Emma Gray Thesis (PDF 5MB)

Total Page:16

File Type:pdf, Size:1020Kb

Emma Gray Thesis (PDF 5MB) ECOLOGY AND STATUS OF A NEW SPECIES OF CARNIVOROUS MARSUPIAL, THE BLACK-TAILED DUSKY ANTECHINUS (A. ARKTOS) AND ITS RELATIONSHIP WITH A SYMPATRIC CONGENER, THE BROWN ANTECHINUS (A. STUARTII ) Emma Gray B.App.Sci. (Hons) Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Earth, Environmental and Biological Sciences Faculty of Science and Engineering Queensland University of Technology 2017 Keywords Activity patterns, Antechinus, Australia, autecology, breeding biology, conservation, Dasyuridae, detection, diet, geographic distribution, GLMM, mark-recapture, population dynamics, rarity, sympatric species, threatened species. Ecology and status of a new species of carnivorous marsupial, the black-tailed dusky antechinus (A. arktos) and its relationship with a sympatric congener, the brown antechinus (A. stuartii ) i Abstract Antechinus are small, carnivorous marsupials endemic to Australia. Recently, the genus has been revised, seeing four new species named and one existing subspecies raised to species status. Therefore, the primary aim of the present thesis was to investigate the ecology and conservation status of one of these new species, the black- tailed dusky antechinus (Antechinus arktos), about which almost nothing was known. This included collecting baseline ecological data on breeding biology, diet, diel activity, distribution and relative abundance and exploring alternative detection methods. Museum specimens indicated the species once occurred at a range of sites on the slopes of the eroded Tweed Shield Volcano caldera, which straddles the border of Queensland and New South Wales. However, recently the species has only been confirmed from two proximate locations at the summit of the caldera at Springbrook National Park, where they occur at low apparent density along with populations of the brown antechinus (Antechinus stuartii). To date, few studies have been conducted on the northern A. stuartii clade that co-occurs with A. arktos and so a further aim of the thesis was to collect concurrent data on this species and comment on the degree of competition / niche overlap between the two species in sympatry. Fieldwork was carried out between 2014 and 2016 within the Tweed Shield Volcano caldera. First, an intensive mark-recapture study was conducted at two sites (Best of All and Bilborough Court Lookouts) within Springbrook National Park in order to determine the autecology and relative abundance of the two antechinus species. Live trapping was conducted monthly, between April and October, for two years (2014-2015), to monitor the biology of antechinus before, during and immediately after breeding. In total, 103 A. arktos and 2, 125 A. stuartii were captured and released over 16, 630 trap nights. In general, the ecology of A. arktos and A. stuartii was similar and conformed to the established patterns of the genus. Both species were sexually dimorphic for size and exhibited a semelparous life history strategy, with synchronous reproduction and a short breeding period in winter / spring (A. arktos: mid-September; A. stuartii: late August to mid-September) culminating in the death of all males. Variability in trap success and body mass were all strongly associated with this reproductive cycle. It has been suggested that when two species of antechinus co-occur, the larger congener will breed first. However, A. arktos was ii Ecology and status of a new species of carnivorous marsupial, the black-tailed dusky antechinus (A. arktos) and its relationship with a sympatric congener, the brown antechinus (A. stuartii ) significantly larger than A. stuartii and mated later, giving birth to a maximum of six young during mid-October. Over the course of the mark-recapture study, scat samples were also collected from both species for diet analyses. A total of 252 scat samples were subsequently examined, 80 from A. arktos and 172 from A. stuartii. Overall, both species were found to consume a broad range of invertebrate prey, consistent with diet studies on congeners. However, the composition of invertebrates taken differed significantly between species, suggesting they may be foraging in different areas or at different times. There was no difference in diet composition between sites; however, there was a significant difference in diet composition of both species between years. There was considerably less diversity of prey items in scats of both species in 2014 compared to 2015. Lower rainfall in 2014 may have reduced abundance and diversity of arthropod prey causing both species to supplement their diet with soft-bodied prey items such as earthworms, which are rarely detected in scats. Additionally, in 2015, invertebrate prey availability was assessed via pitfall trapping in autumn (April), winter (August) and spring (October) to permit estimates of prey preference. Comparison of prey in scats with invertebrate captures from pitfall traps showed both species to be dietary generalists, despite exhibiting preference and avoidance of several prey categories. Finally, in 2016, 11 infrared cameras were deployed at the Best of All Lookout field site and left in position for five consecutive deployments (ranging from 11-16 days in duration) to evaluate the effectiveness of camera traps for detecting and monitoring antechinus. The camera traps were fixed to wooden stakes set ~50 m apart along established live trapping transects and oriented vertically toward a bait container on the ground surface. In total, 8, 273 image and video pairs were recorded over 725 camera trap nights, with 5, 168 detecting fauna from 10 taxonomic groups. A. arktos accounted for 2.1 % off all observations, while A. stuartii accounted for 13.2 %. Date and time stamps on each image showed that each species displayed a crepuscular peak in activity during the same two-hour period following sunset. Generalized linear mixed models (GLMMs) of detection probability also showed that both deployment number and days since deployment were important factors influencing their detection probabilities. Both A. arktos and A. stuartii displayed a strong negative linear relationship between detection probability and days since deployment, indicating either a rapid loss of interest in the bait used or a decline in its attractiveness with time. Ecology and status of a new species of carnivorous marsupial, the black-tailed dusky antechinus (A. arktos) and its relationship with a sympatric congener, the brown antechinus (A. stuartii ) iii Thus, while infrared digital camera traps can be used to detect A. arktos and other small mammals at a rate comparable to live trapping, to consistently achieve high detectability baits would need to be replenished every two-to-three days. In such cases, a standard three night live trapping survey may be a more practical detection method than camera trapping. Overall, considerable niche differentiation was observed between the two sympatric congeners. A. arktos consumed a higher frequency and volume of Diptera larvae than A. stuartii, indicating they likely forage predominantly in topsoil and subsurface leaf litter. In comparison, A. stuartii consumed Coleoptera and adult Lepidoptera in higher frequency and volume and were often observed to climb trees, indicating they likely forage regularly above ground. However, interestingly, in allopatry A. stuartii are usually terrestrial. Although there is no experimental confirmation of competition between the two species, video footage obtained from camera trapping showed A. stuartii fleeing from A. arktos before direct contact on multiple occasions. Plausibly, the significantly larger A. arktos is able to exclude A. stuartii from otherwise preferred habitat via interference competition. There is compelling evidence for such interactions between other sympatric antechinus species. Additionally, as antechinus breeding strongly correlates with peak prey availability, the observed reproductive phase differences between A. arktos and A. stuartii may have arisen from their dietary preferences for terrestrial or arboreal invertebrates that peak in abundance at different times. Further, the results of the present study suggest that the newly described black- tailed dusky antechinus is both a rare and threatened species. A. arktos occurs only within the Tweed Shield Volcano caldera and targeted surveys confirmed their presence at only two fragmented locations > 950 m in high rainfall cloud forest. This represents one of the most restricted ranges of any mainland Australian mammal. The absence of the species from previous capture sites at lower elevations strongly suggests the geographic range of A. arktos has contracted, most likely due to climate change. Continued climate warming may result in further core habitat loss for the species, while increasingly unpredictable rainfall and more frequent drought events predicted under climate change scenarios may also negatively impact A. arktos through declines or changes in the availability or seasonality of invertebrate prey. It is therefore strongly recommended the species be listed federally as critically endangered and steps be taken iv Ecology and status of a new species of carnivorous marsupial, the black-tailed dusky antechinus (A. arktos) and its relationship with a sympatric congener, the brown antechinus (A. stuartii ) to ensure its long-term viability. The detailed ecological information on breeding biology, diet, diel activity and optimal camera and live trapping methods detailed in this thesis will assist in the planning
Recommended publications
  • Platypus Collins, L.R
    AUSTRALIAN MAMMALS BIOLOGY AND CAPTIVE MANAGEMENT Stephen Jackson © CSIRO 2003 All rights reserved. Except under the conditions described in the Australian Copyright Act 1968 and subsequent amendments, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, duplicating or otherwise, without the prior permission of the copyright owner. Contact CSIRO PUBLISHING for all permission requests. National Library of Australia Cataloguing-in-Publication entry Jackson, Stephen M. Australian mammals: Biology and captive management Bibliography. ISBN 0 643 06635 7. 1. Mammals – Australia. 2. Captive mammals. I. Title. 599.0994 Available from CSIRO PUBLISHING 150 Oxford Street (PO Box 1139) Collingwood VIC 3066 Australia Telephone: +61 3 9662 7666 Local call: 1300 788 000 (Australia only) Fax: +61 3 9662 7555 Email: [email protected] Web site: www.publish.csiro.au Cover photos courtesy Stephen Jackson, Esther Beaton and Nick Alexander Set in Minion and Optima Cover and text design by James Kelly Typeset by Desktop Concepts Pty Ltd Printed in Australia by Ligare REFERENCES reserved. Chapter 1 – Platypus Collins, L.R. (1973) Monotremes and Marsupials: A Reference for Zoological Institutions. Smithsonian Institution Press, rights Austin, M.A. (1997) A Practical Guide to the Successful Washington. All Handrearing of Tasmanian Marsupials. Regal Publications, Collins, G.H., Whittington, R.J. & Canfield, P.J. (1986) Melbourne. Theileria ornithorhynchi Mackerras, 1959 in the platypus, 2003. Beaven, M. (1997) Hand rearing of a juvenile platypus. Ornithorhynchus anatinus (Shaw). Journal of Wildlife Proceedings of the ASZK/ARAZPA Conference. 16–20 March.
    [Show full text]
  • MORNINGTON PENINSULA BIODIVERSITY: SURVEY and RESEARCH HIGHLIGHTS Design and Editing: Linda Bester, Universal Ecology Services
    MORNINGTON PENINSULA BIODIVERSITY: SURVEY AND RESEARCH HIGHLIGHTS Design and editing: Linda Bester, Universal Ecology Services. General review: Sarah Caulton. Project manager: Garrique Pergl, Mornington Peninsula Shire. Photographs: Matthew Dell, Linda Bester, Malcolm Legg, Arthur Rylah Institute (ARI), Mornington Peninsula Shire, Russell Mawson, Bruce Fuhrer, Save Tootgarook Swamp, and Celine Yap. Maps: Mornington Peninsula Shire, Arthur Rylah Institute (ARI), and Practical Ecology. Further acknowledgements: This report was produced with the assistance and input of a number of ecological consultants, state agencies and Mornington Peninsula Shire community groups. The Shire is grateful to the many people that participated in the consultations and surveys informing this report. Acknowledgement of Country: The Mornington Peninsula Shire acknowledges Aboriginal and Torres Strait Islanders as the first Australians and recognises that they have a unique relationship with the land and water. The Shire also recognises the Mornington Peninsula is home to the Boonwurrung / Bunurong, members of the Kulin Nation, who have lived here for thousands of years and who have traditional connections and responsibilities to the land on which Council meets. Data sources - This booklet summarises the results of various biodiversity reports conducted for the Mornington Peninsula Shire: • Costen, A. and South, M. (2014) Tootgarook Wetland Ecological Character Description. Mornington Peninsula Shire. • Cook, D. (2013) Flora Survey and Weed Mapping at Tootgarook Swamp Bushland Reserve. Mornington Peninsula Shire. • Dell, M.D. and Bester L.R. (2006) Management and status of Leafy Greenhood (Pterostylis cucullata) populations within Mornington Peninsula Shire. Universal Ecology Services, Victoria. • Legg, M. (2014) Vertebrate fauna assessments of seven Mornington Peninsula Shire reserves located within Tootgarook Wetland.
    [Show full text]
  • An Investigation Into Factors Affecting Breeding Success in The
    An investigation into factors affecting breeding success in the Tasmanian devil (Sarcophilus harrisii) Tracey Catherine Russell Faculty of Science School of Life and Environmental Science The University of Sydney Australia A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy 2018 Faculty of Science The University of Sydney Table of Contents Table of Figures ............................................................................................................ viii Table of Tables ................................................................................................................. x Acknowledgements .........................................................................................................xi Chapter Acknowledgements .......................................................................................... xii Abbreviations ................................................................................................................. xv An investigation into factors affecting breeding success in the Tasmanian devil (Sarcophilus harrisii) .................................................................................................. xvii Abstract ....................................................................................................................... xvii 1 Chapter One: Introduction and literature review .............................................. 1 1.1 Devil Life History ...................................................................................................
    [Show full text]
  • Phascogale Calura) Corinne Letendre, Ethan Sawyer, Lauren J
    Letendre et al. BMC Zoology (2018) 3:10 https://doi.org/10.1186/s40850-018-0036-3 BMC Zoology RESEARCHARTICLE Open Access Immunosenescence in a captive semelparous marsupial, the red-tailed phascogale (Phascogale calura) Corinne Letendre, Ethan Sawyer, Lauren J. Young and Julie M. Old* Abstract Background: The red-tailed phascogale is a ‘Near Threatened’ dasyurid marsupial. Males are semelparous and die off shortly after the breeding season in the wild due to a stress-related syndrome, which has many physiological and immunological repercussions. In captivity, males survive for more than 2 years but become infertile after their first breeding season. Meanwhile, females can breed for many years. This suggests that captive males develop similar endocrine changes as their wild counterparts and undergo accelerated aging. However, this remains to be confirmed. The health status and immune function of this species in captivity have also yet to be characterized. Results: Through an integrative approach combining post-mortem examinations, blood biochemical and hematological analyses, we investigated the physiological and health status of captive phascogales before, during, and after the breeding season. Adult males showed only mild lesions compatible with an endocrine disorder. Both sexes globally maintained a good body condition throughout their lives, most likely due to a high quality diet. However, biochemistry changes potentially compatible with an early onset of renal or hepatic insufficiency were detected in older individuals. Masses and possible hypocalcemia were observed anecdotally in old females. With this increased knowledge of the physiological status of captive phascogales, interpretation of their immune profile at different age stages was then attempted.
    [Show full text]
  • Factsheet: a Threatened Mammal Index for Australia
    Science for Saving Species Research findings factsheet Project 3.1 Factsheet: A Threatened Mammal Index for Australia Research in brief How can the index be used? This project is developing a For the first time in Australia, an for threatened plants are currently Threatened Species Index (TSX) for index has been developed that being assembled. Australia which can assist policy- can provide reliable and rigorous These indices will allow Australian makers, conservation managers measures of trends across Australia’s governments, non-government and the public to understand how threatened species, or at least organisations, stakeholders and the some of the population trends a subset of them. In addition to community to better understand across Australia’s threatened communicating overall trends, the and report on which groups of species are changing over time. It indices can be interrogated and the threatened species are in decline by will inform policy and investment data downloaded via a web-app to bringing together monitoring data. decisions, and enable coherent allow trends for different taxonomic It will potentially enable us to better and transparent reporting on groups or regions to be explored relative changes in threatened understand the performance of and compared. So far, the index has species numbers at national, state high-level strategies and the return been populated with data for some and regional levels. Australia’s on investment in threatened species TSX is based on the Living Planet threatened and near-threatened birds recovery, and inform our priorities Index (www.livingplanetindex.org), and mammals, and monitoring data for investment. a method developed by World Wildlife Fund and the Zoological A Threatened Species Index for mammals in Australia Society of London.
    [Show full text]
  • Impact of Fox Baiting on Tiger Quoll Populations Project ID: 00016505
    Impact of fox baiting on tiger quoll populations Project ID: 00016505 Final Report to Environment Australia and The New South Wales National Parks and Wildlife Service Gerhard Körtner and Shaan Gresser Copyright G. Körtner Executive Summary: The NSW Threat Abatement Plan for Predation by the Red Fox (TAP) identifies foxes as a major threat to the survival of many native mammals. The plan recommends baiting with compound 1080 (sodium monofluoroacetate) because it appears to be the most effective fox control measure. However, the plan also recognises the risk for tiger quolls as a non-target species. Although the actual impact of 1080 fox baiting on tiger quoll populations has not been assessed, this assumed risk has resulted in restrictions on the use of 1080 which render fox baiting programs labour intensive and expensive and which may compromise the effectiveness of the fox control. The aim of this project is to determine whether these precautions are necessary by measuring tiger quoll mortality during fox baiting programs using 1080. The project has been identified as a priority action (Obj. 2, action 5) of the TAP. Three experiments were conducted in north-east NSW between June 2000 and December 2001. Overall 78 quolls were trapped and 56 of those were fitted with mortality radio-transmitters. Baiting procedure followed Best Practice Guidelines (TAP) except that there was no free-feeding and baits were only surface buried. These modifications aimed to increase the exposure of quolls to bait. 1080 baits (3 mg / bait; Foxoff®) incorporating the bait marker Rhodamine B were deployed for 10 days along existing trails.
    [Show full text]
  • Ba3444 MAMMAL BOOKLET FINAL.Indd
    Intot Obliv i The disappearing native mammals of northern Australia Compiled by James Fitzsimons Sarah Legge Barry Traill John Woinarski Into Oblivion? The disappearing native mammals of northern Australia 1 SUMMARY Since European settlement, the deepest loss of Australian biodiversity has been the spate of extinctions of endemic mammals. Historically, these losses occurred mostly in inland and in temperate parts of the country, and largely between 1890 and 1950. A new wave of extinctions is now threatening Australian mammals, this time in northern Australia. Many mammal species are in sharp decline across the north, even in extensive natural areas managed primarily for conservation. The main evidence of this decline comes consistently from two contrasting sources: robust scientifi c monitoring programs and more broad-scale Indigenous knowledge. The main drivers of the mammal decline in northern Australia include inappropriate fi re regimes (too much fi re) and predation by feral cats. Cane Toads are also implicated, particularly to the recent catastrophic decline of the Northern Quoll. Furthermore, some impacts are due to vegetation changes associated with the pastoral industry. Disease could also be a factor, but to date there is little evidence for or against it. Based on current trends, many native mammals will become extinct in northern Australia in the next 10-20 years, and even the largest and most iconic national parks in northern Australia will lose native mammal species. This problem needs to be solved. The fi rst step towards a solution is to recognise the problem, and this publication seeks to alert the Australian community and decision makers to this urgent issue.
    [Show full text]
  • Vertebrate Monitoring and Re-Sampling in Kakadu National Park
    Vertebrate monitoring and re-sampling in Kakadu National Park Final report to Parks Australia: February 2002. John Woinarski, Michelle Watson and Nic Gambold Parks and Wildlife Commission of the Northern Territory PO Box 496 Palmerston Northern Territory, 0831. SUMMARY This report describes the results for the period January to December 2001 in the project Vertebrate Monitoring and Re-Sampling at Kakadu National Park (KNP), a collaborative project involving Parks Australia (North), Parks and Wildlife Commission of the Northern Territory, and the Tropical Savannas Cooperative Research Centre. The explicit objectives of this consultancy were to: • assess change in the vertebrate (and particularly mammal) fauna of KNP by re- sampling sites previously sampled; • assess the response of the mammal fauna to fire regimes, through sampling a set of sites selected to represent contrasting fire regimes; • establish a set of terrestrial vertebrate fauna samples which will contribute to the assessment of cane toad impacts; • sample terrestrial vertebrate fauna at a selection of existing KNP fire monitoring plots; • train Parks Australia staff in vertebrate sampling; and • collate all available data on terrestrial vertebrate fauna sampling, and deliver this to Parks Australia as GIS and other curated data bases. Note that this project will continue for a further year (2002). Hence, for some aspects of this project, the information presented here describes progress results rather than completed actions. monitoring and the Kakadu mammal fauna Prior to this work, there was no integrated monitoring program for terrestrial biodiversity across Kakadu NP. The development of such a program is important to assess the extent to which the Park’s values are being maintained and to help assess and guide management actions.
    [Show full text]
  • Wildlife Matters Wildlife Conservancy
    australian wildlife matters wildlife conservancy Spring 2009 Pungalina reveals one of Australia’s rarest mammals Carpentarian Pseudantechinus 2 australian saving australia’s threatened wildlife wildlife Pictograph conservancy Welcome to the Spring 2009 edition of Wildlife Matters. As this edition goes to print, we are in the process of fi nalising the acquisition of Bowra (see pages 4-5), a 14,000 the awc mission hectare property located in the heart of the Mulga Lands in Queensland. Bowra will The mission of Australian Wildlife Conservancy be our 21st sanctuary, bringing the AWC network to more than 2.56 million hectares (AWC) is the effective conservation of all (6.3 million acres). Australian animal species and the habitats in While the overall scale of the portfolio is impressive, it is not the number of properties or which they live. To achieve this mission, our hectares that really count. A more accurate measure of the value of the portfolio is the actions are focused on: number of species and ecosystems that occur within the AWC estate. In this respect, • Establishing a network of sanctuaries the statistics are even more impressive – for example, around 80% of all Australian which protect threatened wildlife and terrestrial bird species and over 60% of all terrestrial mammal species occur on one or ecosystems: AWC now manages 20 more of our sanctuaries. sanctuaries covering over 2.56 million The fact that our portfolio captures such a high percentage of Australia’s wildlife species hectares (6.3 million acres). refl ects a deliberate, science-based strategy to ensure that AWC invests in properties • Implementing practical, on-ground of the highest environmental value.
    [Show full text]
  • Terrestrial Native Mammals of Western Australia
    TERRESTRIALNATIVE MAMMALS OF WESTERNAUSTRALIA On a number of occasionswe have been asked what D as y ce r cus u ist ica ud q-Mul Aara are the marsupialsof W.A. or what is the scientiflcname Anlechinusfla.t,ipes Matdo given to a palticular animal whosecommon name only A n t ec h i nus ap i ca I i s-Dlbbler rs known. Antechinusr osemondae-Little Red Antechinus As a guide,the following list of62 speciesof marsupials A nteclt itus mqcdonneIlens is-Red-eared Antechi nus and 59 speciesof othersis publishedbelow. Antechinus ? b ilar n i-Halney' s Antechinus Antec h in us mqculatrJ-Pismv Antechinus N ingaui r idei-Ride's Nirfaui - MARSUPALIA Ningauirinealvi Ealev's-KimNinsaui Ptaiigole*fuilissima beiiey Planigale Macropodidae Plani gale tenuirostris-Narrow-nosed Planigate Megaleia rufa Red Kangaroo Smi nt hopsis mu rina-Common Dulnart Macropus robustus-Etro Smin t hop[is longicaudat.t-Long-tailed Dunnart M acr opus fu Ii g inos,s-Western Grey Kangaroo Sminthops is cras sicaudat a-F at-tailed Dunnart Macrcpus antilo nus Antilope Kangaroo S-nint hopsi s froggal//- Larapinla Macropu"^agi /rs Sandy Wallaby Stnintllopsirgranuli,oer -Whire-railed Dunnart Macrcpus rirra Brush Wallaby Sninthopsis hir t ipes-Hairy -footed Dunnart M acro ptrs eugenii-T ammar Sminthopsiso oldea-^f r oughton's Dunnart Set oni x brac ltyuru s-Quokka A ntec h inomys lanrger-Wuhl-Wuhl On y ch oga I ea Lng uife r a-Kar r abul M.yr nte c o b ius fasc ialrls-N umbat Ony c hogalea Iunq ta-W \rrur.g Notoryctidae Lagorchest es conspic i Ilat us,Spectacied Hare-Wallaby Notorlctes
    [Show full text]
  • Kakadu National Park Landscape Symposia Series. Symposium 7: Conservation of Threatened Species, 26–27 March 2013, Bowali Visitor Centre, Kakadu National Park
    internal report 623 Kakadu National Park Symposia Series Symposium 7: Conservation of threatened species, 26–27 March 2013, Bowali Visitor Centre, Kakadu National Park S Winderlich & J Woinarski (eds) June 2014 Release status – unrestricted This page has been left blank intentionally. Kakadu National Park Symposia Series Symposium 7: Conservation of threatened species, 26-27 March 2013, Bowali Visitor Centre, Kakadu National Park Edited by S Winderlich1 & J Woinarski2 1 Kakadu National Park, NT 0886 2 National Environment Research Program, North Australia Hub, Charles Darwin University, Casuarina, NT 0909 Published by Supervising Scientist Division GPO Box 461, Darwin NT 0801 June 2014 (Release status – unrestricted) How to cite this report: Winderlich S & Woinarski J (eds) 2014. Kakadu National Park Landscape Symposia Series. Symposium 7: Conservation of threatened species, 26–27 March 2013, Bowali Visitor Centre, Kakadu National Park. Internal Report 623, June, Supervising Scientist, Darwin. How to cite papers in this report: Cowie ID & Liddle DT 2013. Threatened plants in Kakadu: past, present and future. In Kakadu National Park Landscape Symposia Series. Symposium 7: Conservation of threatened species. eds S. Winderlich & J Woinarski, 26–27 March 2013, Bowali Visitor Centre, Kakadu National Park. Internal Report 623, June, Supervising Scientist, Darwin, 13-32. Editors of this report: Steve Winderlich – Kakadu National Park, Parks Operations and Tourism Branch, PO Box 71, Jabiru, NT 0886, Australia John Woinarski – National Environment
    [Show full text]
  • Mulgara Husbandry Ma
    Husbandry Guidelines Mulgara (Dasycercus cristicauda) Alice Springs Desert Park 2007 Compiled by Wes Caton CONTENTS: TAXONOMY.....................................................................................................................1 Common Name................................................................................................1.1 Classifacation...................................................................................................1.2 A.S.M.P. Category...........................................................................................1.3 I.U.C.N. Category............................................................................................1.4 O.H.&S. Category...........................................................................................1.5 Studbook Keeper.............................................................................................1.6 NATURAL HISTORY......................................................................................................2 Family..............................................................................................................2.1 DISTRIBUTION...............................................................................................................3 Map...................................................................................................................3.1 Habitat .............................................................................................................3.2 MORPHOMETRICS........................................................................................................4
    [Show full text]