Histoiogic Characteristics of the Lateral Pterygoid Muscle Insertion to the Temporomandibular Joint

Total Page:16

File Type:pdf, Size:1020Kb

Histoiogic Characteristics of the Lateral Pterygoid Muscle Insertion to the Temporomandibular Joint Histoiogic Characteristics of the Lateral Pterygoid Muscle Insertion to the Temporomandibular Joint Geber T, Bittar. DDS, MS This study used low-power light microscopy to examine the histo- Researcfi Scholar logie organization of tbe laterai pterygoid muscle interface with the Carol A. Bibb, PhD, DDS temporomandibular joint. Tbe sample inciuded parasagittal sec- Adjunct Associate Professor tions of 20 intact temporomandibular joints from young adults Section of Orofacial Pain and Occlusion ¡mean age 26-2 years) at autopsy. Tbe lateral pterygoid muscle sbowed no consistent divisions into separate anatomic muscle Andrew G, Pullinger, DDS. MSc beads at tbe insertion. Tbe muscie fibers attached to tbe pterygoid Professor fouea of tbe condyie immediately inferior to tbe articular surface in Seotion of Orofacial Pain and Occlusion all cases. Some additional fibers inserted superiorly into the more and Dental Research Institute anterior part of tbe articular disc in a minority of cases (31%). School of Dentistry Vibers inserting into tbe disc represented only 2.4% to 6% ofthe University of California total superior-inferior length of the muscle insertion. It is hypothe- Los Angeles, California sized that the muscular force exerted by these few fibers inserting Gorrespondence to: into the disc would not be sufficient to displace tbe disc anteriorly Dr Carol A. Bibb to tbe condyle. Tbere were two bistoiogic types of insertion of tbe Section of Orofacial Pain and Occlusion lateral pterygoid muscle to tbe condyle. Tbe superior part of tbe School of Dentistry insertion was characterized by an identifiable tendon inserting OHS 43-009 through fibrocartilage. In tbe inferior part of tbe insertion, tbe University of California muscle attacbed to periosteum without an obvious tendon. Tbe Los Angeles, California 90024 presence of this tendon must be recognized in interpretation of soft tissue temporomandibular joint imaging. J OROFACIAL PAIN 1994;8:243-249, natomic and physiologic investigations of the lateral ptery- goid muscle insertion to the temporomandibular joint (TMJ} Ahave generated considerable controversy. While studies have consistently shown the pre,sence of two distinct muscle origins at the pterygoid plate of the sphenoid hone, the insertion of the muscle to the cotnponents of the TMJ remains unclear. The unresolved issues include whether there are anatomically and functionally distinct upper and lower muscle heads at the insertion site and the relation- ship of the most superior muscle fibers to the articular disc. The insertion of the superior fihers of the lateral pterygoid mus- cle to the TMJ has been the source of much discussion in the litera- ture. Early dissection studies reported that the superior fibers insert solely to the articular disc' or to the disc and anteriot capsule.^ More recent histologie studies have demonstrated that the majority of the superior fihers insert to the condyle with only a few fibers inserting to the articular disc,^"* The latter studies have emphasized the variability in the relationship of the superiot fibers to the condyle and disc, but they have not attempted to measure the pro- portion of fibers insetting directly into the disc or considered an anatomic relationship to disc position, Electromyographic ¡EMG| studies have been similarly inconsis- tent; some have tepotted that the lateral pterygoid is a single func- Journaf of Orofacial Pain 243 Bittar rional unit," but the majority have reported func- majority of the lateral pterygoid muscle fihers are rionally separate superior and inferior heads."-'^ reported to insert ro the anreromedial aspect of the Juniper^ has proposed that the superior head joint.'°--" Projection microscopy permitted discus- shotild be considered a separate nitiscle called the sion and consensus judgment by three examiners superior pterygoid muscle. observing a complete field of view at low magniri- These conflicting studies have led co rhe com- carion. A confidence score with rankings of 1 = mon usage of a diagram depicting a separate supe- possible, 2 = probable, 3 = confident, and 4 = defi- rior head of the lateral pterygoid attachitig entirely nite was applied to each evaluation. to the anterior portion of the articular disc."""' More detailed descriptive and histomorphomet- Together with a functional model for the lateral ric assessments of the lateral pterygoid insertion pterygoid muscle, in which the upper head func- tissues were carried out under low-power light tions independently and antagonistically to the microscopy using eentral (n = 18) and medial (n = lower head of the muscle during tnandibular 16) sections. Higher magnification was used to movements," the idea has heen proposed that positively identify muscle tissue by the presence of hyperactivity of the muscle could cause the articu- striations to differentiate muscle tissue from the lar disc ro dislocate anteriorly." adjacent fibrous connective tissue of the disc or tendon. The ptirpose of the present study was to present a detailed description of the microatiatomy of the lateral pterygoid tnuscle interface with the TMJ in young adults. It is anticipated that the results will Results have implications for TMJ soft tissue itnaging and internal derangement etiology. Anatomic Divisions ofthe Lateral Ptetygoid Insertion Materials and Methods None of the 16 medial TMJ sections showed an obvious division into a distinct upper and lower muscle head ar rhe insertion site. In three of these Sample specimens (19%), loose connective or fatty rissue The autopsy material used for the current study was interposed between bundles of muscle fibers was collected and prepared by Solberg et al.'* The close to the insertion to rhe condyie, which pro- sample consisted of intact joints that were macro- duced partial separation bur wirh no consistent scopically cut into lateral, central, and medial organization. In these three specimens, two had thirds prior ro rhe preparation of histologie sec- three such divisions, and the other had two divi- tions from each third. The sections were prepared sions (Fig 1). The mean confidence score for both at 90 degrees to the long axis of the condyie, the presence of these divisions as well as the which would on average represent a 20-degree cor- absence of divisions in the other specimens was 1.5 rection from the true parasagittal plane. This pro- on the 4-point scale. tocol was designed to minimize oblique sectioning and erroneous presentation of soft tissue rhickness, which were critical to other studies using this Relationship Between the Lateral Pterygoid material. It is recognized that this angular correc- Muscle and the Disc tion does not provide ideal longitudinal orienta- Eleven of the 16 medial sections studied (69%) tion of the fibers of the lateral pterygoid muscle. A were characterized by a parallel arrangement of the total of 16 medial and 18 central sections were lateral pterygoid muscle fibers with rhe disc. In this selected for the present study. The mean age of the configuration, muscle fibers traveled parallel and sample was 26.2 years, range 16 to 35 years; 30% inferiorly to the disc to insert entirely into the were female and 70% male. pterygoid fovea of rhe condyie (Fig 1). There was a fibrous mesh of loose connective tissue between the disc and superior limit of the muscle. These fibers Histoiogic Assessment connected with the lining tissue of the anterior-infe- Projection microscopy was used ro exatnine the rior joint recess, which in turn was continuous with anatomic divisions of the lateral pterygoid muscle the articular fibrous connective tissue at rhe anteri- at the insertion site and the relationship of the or-superior aspect of the condyie. muscle to the articular disc. Medial sections (n = In the remaining five specimens (31%), there 16) were selected for rhis purpose because rhe were some muscle fibers interdigitating directly 244 Voiume 8, Number 3. 1994 Bittar into the anterior band of the disc (Figs 2 and 3) and 2) and confirmed by the presence of muscle while the majority of the muscle showed the paral- striations visible at higher magnification (Fig 4). A lel configuration inferiorly. The distinction be- layer of fibrocartilage was identified between rhe tween muscle and che fibrous connective tissue of tendon fibers and rhe compact bone of rhe ptery- the disc was confirmed by the identification of goid fovea (Figs I and 5). tnitscle striations at high magnification. The inter- Inferior to the tendinous insertion, muscle fibers digication oi'the muscle with the disc and the mus- inserted into the periosreum of the compact bone cle with the tendon appear identical at this magni- surface without an intermediate tendon or fibro- fication (Fig 3), The mean confidence score for the assessment of the muscle insertion relationships was 3,5, Table 1 shows the relative amount of muscle fibers inserting to the anterior band of the disc as a proportion of both the superior-inferior length of the total muscle insertion and the disc thickness ar thar sire. For the five joints wich muscle fibers inserting directly to the disc, muscle fibers occupied 20% to 30% of the thickness of che anrerior band and consrirnred 2.4% to 6.3% of the rotal lareral prerygoid inserrion lengrh. Four joints in the sam- ple had anteriorly displaced discs- All four showed the parallel configurarion in which rhe lareral ptery- goid inserted only ro the condyie (Table 1). Histologic Features of the Lateral Pterygoid Insertion Fig 1 Parasagittai histologie section frotii the medial
Recommended publications
  • Applied Anatomy of the Temporomandibular Joint
    Applied anatomy of the temporomandibular joint CHAPTER CONTENTS process which, together with the temporal process of the zygo- Bones . e198 matic bone, forms the zygomatic arch (Fig. 1). The midline fusion of the left and right mandibular bodies Joint .capsule .and .ligaments . e198 provides a connection between the two temporomandibular Intra-articular .meniscus . e198 joints, so that movement in one joint always influences the opposite one. Nociceptive .innervation . e199 Muscles .and .tendons . e199 Joint capsule and ligaments Biomechanical .aspects . e200 Forward movement of the mandible . e200 The joint capsule is wide and loose on the upper aspect around Opening and closing the mouth. e200 the mandibular fossa. Distally, it diminishes in a funnel shaped Grinding movements . e200 manner to become attached to the mandibular neck (Fig. 2). Nerves .and .blood .vessels . e200 Its laxity prevents rupture even after dislocation. Laterally and medially, a local reinforcement of the joint capsule is found. The lateral collateral ligament courses from The temporomandibular joint (TMJ) is sited at the base of the the zygomatic arch obliquely downwards and backwards skull and formed by parts of the mandible and the temporal towards the posterior rim of the mandibular neck, lateral to bone, separated by an intra-articular meniscus. It is a synovial the outer aspect of the capsule. At its posterior aspect, it is in joint capable of both hinge (rotation) and sliding (translatory) close relation to the joint capsule and prevents the joint from movements. Like other synovial joints, it may be affected by opening widely. Medially, the joint capsule is locally reinforced internal derangement, inflammatory arthritis, arthrosis, and by the medial collateral ligament.
    [Show full text]
  • Innervation of the Temporomandibular Joint Can Be Discussed It Is Necessary First to Describe Its Embryology, Gfoss Anatomy and Microscopic Appe¿Ìrance
    à8.ì 'R? INNERVATION OF THE TEMPOROMAI\DIBULAR J AN EXPERIMENTAL AMMAL MODEL USING AUSTRALIAN MERINO STIEEP ABDOLGHAFAR TAHMASEBI-SARVESTANI' B. Sc, M. Sc Thesis submitted for the degree of DOCTOR OF PHILOSOPHY In The Department of Anatomical Sciences The University of Adelaide (Faculty of Medicine)' Adelaide, South Australia, 5005 April, L997 tfüs tñesisis [elicatelø nl wtfe Aggñleñ ø¡tlour g4.arzi"e tfr.re e c friûfren Ía fiera ñ, fo zic ñ atú fi l-1 ACKNOWLEDGMENTS I am greatly indebted to my supervisors Dr. Ray Tedman and Professor Alastair Goss who first inrroduced me to this freld of study and providing me with the opportunity to carry out this work. I wish to thank them for their constant interest and guidance throughout the course of this study. I am also indebted to the scholarship committee of the Shiraz Medical Science University and Ministry of Health and Medical Education, Iran for gânting me a 4 year scholarship to study at the Universiry of Adelaide. I thank professor Goss and the Japanese Surgical Research team for their expertise in surgical animal models, and Professor July Polak and Dr Mika Hukkanen, Royal postgraduate Medical School London University for their expertise in immunohistochemistry and for providing some of the antisera used in the neuropeptide studies. I would also like to thank Professor Ian Gibbins, Department of Anatomy and Histology of the Flinders Medical Centre for, without the use of his laboratories, materials, and expertise, the double and triple labelling parts of the immunocytochemical work would not have occurred. I also orwe many thanks to Susan Matthew, a senior laboratory officer for her skilful technical assistance in double and triple immunocytochemistry.
    [Show full text]
  • Diagnosis and Treatment of Temporomandibular Disorders ROBERT L
    Diagnosis and Treatment of Temporomandibular Disorders ROBERT L. GAUER, MD, and MICHAEL J. SEMIDEY, DMD, Womack Army Medical Center, Fort Bragg, North Carolina Temporomandibular disorders (TMD) are a heterogeneous group of musculoskeletal and neuromuscular conditions involving the temporomandibular joint complex, and surrounding musculature and osseous components. TMD affects up to 15% of adults, with a peak incidence at 20 to 40 years of age. TMD is classified asintra-articular or extra- articular. Common symptoms include jaw pain or dysfunction, earache, headache, and facial pain. The etiology of TMD is multifactorial and includes biologic, environmental, social, emotional, and cognitive triggers. Diagnosis is most often based on history and physical examination. Diagnostic imaging may be beneficial when malocclusion or intra-articular abnormalities are suspected. Most patients improve with a combination of noninvasive therapies, including patient education, self-care, cognitive behavior therapy, pharmacotherapy, physical therapy, and occlusal devices. Nonsteroidal anti-inflammatory drugs and muscle relaxants are recommended initially, and benzodiazepines or antidepressants may be added for chronic cases. Referral to an oral and maxillofacial surgeon is indicated for refrac- tory cases. (Am Fam Physician. 2015;91(6):378-386. Copyright © 2015 American Academy of Family Physicians.) More online he temporomandibular joint (TMJ) emotional, and cognitive triggers. Factors at http://www. is formed by the mandibular con- consistently associated with TMD include aafp.org/afp. dyle inserting into the mandibular other pain conditions (e.g., chronic head- CME This clinical content fossa of the temporal bone. Muscles aches), fibromyalgia, autoimmune disor- conforms to AAFP criteria Tof mastication are primarily responsible for ders, sleep apnea, and psychiatric illness.1,3 for continuing medical education (CME).
    [Show full text]
  • Diagnosing and Treating Trigeminal Neuralgia in General Dentistry
    general practice feature Chasing Pain Diagnosing and Treating Trigeminal Neuralgia in General Dentistry by Steven Olmos, DDS, DABCP, DABCDSM, DABDSM, DAAPM, FAAOP, FAACP, FICCMO, FADI, FIAO As dentists, we know quite a bit about tooth and gum pain, but when it comes to chronic facial pain and neuropathic pain, our dental school education leaves us unprepared. The objective of this article is to explain the differences between men and women with chronic orofacial pain and the relationship to proper functional breathing, using a case study as demonstration. 34 JANUARY 2016 // dentaltown.com general practice feature the United States, nearly half research published in Chest 2015 demonstrates that of all adults lived with chronic respiratory-effort-related arousal may be the most pain in 2011. Of 353,000 adults likely cause (nasal obstruction or mouth breath- 11 aged 18 years or older who were ing). Rising C02 (hypercapnia) in a patient with a surveyed by Gallup-Health- sleep-breathing disorder (including mouth breath- ways, 47 percent reported having at least one of ing) specifically stimulates the superficial masseter three types of chronic pain: neck or back pain, muscles to contract.12 knee or leg pain, or recurring pain.2 Identifying the structural area of obstruction A study published in The Journal of the Amer- (Four Points of Obstruction; Fig. 1) of the air- ican Dental Association October 2015 stated: way will insure the most effective treatment for a “One in six patients visiting a general dentist had sleep-breathing disorder and effectively reduce the experienced orofacial pain during the last year.
    [Show full text]
  • MRI-Based Assessment of Masticatory Muscle Changes in TMD Patients After Whiplash Injury
    Journal of Clinical Medicine Article MRI-Based Assessment of Masticatory Muscle Changes in TMD Patients after Whiplash Injury Yeon-Hee Lee 1,* , Kyung Mi Lee 2 and Q-Schick Auh 1 1 Department of Orofacial Pain and Oral Medicine, Kyung Hee University Dental Hospital, #613 Hoegi-dong, Dongdaemun-gu, Seoul 02447, Korea; [email protected] 2 Department of Radiology, Kyung Hee University College of Medicine, Kyung Hee University Hospital, #26 Kyunghee-daero, Dongdaemun-gu, Seoul 02447, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-958-9409; Fax: +82-2-968-0588 Abstract: Objective: to investigate the change in volume and signal in the masticatory muscles and temporomandibular joint (TMJ) of patients with temporomandibular disorder (TMD) after whiplash injury, based on magnetic resonance imaging (MRI), and to correlate them with other clinical parameters. Methods: ninety patients (64 women, 26 men; mean age: 39.36 ± 15.40 years), including 45 patients with symptoms of TMD after whiplash injury (wTMD), and 45 age- and sex- matched controls with TMD due to idiopathic causes (iTMD) were included. TMD was diagnosed using the study diagnostic criteria for TMD Axis I, and MRI findings of the TMJ and masticatory muscles were investigated. To evaluate the severity of TMD pain and muscle tenderness, we used a visual analog scale (VAS), palpation index (PI), and neck PI. Results: TMD indexes, including VAS, PI, and neck PI were significantly higher in the wTMD group. In the wTMD group, muscle tenderness was highest in the masseter muscle (71.1%), and muscle tenderness in the temporalis (60.0%), lateral pterygoid muscle (LPM) (22.2%), and medial pterygoid muscle (15.6%) was significantly more frequent than that in the iTMD group (all p < 0.05).
    [Show full text]
  • Orofacial Pain Caused by Trigeminal Neuralgia And/Or Temporomandibular Joint Disorder
    PERIODICUM BIOLOGORUM UDC 57:61 VOL. 115, No 2, 185–189, 2013 CODEN PDBIAD ISSN 0031-5362 Original scientific paper Orofacial pain caused by trigeminal neuralgia and/or temporomandibular joint disorder Abstract TOMISLAV BADEL1 IVANA SAVI] PAVI^IN2 Background and Purpose: The purpose was to evaluate an accurate VANJA BA[I] KES3 method of differentiating between temporomandibular joint (TMJ) dis- IRIS ZAVOREO3 4 order and trigeminal neuralgia (TN) in the sample of patients from a DIJANA ZADRAVEC subspecialist dental practice. JOSIPA KERN5 Patients and Methods: Patients (n=239, mean age 39.3 years, 83.3% 1 Department of Removable Prosthodontics, female) were examined for clinical symptoms and signs of orofacial pain of School of Dental Medicine, non-dental origin. The study included 12 female patients (group G-1; mean University of Zagreb, Gunduli}eva 5, 10000 Zagreb, Croatia age 60.3 years) with determined co-morbidity of TMJ disorder and TN, and 17 patients (group G-2; mean age 53.8 years, 64.7% female) with only TN 2Department of Dental Anthropology, confirmed and the TMJ disorder ruled out. The TMJ diagnosis by means of School of Dental Medicine magnetic resonance imaging (MRI) was confirmed. Pain intensity was University of Zagreb, Gunduli}eva 5, 10000 Zagreb, Croatia rated on a visual-analogue scale (VAS with range 0–10) and maximal mouth opening capacity (mm) measured by gauge. 3 Department of Neurology, Clinical Hospital Results: TMJ pain on the VAS scale for G-1 patients amounted to 6.91. Centre “Sisters of Charity”University of Zagreb, Vinogradska cesta 29, TN related pain symptoms on the VAS scale for G-1 patients amounted to 10000 Zagreb, Croatia 9.0±1.6 and for G-2 patients 8.1±2.7.
    [Show full text]
  • Giant Cell Arteritis Misdiagnosed As Temporomandibular Disorder: a Case Report and Review of the Literature
    360_Reiter.qxp 10/14/09 3:17 PM Page 360 Giant Cell Arteritis Misdiagnosed as Temporomandibular Disorder: A Case Report and Review of the Literature Shoshana Reiter, DMD Giant cell arteritis (GCA) is a systemic vasculitis involving medium Teacher and large-sized arteries, most commonly the extracranial branches Department of Oral Rehabilitation of the carotid artery. Early diagnosis and treatment are essential to avoid severe complications. This article reports on a GCA case Ephraim Winocur, DMD and discusses how the orofacial manifestations of GCA can lead to Lecturer misdiagnosis of GCA as temporomandibular disorder. GCA Department of Oral Rehabilitation should be included in the differential diagnosis of orofacial pain in Carole Goldsmith, DMD the elderly based on the knowledge of related signs and symptoms, Instructor mainly jaw claudication, hard end-feel limitation of range of Department of Oral Rehabilitation motion, and temporal headache. J OROFAC PAIN 2009;23:360–365 Alona Emodi-Perlman, DMD Key words: Giant cell arteritis, jaw claudication, Teacher temporomandibular disorders, trismus Department of Oral Rehabilitation Meir Gorsky, DMD Professor Department of Oral Pathology and Oral iant cell arteritis (GCA) is a systemic vasculitis involving Medicine the large and medium-sized vessels, particularly the extracranial branches of the carotid artery. It is more com- The Maurice and Gabriela Goldschleger G School of Dental Medicine mon in women (M:F ratio 2:5) and usually affects patients older 1 Tel Aviv University, Israel than 50 years with an increased risk with age. The highest preva- lence of GCA has been reported in Scandinavian populations and Correspondence to: in those with a strong Scandinavian ethnic background.2 Dr.
    [Show full text]
  • Anatomic Relationship Between Trigeminal Nerve and Temporomandibular Joint
    Eur opean Rev iew for Med ical and Pharmacol ogical Sci ences 2008; 12: 15-18 Anatomic relationship between trigeminal nerve and temporomandibular joint F. PAPARO, F.M.G. FATONE, V. RAMIERI, P. CASCONE Cattedra di Chirurgia Maxillo-Facciale, Università degli Studi “La Sapienza” – Roma Abstract. – Temporomandibular joint ship with TMD. Nevertheless, other common disorders (TMD) is a collective term used to complains with uncertain pathogenesis are of - describe pathologic conditions involving tem - ten associated with TMD, such as earache, poromandibular joint (TMJ), masticatory mus - cles and associated structures. headache tinnitus and atypical trigeminal 2,3 Common related complaints include local symptoms . pain, limited mouth opening and TMJ noises Particularly, TMD trigeminal related symp - whereas symptoms often associated to TMD toms are complex, difficult to treat and have a with debated pathogenesis enclose earache, great impact on everyday life of the affected pa - headaches, tinnitus and trigeminal-like symp - tients thus suggesting a compound multimodal toms such as atypical orofacial pain. and multidisciplinary treatment. In particular, TMD trigeminal associated 4 symptoms are intricate, difficult to treat and James B. Costen , in 1934, was the first to exert a great impact on everyday life of the pa - depict a syndrome related to TMD in enclosing tients thus invoking a complex multidiscipli - all toghtether signs and symptoms such as per - nary treatment. ceived hearing loss, stuffy sensation in the ears, In this paper, the authors analyze the pain in the ear region, tinnitus, dizziness, si - anatomic and topographic relationships be - nusitis-like pain, burning sensation in the throat tween the mandibular branch of the trigeminal nerve and the medial aspect of the TMJ cap - and tongue, headache, trismus as well as tran - sule in 8 fresh adult cadavers thus resuming a sient paresthesia in the region of the mandibu - pathologic relationship between atypical lar nerve.
    [Show full text]
  • Chiropractic Treatment Options for TMJ Disorders
    Chiropractic Treatment Options for TMJ Disorders Wendy Varish, DC, FACO, CCSP, CCOHC, MCS-P Wendy Varish, DC, FACO, CCSP, CCOHC, MCS-P Howards Grove Chiropractic 516 S. Wisconsin Drive Howards Grove, WI 53083 (920) 565-3922 fax (920) 565-2142 [email protected] Syllabus- Chiropractic Treatment Options for TMJ Disorders The National Institute of Dental and Craniofacial Research reports that as many as 10 million people have TMJ disorders, often presenting with other conditions such as headaches, neck pain, chronic fatigue syndrome, fibromyalgia, IBS, and other systemic illnesses. This 4 hour program will provide the doctor with practical information and techniques specific to TMJ Disorders that can be integrated into even a busy practice the following day. Advanced therapeutic applications and adjusting techniques will be highlighted • TMJ is a synovial joint • Comprised of a biconcave disk compressed between the mandibular condyle and the mandibular fossa of the temporal bone TMJ Articular Disc • Biconcave -- allows for gliding to occur • Fibrocartilage & viscoelastic • Avascular and non-innervated • Ligaments: Anterior, Posterior & Intermediate Bands • Lateral Pterygoid is attached anteriorly • Bilaminar Zone – posterior • Retrodiscal tissue Nerve Supply • Mandibular nerve (CN V), the facial nerve (CN VII), C 1, C 2 and C 3 • Sensory innervation of the temporomandibular joint is derived from the auriculotemporal and masseteric branches of the mandibular branch of the trigeminal nerve (CN V). • Auriculotemporal nerve leaves the mandibular nerve behind the joint and ascends laterally & superiorly to wrap around the posterior region of the joint. Proprioception of the TMJ • Ruffini Endings • function as static mechanoreceptor –act to position the mandible • Pacinian Corpuscles • dynamic mechanoreceptors which accelerate movement during reflexes.
    [Show full text]
  • Temporomandibular Joint Disorders Policy Number: MP-016 Last Review Date: 02/21/2019 Effective Date: 04/01/2019 Policy
    Temporomandibular Joint Disorders Policy Number: MP-016 Last Review Date: 02/21/2019 Effective Date: 04/01/2019 Policy Evolent Health considers Temporomandibular Joint (TMJ) Disorders medically necessary for the following indications: Moderate to severe pain presented as TMJ pain, preauricular pain, referred ear pain, or masticatory muscle pain a) Disabling joint function characterized by: o Restricted range of jaw motion o Excessive range of jaw motion o Joint noises (clicking, popping, and crepitation) associated with pain o Abnormal masticatory function (e.g. painful chewing) b) Imaging evidence of joint derangement or disease Therapeutic Management: 1. Coverage for Nonsurgical Management: a) Medical visits b) Diagnostic x-rays/imaging studies (radiographs, panoramic radiographic imaging, cephalometic radiographic images, arthrogram, MRI and/or CT) c) Pharmacological treatment for pain – usually pain is relieved with over-the- counter non-steroidal anti-inflammatory drugs (NSAIDs) or other pain medications d) Arthrocentesis e) TMJ joint injections – intracapsular diagnostic and therapeutic injections or injections of anesthetic agents into the trigeminal nerve are limited to once per course of treatment Note: Documentation must indicate patient education related to stress reduction, dietary recommendations, jaw rest and modification of jaw habits. 2. Surgical treatment is indicated with at least two of the following: a) Earaches, headaches, masticatory or cervical myalgias refractory to medical treatment b) Difficulty chewing c) Restricted range of motion, manifested by any one of the following: i. Interincisal opening of less than 35 mm, or ii. Lateral excursive movement of less than 4 mm (side-to-side movement), or iii. Protrusive excursive movement of less than 4 mm (front-to-back motion), or iv.
    [Show full text]
  • Temporomandibular Joint Dysfunction (TMJD)
    Corporate Medical Policy Temporomandibular Joint Dysfunction (TMJD) File Name: temporomandibular_joint_dysfunction Origination: 1/1996 Last CAP Review: 10/2020 Next CAP Review: 10/2021 Last Review: 10/2020 Description of Procedure or Service Temporomandibular joint (TMJ) dysfunction (a lso known as TMJ disorders or TMJD) refers to a cluster of problems association with the TMJ and musculoskeletal structures. The etiology of TMJ disorders remains unclear and is believed to be multifactorial. TMJ disorders are often divided into two main categories; articular disorders (e.g., ankylosis, congenital or developmental disorders, disk derangement disorders, fra ctures, inflammatory disorders, osteoarthritis a nd joint dislocation) a nd ma sticatory muscle disorders (e.g., myofacial pain, myofibrotic contracture, myospasm a nd neoplasia). In the clinica l setting, TMJ dysfunction is often a diagnosis of exclusion, and involves physical examination, patient interview, and dental record review. Dia gnostic testing a nd radiologic imaging is generally only recommended for patients with severe and chronic symptoms. Dia gnostic criteria for temporomandibular disorders have been developed and validated for use in both clinical and research settings. Symptoms a ttributed to TMJD are varied and include, but are not limited to clicking sounds in the jaw; headaches; closing or locking of the jaw due to muscle spasms (trismus) or displaced disc; pain in the ears, neck, arms, and spine; tinnitus; and bruxism (clenching or grinding of the teeth). Most TMJ symptoms resolve over time, but a significant percentage requires a year or more to do so. The seriousness of the symptoms also varies greatly. On the other hand, the pathology tends to be progressive and can result in loss of condylar bone and development of facial deformity.
    [Show full text]
  • Connections of the Skull Bones. Temporomandibular Joint
    Connections of the skull bones. Temporomandibular joint. Masticatory muscles, mimic muscles and their innervation. Veronika Němcová, CSc. Connections of the skull bones • Synchondroses cranii • Syndesmoses - suturae cranii, gomphosis • Synostoses • Articulatio temporomandibularis Cartilaginous connections Synchondrosis sphenopetrosa (foramen lacerum) Synchondrosis petrooccipitalis (fissura petrooccipitalis) Synchondrosis Fonticulus Synchondrosis sphenooccipitalis intraoccipitalis mastoideus anterior Symphysis menti Synchondrosis intraoccipitalis posterior Cartilaginous and fibrous connection on the newborn skull Sutura coronalis Sutura squamosa Sutura lambdoidea Sutura sagittalis Sutures newborn Articulatio temporomandibularis complex– discus head: caput mandibulae fossa: fossa mandibularis, tuberculum articulare Articular surfices are covered by fibrous cartilage Movements : depression elevation protraction retraction lateropulsion Ligaments of the temporomandibular joint – lateral aspect Ligamentum laterale - it prevents posterior displacement of the resting condyle Ligamentum stylomandibulare Ligaments of the temporomandibular joint - medial aspect Lig.pterygospinale Lig.sphenomandibulare Lig.stylomandibulare Lig. pterygomandibulare (raphe buccopharyngea) Ligaments of the temporomandibular joint Lig. pterygospinale Lig. stylomandibulare Lig. sphenomandibulare Articulatio temporomandibularis sagittal section (after Frick) Meatus acusticus Discus articularis externus A P Retroarticular plastic pad (Zenker) Caput mandibulae (veins and
    [Show full text]