transparencies Galápagos Tortoises museum worksheet (one per student) pencils and writing surfaces Vocabulary adaptation: a particular structure or behavior that helps an organism survive better in its habitat natural selection: a process by which individuals that are better adapted to their environment are more likely to survive and reproduce than others of the same species evolution: the gradual change in a species over time Teacher Background The Galápagos Islands and their Tortoise Residents The Galápagos Islands are an archipelago consisting of sixteen volcanic islands located 600 miles west of Ecuador in the Pacific Ocean. They formed about 4 million years ago when a series of underwater volcanoes erupted, spewing up magma that cooled to form the cone-shaped islands. When the islands first formed they were devoid of life, but over time animal and plant species colonized them, producing the ecological communities that exist there today. Colonization of the islands took place over time by several modes of transportation. -
TESTUDINIDAE Geochelone Chilensis
n REPTILIA: TESTUDINES: TESTUDINIDAE Catalogue of American Amphibians and Reptiles. Ernst, C.H. 1998. Geochelone chilensis. Geochelone chilensis (Gray) Chaco Tortoise Testudo (Gopher) chilensis Gray 1870a: 190. Type locality, "Chili [Chile, South America]. " Restricted to Mendoza. Ar- gentina by Boulenger (1 889) without explanation (see Com- ments). Syntypes, Natural History Museum. London (BMNH), 1947.3.5.8-9, two stuffed juveniles; specimens missing as of August 1998 (fide C.J. McCarthy and C.H. Ernst, see Comments)(not examined by author). Testudo orgentinu Sclater 1870:47 1. See Comments. Testrrdo chilensis: Philippi 1872:68. Testrrrlo (Pamparestrrdo) chilensis: Lindholm 1929:285. Testucin (Chelonoidis) chilensis: Williams 1 950:22. Geochelone chilensis: Williams 1960: 10. First use of combina- tion. Geochelone (Che1onoide.r) chilensis: Auffenberg 197 1 : 1 10. Geochelone donosoharro.si Freiberg 1973533. Type locality, "San Antonio [Oeste], Rio Negro [Province, Argentina]." Ho- lotype, U.S. Natl. Mus. (USNM) 192961, adult male. col- lected by S. Narosky. 22 April 1971 (examined by author). Geochelone petersi Freibeg 197386. Type locality. "Kishka, La Banda. Santiago del Estero [Province, Argentina]." Ho- lotype, USNM 192959. subadult male, collected by J.J. Mar- n cos, 5 May 197 1 (examined by author). Geochelone ootersi: Freiberzm 1973:9 1. E-r errore. Geochelone (Chelonoidis) d1ilensi.s: Auffenberg 1974: 148. MAP. The circle marks the type locality; dots indicate other selected Geochelone ckilensis chilensis: Pritchard 1979:334. records: stars indicate fossil records. Geochelone ckilensis donosoburro.si: Pritchard 1979:335. Chelorroidis chilensis: Bour 1980:546. Geocheloni perersi: Freibeg 1984:30: growth annuli surround the slightly raised vertebral and pleural Chelorioidis donosoharrosi: Cei 1986: 148. -
PDF File Containing Table of Lengths and Thicknesses of Turtle Shells And
Source Species Common name length (cm) thickness (cm) L t TURTLES AMNH 1 Sternotherus odoratus common musk turtle 2.30 0.089 AMNH 2 Clemmys muhlenbergi bug turtle 3.80 0.069 AMNH 3 Chersina angulata Angulate tortoise 3.90 0.050 AMNH 4 Testudo carbonera 6.97 0.130 AMNH 5 Sternotherus oderatus 6.99 0.160 AMNH 6 Sternotherus oderatus 7.00 0.165 AMNH 7 Sternotherus oderatus 7.00 0.165 AMNH 8 Homopus areolatus Common padloper 7.95 0.100 AMNH 9 Homopus signatus Speckled tortoise 7.98 0.231 AMNH 10 Kinosternon subrabum steinochneri Florida mud turtle 8.90 0.178 AMNH 11 Sternotherus oderatus Common musk turtle 8.98 0.290 AMNH 12 Chelydra serpentina Snapping turtle 8.98 0.076 AMNH 13 Sternotherus oderatus 9.00 0.168 AMNH 14 Hardella thurgi Crowned River Turtle 9.04 0.263 AMNH 15 Clemmys muhlenbergii Bog turtle 9.09 0.231 AMNH 16 Kinosternon subrubrum The Eastern Mud Turtle 9.10 0.253 AMNH 17 Kinixys crosa hinged-back tortoise 9.34 0.160 AMNH 18 Peamobates oculifers 10.17 0.140 AMNH 19 Peammobates oculifera 10.27 0.140 AMNH 20 Kinixys spekii Speke's hinged tortoise 10.30 0.201 AMNH 21 Terrapene ornata ornate box turtle 10.30 0.406 AMNH 22 Terrapene ornata North American box turtle 10.76 0.257 AMNH 23 Geochelone radiata radiated tortoise (Madagascar) 10.80 0.155 AMNH 24 Malaclemys terrapin diamondback terrapin 11.40 0.295 AMNH 25 Malaclemys terrapin Diamondback terrapin 11.58 0.264 AMNH 26 Terrapene carolina eastern box turtle 11.80 0.259 AMNH 27 Chrysemys picta Painted turtle 12.21 0.267 AMNH 28 Chrysemys picta painted turtle 12.70 0.168 AMNH 29 -
Movement, Home Range and Habitat Use in Leopard Tortoises (Stigmochelys Pardalis) on Commercial
Movement, home range and habitat use in leopard tortoises (Stigmochelys pardalis) on commercial farmland in the semi-arid Karoo. Martyn Drabik-Hamshare Submitted in fulfilment of the academic requirements for the degree of Master of Science in the Discipline of Ecological Sciences School of Life Sciences College of Agriculture, Engineering and Science University of KwaZulu-Natal Pietermaritzburg Campus 2016 ii ABSTRACT Given the ever-increasing demand for resources due to an increasing human population, vast ranges of natural areas have undergone land use change, either due to urbanisation or production and exploitation of resources. In the semi-arid Karoo of southern Africa, natural lands have been converted to private commercial farmland, reducing habitat available for wildlife. Furthermore, conversion of land to energy production is increasing, with areas affected by the introduction of wind energy, solar energy, or hydraulic fracturing. Such widespread changes affects a wide range of animal and plant communities. Southern Africa hosts the highest diversity of tortoises (Family: Testudinidae), with up to 18 species present in sub-Saharan Africa, and 13 species within the borders of South Africa alone. Diversity culminates in the Karoo, whereby up to five species occur. Tortoises throughout the world are undergoing a crisis, with at least 80 % of the world’s species listed at ‘Vulnerable’ or above. Given the importance of many tortoise species to their environments and ecosystems— tortoises are important seed dispersers, whilst some species produce burrows used by numerous other taxa—comparatively little is known about certain aspects relating to their ecology: for example spatial ecology, habitat use and activity patterns.