Stellar Evolution and Type 1A Supernovae Scott Jackson Mt

Total Page:16

File Type:pdf, Size:1020Kb

Stellar Evolution and Type 1A Supernovae Scott Jackson Mt 1 2017 Div. C (High School) Astronomy Help Session Sunday, Feb. 19th, 2017 Stellar Evolution and Type 1a supernovae Scott Jackson Mt. Cuba Astronomical Observatory • SO competition on March 4th . • Resources – two computers or two 3 ring binder or one laptop plus one 3 ring binder – Programmable calculator – Connection to the internet is not allowed! – Help session before competition at Mt. Cuba Astronomical Observatory 2 3 Study aid -1 • Google each object, – Know what they look like in different parts of the spectrum. For example, the IR, optical, UV and Xray – Understand what each part of the spectrum means – Have a good qualitative feel for what the object is doing or has done within the astrophysical concepts that the student is being asked to know. 4 Study aid - 2 • Know the algebra behind the physics – Just because you think you have the right “equation” to use does not mean you know how to use it!!! – Hint for math problems: Solve equations symbolically BEFORE you put in numbers. Things tend to cancel out including parameters you do not need to have values for. – Know how to use scientific notation. 5 The test – 2 parts • Part 1 – multiple choice and a couple fill in the blanks • Part 2 – word problems for astrophysics there will be some algebra Solve the equations symbolically first then put in numbers!!!! Hint: most problems will not need a calculator if done this way Topics - 1 Stellar evolution, including - stellar classification, - spectral features and chemical composition, - H-R diagram transitions, - Accretion disks - Main sequence stars - red giants, - white dwarfs (oxygen & helium), - neutron stars, planetary nebulas Luminosity, blackbody radiation, color index, Spectral class of stars • O • B • A • F • G • K • M • L Red Dwarfs (failed stars) • T Brown Dwarfs (failed stars) 7 Categorizing stars by their spectra 1. Spectra can tell you 2. Absorption (dark) the stars approximate lines in a star’s spectra temperature give a finger print of (blackbody radiation) elements that are seen in that spectral class of stars BUT emission spectra spectra (bright lines against a dark background) are given off by nebulae – glowing gas clouds 8 Spectral class of stars He+ lines H Balmer lines (B,A & F stars) Ca+ lines (F & G stars) Fe and neural metals K & M stars) TiO2 lines 9 Spectral classification & Temperature of main sequence stars Star Surface Star Lifespan Star Mass Spectral Proportion of Stars Temperature Luminosity (Billions Example Star (Sun = 1.0) Class (°F) (Sun = 1.0) of Years) A0 1% A0 - A9 20,000 2.8 60 0.5 Vega A1 --- 18,400 2.35 22 1.0 Sirius A5 --- 15,000 2.2 20 1.0 --- F0 3% F0 - F9 13,000 1.7 6 2.0 --- F5 --- 12,000 1.25 3 4.0 Procyon A G0 9% G0 - G9 11,000 1.06 1.3 10 --- Sun G2 --- 10,600 1.00 1.0 12 Alpha Centauri A G5 --- 10,000 0.92 0.8 15 --- K0 14% K0 - K9 9,000 0.80 0.4 20 Alpha Centauri B K2 --- 8,700 0.76 0.3 24 Epsilon Eridani K5 --- 8,000 0.69 0.1 30 61 Cygni A M0 73% M0 - M9 7,000 0.48 0.02 75 --- Proxima Centauri M5 --- 5,000 0.20 0.001 200 10 (Alpha Centauri C) 11 More on stars spectral class 12 Y axis is always 13 Hertzsprung-Russell Diagram brightness or relative luinosity X axis is always temperature, color or spectral class Each dot is a star A is the location of our sun on the main sequence B are red giant stars that are fusing helium in their core C are red L supergiants with T Helium and Hydrogen buring in http://outreach.atnf.csiro.au/education/senior/cosmicengine/stars_hrdiagram.html shells and carbon in D are white dwarfs (super hot carbon stars) its core 14 Instability gaps on an H-R diagram for the pulsating class of variable stars Period of pulses scale with absolute brightness of the star “Period-luminosity relationship” • http://outreach.atnf.csiro.au/education/senior/astrophysics/variable_pulsating.html Accretion disks • Circumstellar disks • Many accretion disks seen in binary star systems when one star hass filled its “Roche” limit and is having material “sucked” away from it to a companion start (e.g., white dwarf) Disk in Orion nebulea http://planetquest.jpl.nasa.gov/documents/RdMp272.pdf Birth of a solar mass star 17 The birth of a 1 solar mass star going onto the main sequence. Before point 4, contraction of intersteller gas cloud. The cloud heats up as it contracts, causing its luminosity to increase -- we don’t see it because the protostar is hidden in dust. From point 4 to 6, -- The cloud contracts more and its luminosity drops. Point 6, hydrogen starts to fuse to helium in the stars core. The heat generated from fusion balances gravity. The star’s surface heats up slightly. This is the location of T Tauri stars Point 7. The star has reached a long lived equilibrium where the heat from fusing hydrogen to helium balances gravity. The star resides on the main sequence for most of its life (~10 billion years for a 1 solar mass star). Formation of white dwarfs Death of main sequence stars Red Giant for lower mass stars Low mass star like our sun stops at carbon formation in its core... And fluffs off its outer layers to make a planetary nebulae and a white dwarf star. Red Giant for higher mass stars But a high mass star, like those in the early universe had enough mass to fuse nuclear material all the way to iron. However, once iron accumulates in its core no net energy generation can be done by fusion of iron, gravity takes over and core collapse occurs and..... Electrons are pushed into protons making neutrons and a flood of neutrinos…. It goes boom!!!!... A supernovae!!! (this is the Crab Nebulae) … Which make lots of heavy elements needed to make terrestrial (earth like) planets. This is NOT a type 1a supernovae. It is a type II supernovae. .. And it spreads heavy elements throughout space to be picked up by a new generation of stars,..... .. The shock wave either from the supernovae or from the initial star formation stage can initiate new star formation,..... Stars and planets approximate black body radiators The wavelength at maximum radiation changes with temperature λmax = 550 nm 5300 K temperature for our sun. “G” type star (subclass “2”) or G2 λmax x Temperature = constant = 2.9x106 nm-°K Or = 2.9x107 A-°K = 2.9x103 μm-K Nm[=] nanometers for wavelength Or A [=] Angstrom units for wavelength Or μm [=] microns units for wavelength °K [=] degrees Kelvin 25 Another way to look at black body radiation Plot log λ (x axis) vs log of spectral intensity at that λ Example calculation for a star’s temperature So the shorter the wavelength the hotter or colder the star???? λmax ~ 0.9 μm What it the star’s temperature? T ~ 2.9x103 μm-K / 0.9 μm = 3200 K (M type star) If λmax ~ 10 μm What it the star’s temperature? λmax x Temperature = constant = 2.9x106 nm-°K T ~ 2.9x103 μm-K / 10 μm Or = 2.9x107 A-°K = 2.9x103 μm-K = 290 K (black dwarf) Nm[=] nanometers for wavelength Or A [=] Angstrom units Or μm [=] microns units °K [=] degrees Kelvin 27 Color Index or color – color diagrams • A way to compare the apparent magnitude of stars at different wavelengths (using photometry instead of spectrometry). • Observe at narrow bands of wavelengths ( a color) and note the difference in the intensity of these different bands. • Spectrometry (measuring the entire spectrum) is more difficult than photometry (observations at a single color). • But what is U, B and V?? 28 https://en.wikipedia.org/wiki/Color_index UBV, UBVRI and JHK systems for Color-color diagrams 29 Color Index or color – color diagrams • Where is our sun on the U-B vs B-V diagram? 30 https://en.wikipedia.org/wiki/Color_index White dwarfs (oxygen & helium) -1 • White dwarfs are the end point for moderate mass stars like our sun: Mass ~0.5 to ~4+x mass of sun (Msun) the progenitor stars are not massive enough to generate neutron stars or black holes when they die. • White dwarfs do not generate any energy – they are just cooling off and will follow a well defined “cooling” curve on the H-R diagram. • Maximum mass of a white dwarf is dictated by electron degeneracy pressure ~ 1.4 x Msun– the pressure below which the electrons are not pushed into the nucleus. This is called the Chandrasekhar limit • White dwarfs will take a long time to cool off but as they do, they will become red dwarfs and then brown dwarfs as their (black body) spectra shifts to longer wavelengths of light • . 31 White dwarfs (oxygen & helium) - 2 • The more massive the white dwarf – the smaller it is(!) • Many red dwarfs or brown dwarfs were not white dwarfs to start with – they may just be failed stars that did not have enough mass to initiate fusion in their cores. • Progenitor stars of lower mass will not be able to fuse helium in their shells. When they die as white dwarfs, they will appear as helium white dwarfs. • Progenitor stars of higher mass will be able to fuse helium in their shells to carbon and oxygen and these will appear as oxygen white dwarfs. 32 Neutron stars • When higher mass stars “die” gravity takes over and the core of the star collapses.
Recommended publications
  • FY08 Technical Papers by GSMTPO Staff
    AURA/NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation July 23, 2008 Revised as Complete and Submitted December 23, 2008 NGC 660, ~13 Mpc from the Earth, is a peculiar, polar ring galaxy that resulted from two galaxies colliding. It consists of a nearly edge-on disk and a strongly warped outer disk. Image Credit: T.A. Rector/University of Alaska, Anchorage NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation December 23, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. 1 1 SCIENTIFIC ACTIVITIES AND FINDINGS ..................................................................................... 2 1.1 Cerro Tololo Inter-American Observatory...................................................................................... 2 The Once and Future Supernova η Carinae...................................................................................................... 2 A Stellar Merger and a Missing White Dwarf.................................................................................................. 3 Imaging the COSMOS...................................................................................................................................... 3 The Hubble Constant from a Gravitational Lens.............................................................................................. 4 A New Dwarf Nova in the Period Gap............................................................................................................
    [Show full text]
  • The AGB Stars of the Intermediate-Age LMC Cluster NGC 1846 Variability and Age Determination
    A&A 475, 643–650 (2007) Astronomy DOI: 10.1051/0004-6361:20078395 & c ESO 2007 Astrophysics The AGB stars of the intermediate-age LMC cluster NGC 1846 Variability and age determination T. Lebzelter1 andP.R.Wood2 1 Institute of Astronomy, University of Vienna, Tuerkenschanzstrasse 17, 1180 Vienna, Austria e-mail: [email protected] 2 Research School for Astronomy & Astrophysics, Australian National University, Weston Creek, ACT 2611, Australia Received 1 August 2007 / Accepted 18 September 2007 ABSTRACT Aims. We investigate variability and we model the pulsational behaviour of AGB variables in the intermediate-age LMC cluster NGC 1846. Methods. Our own photometric monitoring has been combined with data from the MACHO archive to detect 22 variables among the cluster’s AGB stars and to derive pulsation periods. According to the global parameters of the cluster we construct pulsation models taking into account the effect of the C/O ratio on the atmospheric structure. In particular, we have used opacities appropriate for both O-rich stars and carbon stars in the pulsation calculations. Results. The observed P-L-diagram of NGC 1846 can be fitted using a mass of the AGB stars of about 1.8 M. We show that the period of pulsation is increased when an AGB star turns into a carbon star. Using the mass on the AGB defined by the pulsational behaviour of our sample we derive a cluster age of 1.4 × 109 years. This is the first time the age of a cluster has been derived from the variability of its AGB stars.
    [Show full text]
  • The Impact of the Astro2010 Recommendations on Variable Star Science
    The Impact of the Astro2010 Recommendations on Variable Star Science Corresponding Authors Lucianne M. Walkowicz Department of Astronomy, University of California Berkeley [email protected] phone: (510) 642–6931 Andrew C. Becker Department of Astronomy, University of Washington [email protected] phone: (206) 685–0542 Authors Scott F. Anderson, Department of Astronomy, University of Washington Joshua S. Bloom, Department of Astronomy, University of California Berkeley Leonid Georgiev, Universidad Autonoma de Mexico Josh Grindlay, Harvard–Smithsonian Center for Astrophysics Steve Howell, National Optical Astronomy Observatory Knox Long, Space Telescope Science Institute Anjum Mukadam, Department of Astronomy, University of Washington Andrej Prsa,ˇ Villanova University Joshua Pepper, Villanova University Arne Rau, California Institute of Technology Branimir Sesar, Department of Astronomy, University of Washington Nicole Silvestri, Department of Astronomy, University of Washington Nathan Smith, Department of Astronomy, University of California Berkeley Keivan Stassun, Vanderbilt University Paula Szkody, Department of Astronomy, University of Washington Science Frontier Panels: Stars and Stellar Evolution (SSE) February 16, 2009 Abstract The next decade of survey astronomy has the potential to transform our knowledge of variable stars. Stellar variability underpins our knowledge of the cosmological distance ladder, and provides direct tests of stellar formation and evolution theory. Variable stars can also be used to probe the fundamental physics of gravity and degenerate material in ways that are otherwise impossible in the laboratory. The computational and engineering advances of the past decade have made large–scale, time–domain surveys an immediate reality. Some surveys proposed for the next decade promise to gather more data than in the prior cumulative history of astronomy.
    [Show full text]
  • Whole Earth Telescope Observations of AM Canum Venaticorum – Discoseismology at Last
    Astron. Astrophys. 332, 939–957 (1998) ASTRONOMY AND ASTROPHYSICS Whole Earth Telescope observations of AM Canum Venaticorum – discoseismology at last J.-E. Solheim1;14, J.L. Provencal2;15, P.A. Bradley2;16, G. Vauclair3, M.A. Barstow4, S.O. Kepler5, G. Fontaine6, A.D. Grauer7, D.E. Winget2, T.M.K. Marar8, E.M. Leibowitz9, P.-I. Emanuelsen1, M. Chevreton10, N. Dolez3, A. Kanaan5, P. Bergeron6, C.F. Claver2;17, J.C. Clemens2;18, S.J. Kleinman2, B.P. Hine12, S. Seetha8, B.N. Ashoka8, T. Mazeh9, A.E. Sansom4;19, R.W. Tweedy4, E.G. Meistasˇ 11;13, A. Bruvold1, and C.M. Massacand1 1 Nordlysobservatoriet, Institutt for Fysikk, Universitetet i Tromsø, N-9037 Tromsø, Norway 2 McDonald Observatory and Department of Astronomy, The University of Texas at Austin, Austin, TX 78712, USA 3 Observatoire Midi–Pyrenees, 14 Avenue E. Belin, F-31400 Toulouse, France 4 Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, UK 5 Instituto de Fisica, Universidade Federal do Rio Grande do Sul, 91500-970 Porto Alegre - RS, Brazil 6 Department de Physique, Universite´ de Montreal,´ C.P. 6128, Succ A., Montreal,´ PQ H3C 3J7, Canada 7 Department of Physics and Astronomy, University of Arkansas, 2801 S. University Ave, Little Rock, AR 72204, USA 8 Technical Physics Division, ISRO Satelite Centre, Airport Rd, Bangalore, 560 017 India 9 University of Tel Aviv, Department of Physics and Astronomy, Ramat Aviv, Tel Aviv 69978, Israel 10 Observatoire de Paris-Meudon, F-92195 Meudon Principal Cedex, France 11 Institute of Material Research and Applied Sciences, Vilnius University, Ciurlionio 29, Vilnius 2009, Lithuania 12 NASA Ames Research Center, M.S.
    [Show full text]
  • 1000 Cataclysmic Variables from the Catalina Real-Time Transient Survey
    MNRAS 443, 3174–3207 (2014) doi:10.1093/mnras/stu1377 1000 cataclysmic variables from the Catalina Real-time Transient Survey E. Breedt,1‹ B. T. Gansicke,¨ 1 A. J. Drake,2 P. Rodr´ıguez-Gil,3,4 S. G. Parsons,5 T. R. Marsh,1 P. Szkody,6 M. R. Schreiber5 and S. G. Djorgovski2 1Department of Physics, University of Warwick, Coventry, CV4 7AL, UK 2California Institute of Technology, 1200 E. California Blvd, CA 91225, USA 3Instituto de Astrof´ısica de Canarias, V´ıa Lactea´ s/n, La Laguna, E-38205, Santa Cruz de Tenerife, Spain 4Departamento de Astrof´ısica, Universidad de La Laguna, La Laguna, E-38206, Santa Cruz de Tenerife, Spain 5Instituto de F´ısica y Astronom´ıa, Universidad de Valpara´ıso, Avenida Gran Bretana 1111, 2360102 Valpara´ıso, Chile 6Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195-1580, USA Downloaded from Accepted 2014 July 6. Received 2014 July 5; in original form 2014 May 13 ABSTRACT Over six years of operation, the Catalina Real-time Transient Survey (CRTS) has identified http://mnras.oxfordjournals.org/ 1043 cataclysmic variable (CV) candidates – the largest sample of CVs from a single survey to date. Here, we provide spectroscopic identification of 85 systems fainter than g ≥ 19, including three AM Canum Venaticorum binaries, one helium-enriched CV, one polar and one new eclipsing CV. We analyse the outburst properties of the full sample and show that it contains a large fraction of low-accretion-rate CVs with long outburst recurrence times. We argue that most of the high-accretion-rate dwarf novae in the survey footprint have already been found and that future CRTS discoveries will be mostly low-accretion-rate systems.
    [Show full text]
  • The Fall of the Youngest Planetary Nebula, Hen3-1357
    IOP Publishing Submitted in this form to ApJ 3 Sept 2020 Astrophysical Journal ApJ (XXXX) XXXXXX https://doi.org/XXXX/XXXX The Fall of the Youngest Planetary Nebula, Hen3-1357 Bruce Balick1*, Martín A. Guerrero2, Gerardo Ramos-Larios3 1 Department of Astronomy, University of Washington, Seattle, WA 98195-1580, USA 2 Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía S/N, 18008 Granada, Spain 3 Instituto de Astronomía y Meteorología, Universidad de Guadalajara, 44130 Guadalajara, Mexico *Corresponding author: [email protected] Received xxxxxx Accepted for publication xxxxxx Published xxxxxx Abstract The Stingray Nebula, aka Hen3-1357, went undetected until 1990 when bright nebular lines and radio emission were unexpectedly discovered. We report changes in shape and rapid and secular decreases in its nebular emission-line fluxes based on well calibrated images obtained by the Hubble Space Telescope in 1996, 2000, and 2016. Hen3-1357 is now a “recombination nebula”. Keywords: planetary nebulae: Planetary nebulae (1249), Post-asymptotic giant branch stars (2121), Ionization (2068) 1. Introduction Planetary nebulae (“PNe”) consist of stellar gas ejected in winds from the surfaces of post Asymptotic Branch Giant (“AGB”) stars. The winds systematically expose deeper and much hotter interior stellar layers until stellar energetic ultraviolet (“UV”) begins to ionize the ejected gas. The PN radiates a rich, luminous, and readily detectable set of emission lines (e.g., 6) as electron recombinations with H+ and He+ and optical forbidden lines of N+, O+, O++, S+, etc. These lines become increasingly visible by about a millennium after the winds begin as the central star shifts towards higher temperatures > 40 kK.
    [Show full text]
  • SAS-2019 the Symposium on Telescope Science
    Proceedings for the 38th Annual Conference of the Society for Astronomical Sciences SAS-2019 The Symposium on Telescope Science Joint Meeting with the Center for Backyard Astrophysics Editors: Robert K. Buchheim Robert M. Gill Wayne Green John C. Martin John Menke Robert Stephens May, 2019 Ontario, CA i Disclaimer The acceptance of a paper for the SAS Proceedings does not imply nor should it be inferred as an endorsement by the Society for Astronomical Sciences of any product, service, method, or results mentioned in the paper. The opinions expressed are those of the authors and may not reflect those of the Society for Astronomical Sciences, its members, or symposium Sponsors Published by the Society for Astronomical Sciences, Inc. Rancho Cucamonga, CA First printing: May 2019 Photo Credits: Front Cover: NGC 2024 (Flame Nebula) and B33 (Horsehead Nebula) Alson Wong, Center for Solar System Studies Back Cover: SA-200 Grism spectrum of Wolf-Rayet star HD214419 Forrest Sims, Desert Celestial Observatory ii TABLE OF CONTENTS PREFACE v SYMPOSIUM SPONSORS vi SYMPOSIUM SCHEDULE viii PRESENTATION PAPERS Robert D. Stephens, Brian D. Warner THE SEARCH FOR VERY WIDE BINARY ASTEROIDS 1 Tom Polakis LESSONS LEARNED DURING THREE YEARS OF ASTEROID PHOTOMETRY 7 David Boyd SUDDEN CHANGE IN THE ORBITAL PERIOD OF HS 2325+8205 15 Tom Kaye EXOPLANET DETECTION USING BRUTE FORCE TECHNIQUES 21 Joe Patterson, et al FORTY YEARS OF AM CANUM VENATICORIUM 25 Robert Denny ASCOM – NOT JUST FOR WINDOWS ANY MORE 31 Kalee Tock HIGH ALTITUDE BALLOONING 33 William Rust MINIMIZING DISTORTION IN TIME EXPOSED CELESTIAL IMAGES 43 James Synge PROJECT PANOPTES 49 Steve Conard, et al THE USE OF FIXED OBSERVATORIES FOR FAINT HIGH VALUE OCCULTATIONS 51 John Martin, Logan Kimball UPDATE ON THE M31 AND M33 LUMINOUS STARS SURVEY 53 John Morris CURRENT STATUS OF “VISUAL” COMET PHOTOMETRY 55 Joe Patterson, et al ASASSN-18EY = MAXIJ1820+070 = “MAXIE”: KING OF THE BLACK HOLE 61 SUPERHUMPS Richard Berry IMAGING THE MOON AT THERMAL INFRARED WAVELENGTHS 67 iii Jerrold L.
    [Show full text]
  • Pos(HTRA-IV)023 , 1 , 9 , B.T
    ULTRACAM observations of SDS 0926+3624: the first known eclipsing AM CVn star PoS(HTRA-IV)023 C.M. Copperwheat∗ Department of Physics, University of Warwick, Coventry, CV4 7AL, UK E-mail: [email protected] T.R. Marsh1, S.P. Littlefair2, V.S. Dhillon2, G. Ramsay3, A.J. Drake4, B.T. Gänsicke1, P.J. Groot5, P. Hakala6, D. Koester7, G. Nelemans5, G. Roelofs8, J. Southworth9, D. Steeghs1 and S. Tulloch2 1 Department of Physics, University of Warwick, Coventry, CV4 7AL, UK 2 Department of Physics and Astronomy, University of Sheffield, S3 7RH, UK 3 Armagh Observatory, College Hill, Armagh, BT61 9DG, UK 4 California Institute of Technology, 1200 E. California Blvd., CA 91225, USA 5 Department of Astrophysics, IMAPP, Radboud University Nijmegen, PO Box 9010, NL-6500 GL Nijmegen, the Netherlands 6 Finnish Centre for Astronomy with ESO, Tuorla Observatory, Väisäläntie 20, FIN-21500 Piikkiö, University of Turku, Finland 7 Institut für Theoretische Physik und Astrophysik, Universität Kiel, 24098 Kiel, Germany 8 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 9 Astrophysics Group, Keele University, Newcastle-under-Lyme, ST5 5BG, UK The AM Canum Venaticorum (AM CVn) stars are ultracompact binaries with the lowest periods of any binary subclass, and consist of a white dwarf accreting material from a donor star that is it- self fully or partially degenerate. These objects offer new insight into the formation and evolution of binary systems, and are predicted to be among the strongest gravitational wave sources in the sky. To date, the only known eclipsing source of this type is the 28 min binary SDSS 0926+3624.
    [Show full text]
  • Indian Institute of Astrophysics Academic Report 1997-1998
    INDIAN INSTITUTE OF ASTROPHYSICS ACADEMIC REPORT 1997-1998 ecf1ted by: P.Venkatakrishnan Editorial Assmance : Sandra Rajiva Front Cover Radioheliogram of active region obtained from Gauribidanur. Back Cover Lab simulation of optical interferometry. Interferogram produced with seven holes at High Angular Resolution Laboratory. Bangelore. Prned at Vykat Pmta Pvt. Ud.• Aiport Road Cross, Banga/ore 560017 CONTENTS Page Page Governing Council 1 Library 48 Highlights of the year 1997-98 3 Official Language Implementation 48 Sun and the solar system 7 Personnel 49 Stars and stellar systems 17 Appendixes 51 Theoretical Astrophysics 27 A: Publications 5:1 Physics 35 B: HRD Activities 65 Facilities 39 C: Sky Conditions at VBO and Kodaikanal Observatory 67 GOVERNING COUNCIL 1 Prof. B. V. Sreekantan Chairman Prof. Yash Pal Member S. Radhakrishnan Professor Chairman, Steering Committee National Institute of Advanced Studies Inter-University Consortium for Indian Inst.itute of Science Campus Educational Communication Bangalore 560012 New Delhi 110067 Prof. V.S. Ramamurthy Member Prof. 1. B. S. Passil Member Secretary Professor, Department of Science and Technology Centre for Advanced Study in Mathematics New Delhi 110016 Panjab University Chandigarh 160014 Sri Rahul Sarin, lAS Member Joint Secretary and Financial Advisor Prof. H. S. Mani2 Membpr Department. of Science and Technology Director New Delhi 110016 Mehta Research Institute of Mathematirs & Mathematical Physics Prof. J. C. Bhattacharyya2 Member Chhatnag Road, Jhusi 215, Trinity Enclave Allahabad 221506 Old Madras Road Bangalore 560008 Dr. S.K. Sikka Associate Director, Prof. Ramanath Cowsik Member Solid St.ate & Spectroscopy Group, and Director Head, High Pressure Physics Division Indian Institute of Astrophysics BARC, Trombay, Mumbai 400085 Bangalore 560034 Prof.
    [Show full text]
  • Cfa in the News ~ Week Ending 3 January 2010
    Wolbach Library: CfA in the News ~ Week ending 3 January 2010 1. New social science research from G. Sonnert and co-researchers described, Science Letter, p40, Tuesday, January 5, 2010 2. 2009 in science and medicine, ROGER SCHLUETER, Belleville News Democrat (IL), Sunday, January 3, 2010 3. 'Science, celestial bodies have always inspired humankind', Staff Correspondent, Hindu (India), Tuesday, December 29, 2009 4. Why is Carpenter defending scientists?, The Morning Call, Morning Call (Allentown, PA), FIRST ed, pA25, Sunday, December 27, 2009 5. CORRECTIONS, OPINION BY RYAN FINLEY, ARIZONA DAILY STAR, Arizona Daily Star (AZ), FINAL ed, pA2, Saturday, December 19, 2009 6. We see a 'Super-Earth', TOM BEAL; TOM BEAL, ARIZONA DAILY STAR, Arizona Daily Star, (AZ), FINAL ed, pA1, Thursday, December 17, 2009 Record - 1 DIALOG(R) New social science research from G. Sonnert and co-researchers described, Science Letter, p40, Tuesday, January 5, 2010 TEXT: "In this paper we report on testing the 'rolen model' and 'opportunity-structure' hypotheses about the parents whom scientists mentioned as career influencers. According to the role-model hypothesis, the gender match between scientist and influencer is paramount (for example, women scientists would disproportionately often mention their mothers as career influencers)," scientists writing in the journal Social Studies of Science report (see also ). "According to the opportunity-structure hypothesis, the parent's educational level predicts his/her probability of being mentioned as a career influencer (that ism parents with higher educational levels would be more likely to be named). The examination of a sample of American scientists who had received prestigious postdoctoral fellowships resulted in rejecting the role-model hypothesis and corroborating the opportunity-structure hypothesis.
    [Show full text]
  • A Double Main Sequence Turn-Off in the Rich Star Cluster NGC 1846 In
    Mon. Not. R. Astron. Soc. 000, 1–9 (2007) Printed 4 December 2018 (MN LATEX style file v2.2) A double main sequence turn-off in the rich star cluster NGC 1846 in the Large Magellanic Cloud A. D. Mackey1 and P. Broby Nielsen1 1Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK Draft version 4 December 2018 ABSTRACT We report on HST/ACS photometry of the rich intermediate-age star cluster NGC 1846 in the Large Magellanic Cloud, which clearly reveals the presence of a dou- ble main sequence turn-off in this object. Despite this, the main sequence, sub-giant branch, and red giant branch are all narrow and well-defined, and the red clump is compact. We examine the spatial distribution of turn-off stars and demonstrate that all belong to NGC 1846 rather than to any field star population. In addition, the spatial distributions of the two sets of turn-off stars may exhibit different central con- centrations and some asymmetries. By fitting isochrones, we show that the properties of the colour-magnitude diagram can be explained if there are two stellar populations of equivalent metal abundance in NGC 1846, differing in age by ≈ 300 Myr. The ab- solute ages of the two populations are ∼ 1.9 and ∼ 2.2 Gyr, although there may be a systematic error of up to ±0.4 Gyr in these values. The metal abundance inferred from isochrone fitting is [M/H] ≈−0.40, consistent with spectroscopic measurements of [Fe/H]. We propose that the observed properties of NGC 1846 can be explained if this object originated via the tidal capture of two star clusters formed separately in a star cluster group in a single giant molecular cloud.
    [Show full text]
  • Carbon Stars T. Lloyd Evans
    J. Astrophys. Astr. (2010) 31, 177–211 Carbon Stars T. Lloyd Evans SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS, UK. e-mail: [email protected] Received 2010 July 19; accepted 2010 October 18 Abstract. In this paper, the present state of knowledge of the carbon stars is discussed. Particular attention is given to issues of classification, evolution, variability, populations in our own and other galaxies, and circumstellar material. Key words. Stars: carbon—stars: evolution—stars: circumstellar matter —galaxies: magellanic clouds. 1. Introduction Carbon stars have been reviewed on several previous occasions, most recently by Wallerstein & Knapp (1998). A conference devoted to this topic was held in 1996 (Wing 2000) and two meetings on AGB stars (Le Bertre et al. 1999; Kerschbaum et al. 2007) also contain much on carbon stars. This review emphasizes develop- ments since 1997, while paying particular attention to connections with earlier work and to some of the important sources of concepts. Recent and ongoing develop- ments include surveys for carbon stars in more of the galaxies of the local group and detailed spectroscopy and infrared photometry for many of them, as well as general surveys such as 2MASS, AKARI and the Sirius near infrared survey of the Magel- lanic Clouds and several dwarf galaxies, the Spitzer-SAGE mid-infrared survey of the Magellanic Clouds and the current Herschel infrared satellite project. Detailed studies of relatively bright galactic examples continue to be made by high-resolution spectroscopy, concentrating on abundance determinations using the red spectral region, and infrared and radio observations which give information on the history of mass loss.
    [Show full text]