UNIT 8 (A) Interfacing Resistive Transducers to Electronic Circuits

Total Page:16

File Type:pdf, Size:1020Kb

UNIT 8 (A) Interfacing Resistive Transducers to Electronic Circuits www.bookspar.com | VTU NOTES | QUESTION PAPERS | NEWS | RESULTS | FORUMS UNIT 8 (a) Interfacing resistive transducers to electronic circuits. Introduction to data acquisition systems. 2 Hours (b) Display Devices and Signal Generators: X-Y recorders. Nixie tubes. LCD and LED display. Signal generators and function generators. 4 Hours UNIT 8a: Interfacing resistive transducers to electronic circuits. Introduction to data acquisition systems. Interfacing resistive transducers to electronic circuits The major problem with resistive transducers, which includes strain gages, temperature transducers is that the resistance change is very small. As an example, consider measuring the current through a resistance transducer such as an RTD. A simple panel meter is used as an Indicator to provide a remote reading of temperature. The change in the meter Indication is very small for small temperature changes. As an example, the change in resistance of a platinum resistance thermometer is 0.385 per cent per degree Celsius. In this case, a 1- degree change in temperature will produce a 0.385 Per cent change in the indicating meter, which will be hardly visible. A solution to this Problem is to connect the resistance transducer in a bridge circuit as shown in Fig.1 www.bookspar.com | VTU NOTES | QUESTION PAPERS | NEWS | RESULTS | FORUMS www.bookspar.com | VTU NOTES | QUESTION PAPERS | NEWS | RESULTS | FORUMS Fig. 1 Resistance Transducer in a Bridge Circuit First, the zero output voltage Point can be set for a convenient point such as 0 degrees Celsius or 0 degrees Fahrenheit instead of an absolute zero, which would be the situation if only the transducer current were measured. The setting of the zero output point can be achieved by adjusting the values of R1, R2 , and R3 to provide bridge balance at the desired temperature. The change of output voltage in Fig 1. is Eqn.1 The output voltage is not a linear function of the change in resistance because of the ∆R term in the denominator of Eqn. 1. An improvement may be made by providing a constant current source for the bridge as shown in Fig.2. www.bookspar.com | VTU NOTES | QUESTION PAPERS | NEWS | RESULTS | FORUMS www.bookspar.com | VTU NOTES | QUESTION PAPERS | NEWS | RESULTS | FORUMS Fig. 2 Wheatstone bridge powered from a constant current source The equation for the output voltage as a function of resistance is There is an improvement in the linearity of the output voltage as a function of the change in resistance, as the ∆R term in the denominator is divided by a factor of 4R rather than 2R and thus the effects of the ∆R term in the denominator are reduced (as compared to Eqn. 1) If the change in resistance is small, which is often the case with a resistance thermal device, the error due to the lack of linearity is small. Absolute linearity can be achieved by using two transducers as shown in Fig. 3 www.bookspar.com | VTU NOTES | QUESTION PAPERS | NEWS | RESULTS | FORUMS www.bookspar.com | VTU NOTES | QUESTION PAPERS | NEWS | RESULTS | FORUMS Fig. 3 Wheatstone bridge employing two RTDs The output voltage as a function of R is This technique requires the use of two matched transducers in the environment to be measured. Most resistive transducers are not expensive items, and providing two matched transducers on a common header is not a difficult task. Often when a transducer is eventually connected to a digital system, a microprocessor can be employed to "linearize" the bridge output voltage. INTERFACING TRANSDUCERS TO ELECTRONIC CONTROL AND MEASURING SYSTEMS The output voltages and currents from many transducers are very small signals. In addition to the low levels, it is often necessary to transmit the transducer output some distance to the data collection or control equipment. Also in an industrial environment, where there is large electrical machinery, the electrical noise present can cause serious difficulties in low-level circuits. These www.bookspar.com | VTU NOTES | QUESTION PAPERS | NEWS | RESULTS | FORUMS www.bookspar.com | VTU NOTES | QUESTION PAPERS | NEWS | RESULTS | FORUMS noises can be either radiated as an electromagnetic field or induce in the wiring of the plant as ground loops, and induced spikes on the ac power supply. Regardless of the source of noise, low-level signals must be transmitted from place to place with care. One effective method of combating noise is to increase the strength of low level signals before transmission through wires. This is often done with an amplifier called an instrumentation amplifier. There are several characteristics of an instrumentation amplifier that set them apart from operational amplifiers. The features of a Three Op-Amp Differential topology of an instrumentation amplifier are: Combination of inverting and non-inverting topologies; The output signal is an amplified version of the difference between the two input signals; AVD = R2/R1; V0 = AVD(V2 – V1); Fig. Instrumentation Amplifier www.bookspar.com | VTU NOTES | QUESTION PAPERS | NEWS | RESULTS | FORUMS www.bookspar.com | VTU NOTES | QUESTION PAPERS | NEWS | RESULTS | FORUMS Data acquisition systems Data acquisition systems are used to measure and record signals obtained in basically two ways: 1. Signals originating from direct measurement of electrical quantities; these may include dc and ac voltages, frequency , or resistance, and are typically found in such areas as electronic component testing, environmental studies, and quality analysis work. 2. Signals originating from transducers, such as strain gages and thermocouples Instrumentation systems can be categorized into two major classes: analog systems and digital systems. Analog systems deal with measurement information in analog form. An analog signal may be defined as a continuous function, such as a plot of voltage versus time, or displacement versus pressure. Digital systems handle information in digital form. A digital quantity may consist of a number of discrete and discontinuous pulses whose time relationship contains information about the magnitude or the nature of the quantity. Data acquisition systems are used in a large and ever-increasing number of applications in a variety of industrial and scientific areas, such as the biomedical, aerospace, and telemetry industries. The type of data acquisition system, whether analog or digital, depends largely on the intended use of the recorded input data. In general, analog data systems are used when wide bandwidth is required or when lower accuracy can be tolerated. Digital systems are used when the physical process being monitored is slowly varying (narrow bandwidth) and when high accuracy and low per-channel cost is required. www.bookspar.com | VTU NOTES | QUESTION PAPERS | NEWS | RESULTS | FORUMS www.bookspar.com | VTU NOTES | QUESTION PAPERS | NEWS | RESULTS | FORUMS Digital systems range in complexity from single-channel dc voltage measuring and recording systems to sophisticated automatic multichannel systems that measure a large number of input parameters, compare against preset limits or conditions, and perform computations and decisions on the input signal. Digital data acquisition systems are in general more complex than analog systems, both in terms of the instrumentation involved and the volume and complexity of input data they can handle. Digital systems require converters to change analog voltages into discrete digital quantities or numbers. Conversely, digital information may have to be converted back into analog form, such as a voltage or a current, which can then be used as a feedback quantity controlling an industrial process. Analog Data Acquisition System An analog data acquisition system typically consists of some or all of the following elements: 1. Transducers for translating physical parameters into electrical signals. 2. Signal conditioners for amplifying, modifying, or selecting certain portions of these signals. 3. Visual display devices for continuous monitoring of the input signals. These devices may include single- or multichannel oscilloscopes, storage oscilloscopes, panel meters, numerical displays, and so on. 4. Graphic recording instruments for obtaining permanent records of the input data. These instruments include stylus-and-ink recorders to provide continuous records on paper charts, optical recording systems such as mirror galvanometer recorders, and ultraviolet recorders. 5. Magnetic tape instrumentation for acquiring input data, preserving their original electrical form, and reproducing them at a later date for more detailed analysis. www.bookspar.com | VTU NOTES | QUESTION PAPERS | NEWS | RESULTS | FORUMS www.bookspar.com | VTU NOTES | QUESTION PAPERS | NEWS | RESULTS | FORUMS Digital Data Acquisition System A digital data acquisition system may include some or all of the elements shown in Fig. 4 The essential functional operations within a digital system include handling analog signals, making the measurement, converting and handling digital data, and internal programming and control. Fig. 4 Elements of a digital data-acquisition system 1. Transducer Translates physical parameters to electrical signals acceptable by the acquisition system. Some typical parameters include temperature, pressure, acceleration, weight displacement, and velocity. Electrical quantities, such as voltage, resistance, or frequency, also may be measured directly. 2. Signal conditioner Generally includes the supporting circuitry for the transducer. This circuitry may provide excitation power, balancing circuits and calibration elements. An example of
Recommended publications
  • Nixie Clock Type ‘Frank 3’
    Assembly Instructions And User Guide Nixie Clock Type ‘Frank 3’ Software version: 5R Hardware Revision: 12 Dec 07, 7 Jan 08 Nixie Clock ‘Frank 3’ - 1 - Table of Contents 1. INTRODUCTION ................................................................3 1.1 About the clock...............................................................3 1.2 Clock features.................................................................3 1.3 Safety ...........................................................................4 2. TOOLS AND EQUIPMENT REQUIRED ............................... 5 2.1 Tools required to assemble the PCB...................................5 2.2 Materials you will need ....................................................6 2.3 Other items you will need ................................................6 3. LIST OF COMPONENTS.......................................................6 3.1 Table of components .......................................................6 3.2 Parts list ................................................................. 7 3.3 How to identify the correct components .............................8 4. ASSEMBLY OF THE PCB ......................................................9 4.1 Diodes D1-D4 .................................................................9 4.2 Diode D5 .......................................................................9 4.3 IC2 and C3.....................................................................9 4.4 IC1 and Q1 .................................................................. 10 4.5 C1, C2 and
    [Show full text]
  • Nixie QTC Plus’ for Parts Bag Serial Numbers from 000 to 185 Onwards
    Assembly Instructions And User Guide Nixie Clock Type ‘Nixie QTC Plus’ For Parts Bag Serial Numbers from 000 to 185 onwards Nixie Tube Clock ‘Nixie QTC+’ - 1 - Issue 1 (29 August 2018) www.pvelectronics.co.uk REVISION HISTORY Issue Date Reason for Issue Number Draft 1 29 August 2018 New document Nixie Tube Clock ‘Nixie QTC+’ - 2 - Issue 1 (29 August 2018) www.pvelectronics.co.uk 1. INT RODUCTION 1.1 Nixie QTC Plus - Features Hours, Minutes and Seconds display Drives a wide range of medium sized solder-in tubes Uses a Quartz Crystal Oscillator as the timebase 12 or 24 hour modes Programmable leading zero blanking Date display in either DD.MM.YY or MM.DD.YY or YY.MM.DD format Programmable date display each minute Scrolling display of date or standard display Alarm, with programmable snooze period Optional GPS / WiFi / XTERNA synchronisation with status indicator LED Dedicated DST button to switch between DST and standard time Supercapacitor backup. Keeps time during short power outages Simple time setting using two buttons Configurable for leading zero blanking Double dot colon neon lamps 11 colon neon modes including AM / PM indication (top / bottom or left / right), railroad (slow or fast) etc. Seconds can be reset to zero to precisely the set time Programmable night mode - blanked or dimmed display to save tubes or prevent sleep disturbance Rear Indicator LEDs dim at night to prevent sleep disturbance Weekday aware ‘Master Blank’ function to turn off tubes and LEDs on weekends or during working hours Separate modes for colon neons during night mode Standard, fading, or crossfading with scrollback display modes ‘Slot Machine’ Cathode poisoning prevention routine Programmable RGB tube lighting – select your favourite colour palette 729 colours possible.
    [Show full text]
  • Nixie Clock Type 'Nixie QTC Plus'
    Assembly Instructions And User Guide Nixie Clock Type ‘Nixie QTC Plus’ For Parts Bag Serial Numbers from 1000 onwards Nixie Tube Clock ‘Nixie QTC+’ - 1 - Issue 3 (13 June 2019) www.pvelectronics.co.uk REVISION HISTORY Issue Date Reason for Issue Number 3 13 June 2019 Added support for Dekatron Sync Pulse 2 01 October 2018 C5 changed to 15pF Draft 1 29 August 2018 New document Nixie Tube Clock ‘Nixie QTC+’ - 2 - Issue 3 (13 June 2019) www.pvelectronics.co.uk 1. INTRODUCTION 1.1 Nixie QTC Plus - Features Hours, Minutes and Seconds display Drives a wide range of medium sized solder-in tubes Uses a Quartz Crystal Oscillator as the timebase 12 or 24 hour modes Programmable leading zero blanking Date display in either DD.MM.YY or MM.DD.YY or YY.MM.DD format Programmable date display each minute Scrolling display of date or standard display Alarm, with programmable snooze period Optional GPS / WiFi / XTERNA synchronisation with status indicator LED Dedicated DST button to switch between DST and standard time Supercapacitor backup. Keeps time during short power outages Simple time setting using two buttons Configurable for leading zero blanking Double dot colon neon lamps 11 colon neon modes including AM / PM indication (top / bottom or left / right), railroad (slow or fast) etc. Seconds can be reset to zero to precisely the set time Programmable night mode - blanked or dimmed display to save tubes or prevent sleep disturbance Rear Indicator LEDs dim at night to prevent sleep disturbance Weekday aware ‘Master Blank’ function to turn off tubes and LEDs on weekends or during working hours Separate modes for colon neons during night mode Standard, fading, or crossfading with scrollback display modes ‘Slot Machine’ Cathode poisoning prevention routine Programmable RGB tube lighting – select your favourite colour palette 729 colours possible.
    [Show full text]
  • Build Yourself a Nixie Clock! You May Have Seen Them in Old Sci-Fi Movies and Wondered How They Worked
    Build yourself a nixie clock! You may have seen them in old sci-fi movies and wondered how they worked. Well, here is your chance to experiment with nixie tubes by building your own nixie clock. igital displays such as LEDs and LCDs are everywhere nowadays, Dbut have you ever wondered what was used before these technologies came along? There were several commonly used dig- ital displays—in fact, you may have even owned a digital clock with a mechanical display, where small tiles or cards were flipped over to show the number required. However, there was another type of display quite common before LEDs and LCDs took over—nixie tubes. What is a nixie tube, you ask? Well, nixies are a special type of neon bulb. You have most likely seen the small tific American, June 1973, pp. 66). the am/pm indicator, the colons, and the orange-glowing neon bulbs found in some brightness of the blue LEDs under the powerpoints which are used as power-on A warning nixie tubes. indicators. These consist of a small glass Like other neon tubes, nixies use high The inputs of all the latches are con- bulb filled with neon gas. Inside the bulb voltage. They need around 140 volts or nected in parallel, so they all see the same are two wire electrodes, and when a high more to strike, and then maintain around data, but only the latch who’s control line voltage is present across the electrodes, 120 volts or so across the tube while run- is strobed transfers the input data to its the neon gas between them glows a warm ning, but these figures vary a bit.
    [Show full text]
  • Headphone Amp Nixie Tube Thermometer Cardiac Monitor
    61002 [Microcontrollers & Embedded • Analogue • Audio• Digital • Test & Measurement] January 2011 AUS$ 14.50 - NZ$ 17.50 - SAR 102.95 £ 4.80 HI ENERGETIC ✚ Energy Saving Tips edition www.elektor.com Cardiac Monitor Your ECG by ZigBee Nixie Tube Thermometer Retro Temperature Display Headphone Amp Music to your ears ✚ Free Energy From known and unknown sources ✚ Economical Energy Harvesting R04 More solar powered circuits 61002 Microcontrollers Integrate Touch Sensing Quickly and Easily With Microchip’s Range of Low Power, Low Cost Solutions Controllers Digital Signal Analog Memory Microchip’s mTouch™ Sensing Solutions allow designers to integrate touch sensing GET STARTED IN 3 EASY STEPS with application code in a single microcontroller, reducing total system cost. - Learn more at www.microchip.com/mtouch Microchip offers a broad portfolio of low power, low cost & flexible solutions for keys/sliders and - Download App Notes & royalty-free source code touch screen controllers. Get to market faster using our easy GUI-based tools, free source code - Order a development tool and low-cost development tools. Capacitive Touch Keys and Sliders Touch Screen Controllers t Extend battery life with eXtreme Low Power MCUs t Fully processed touch coordinates − Proximity sensing in less than 1 μA t Projected Capacitive technology t High noise immunity and low emissions − Multi-touch enabling gestures t Broad portfolio of MCUs lowers system cost − Low cost MCU implementation Enhanced mTouch Capacitive Evaluation Kit - DM183026-2 − 8, 16 & 32-bit PIC® MCUs
    [Show full text]
  • Light-Emitting Diode - Wikipedia, the Free Encyclopedia
    Light-emitting diode - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Light-emitting_diode From Wikipedia, the free encyclopedia A light-emitting diode (LED) (pronounced /ˌɛl iː ˈdiː/[1]) is a semiconductor Light-emitting diode light source. LEDs are used as indicator lamps in many devices, and are increasingly used for lighting. Introduced as a practical electronic component in 1962,[2] early LEDs emitted low-intensity red light, but modern versions are available across the visible, ultraviolet and infrared wavelengths, with very high brightness. When a light-emitting diode is forward biased (switched on), electrons are able to recombine with holes within the device, releasing energy in the form of photons. This effect is called electroluminescence and the color of the light (corresponding to the energy of the photon) is determined by the energy gap of Red, green and blue LEDs of the 5mm type 2 the semiconductor. An LED is usually small in area (less than 1 mm ), and Type Passive, optoelectronic integrated optical components are used to shape its radiation pattern and assist in reflection.[3] LEDs present many advantages over incandescent light sources Working principle Electroluminescence including lower energy consumption, longer lifetime, improved robustness, Invented Nick Holonyak Jr. (1962) smaller size, faster switching, and greater durability and reliability. LEDs powerful enough for room lighting are relatively expensive and require more Electronic symbol precise current and heat management than compact fluorescent lamp sources of comparable output. Pin configuration Anode and Cathode Light-emitting diodes are used in applications as diverse as replacements for aviation lighting, automotive lighting (particularly indicators) and in traffic signals.
    [Show full text]
  • Digital Display Circuits This Worksheet and All Related Files Are Licensed Under the Creative Commons Attribution License, Versi
    Digital display circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/, or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. The terms and conditions of this license allow for free copying, distribution, and/or modification of all licensed works by the general public. Resources and methods for learning about these subjects (list a few here, in preparation for your research): 1 Questions Question 1 What is the purpose of a seven-segment decoder circuit? What is a ”seven-segment” display, and why do we need a decoder circuit to drive it? Research the part number for a typical seven-segment decoder circuit (either CMOS or TTL). file 01417 Question 2 A seven segment decoder is a digital circuit designed to drive a very common type of digital display device: a set of LED (or LCD) segments that render numerals 0 through 9 at the command of a four-bit code: Display driver IC Seven-segment display VDD a a . A b . f b c . g Inputs B d . C e . f . D g . e c d The behavior of the display driver IC may be represented by a truth table with seven outputs: one for each segment of the seven-segment display (a through g). In the following table, a ”1” output represents an active display segment, while a ”0” output represents an inactive segment: D C B A a b c d e f g Display 0 0 0 0 1 1 1 1 1 1 0 ”0” 0 0 0 1 0 1 1 0 0 0 0 ”1” 0 0 1 0 1 1 0 1 1 0 1 ”2” 0 0 1 1 1 1 1 1 0 0 1 ”3” 0 1 0 0 0 1 1 0 0 1 1 ”4” 0 1 0 1 1 0 1 1 0 1 1 ”5” 0 1 1 0 1 0 1 1 1 1 1 ”6” 0 1 1 1 1 1 1 0 0 0 0 ”7” 1 0 0 0 1 1 1 1 1 1 1 ”8” 1 0 0 1 1 1 1 1 0 1 1 ”9” Write the unsimplified SOP or POS expressions (choose the most appropriate form) for outputs a, b, c, and e.
    [Show full text]
  • TB053, Generating High Voltage Using the PIC16C781/782
    M TB053 Generating High Voltage Using the PIC16C781/782 EQUATION 1: Author: Ross Fosler Microchip Technology Inc. di IN L → V VIN = L1 t = iL dt L1 INTRODUCTION The peak current is achieved the moment before Q1 turns off. Equation 2 shows the peak current, where D th The Nixie tube is a device born out of the middle 20 is the duty cycle and T is the period for pulse width century, used to display digital information in a human modulation. readable format. Basically, it is a high voltage numerical display. Today, the Nixie tube has been replaced by EQUATION 2: more efficient, more durable, and longer lasting devices, such as LED displays and LCDs. However, for VIN this Technical Brief, the Nixie tube serves as an excel- DT = IPEAK L lent visual feedback of the PIC16C782’s ability to gen- 1 erate high voltage from a low voltage source. This Technical Brief introduces the boost converter The current in an inductor cannot change instanta- topology operating in Discontinuous mode. As an neously. When Q1 is switched off, the current in L1 con- example, a simple 9V to 170V DC-DC converter is tinues to flow through D1 to the storage capacitor, C1, designed based on this topology, and is used to provide and the load, RL. Thus, the current in the inductor power to a three-digit Nixie tube display. The decreases linearly in time from the peak current. In dis- PIC16C782 is used to control the DC-DC converter and continuous operation, the inductor current actually falls provides data decoding for the display.
    [Show full text]
  • Display Devices
    ELEKTRONIKOS ĮTAISAI 2009 1 DISPLAY DEVICES VGTU EF ESK [email protected] ELEKTRONIKOS ĮTAISAI 2009 2 Display devices Display devices are used for the visual presentation of information. 1. Analog display devices (cathode-ray tubes) • Oscilloscope tubes •TV CRTs 2. Digital display devices • LED (including OLED) displays • VF (vacuum fluorescent ) displays • LCD (liquid crystal) displays • Nixie tube displays and PDPs (plasma display panels) • Electroluminescent displays (ELDs) 3. Others: • Electronic paper • Using principles of nanoelectronics (carbon nanotubes, nanocrystals) • Laser TV VGTU EF ESK [email protected] ELEKTRONIKOS ĮTAISAI 2009 3 Classification of electronic information technologies with high information content; highlighted technologies are treated in this article w4.siemens.de/.../heft2_97/artikel08/index.html VGTU EF ESK [email protected] ELEKTRONIKOS ĮTAISAI 2009 4 Display devices Electronic display devices based on various principles were developed. Active display devices are based on luminescence. Luminescence is the general term used to describe the emission of electromagnetic radiation from a substance due to a non-thermal process. Luminescence occurs from a solid when it is supplied with some form of energy. Photoluminescence arises as a result of absorption of photons. In the case of cathodoluminescence material is excited by bombardment with a beam of electrons. Electroluminescence is a result of excitation from the application of an electric field. Fluorescence persists for a short lifetime of the transition between the two energy levels. Phosphorescence persists for much longer time (more than 10-8 s). Passive display devices reflect or modulate light… VGTU EF ESK [email protected] ELEKTRONIKOS ĮTAISAI 2009 5 Display devices.
    [Show full text]
  • Symposium Digest Articles Listed Chronologically 1963-1988
    Preliminary Table of Contents for SID Symposium Digests 1963-1988 ( author company affiliations not listed) Notes: 1 The index covers full papers and keynote speeches for SID Symposia from 1963 through 1988; panel sessions, seminars and luncheon speakers are not listed 2 Authors' company affiliations are not shown (to be added) 3 Lead author is designated with asterisk ( * ) 4 The first ten (10) digests were designated by number as follows 5 The first ten (10 Symposia were identified by numbers, as follows: 2/1963 -#1; 9/63 - #2; 5/64-#3; 9/64 - #4; 2/65 - #5; 9/65 - #6; 10/66 - #7; 5/67 - #8; 5/68 - #9; 5/69 - #10 Session # Year Page Title Author(s) 1963-1 1 User Requirements for Display Debons, Col, Anthony * 1963-1 13 Scan Conversion and Bright Display Porter, Richard * 1963-1 21 Multicolor Projection System Smith, Fred E.* 1963-1 31 Advanced Display Techniques through the Charactron Redman, James H.* 1963-1 53 Light Valve Display Albanese, Augustine * 1963-1 63 Colordata, A Photographic Large Screen Display system Baron, Peter C.* 1963-1 77 Human Performance Engineering and Information Display Silvern, Leonard * 1963-1 83 Multiple Projection Techniques Klein, R.C.* 1963-1 93 Photochromic Dynamic Display Hines, Logan J.* 1963-1 99 Datachrome Display System Parker, Philip A.* 1963-1 117 High Ambient Light Display Systems Miller, Wendell S.* 1963-1 127 Electroluminescent Displays Hallett, Joseph L.* 1963-1 139 Pseudo 3-D Display Perdue, Joseph L.* 1963-1 155 Aims and Purposes of the S.I.D. Vlahos, Petro * 1963-2 1 Iinformation Systems,
    [Show full text]
  • Organic Light-Emitting Diode (Oled) Display Panel, Oled Display Device and Method for Driving the Same
    (19) TZZ¥__T (11) EP 3 147 894 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 29.03.2017 Bulletin 2017/13 G09G 3/3225 (2016.01) G09G 3/3233 (2016.01) (21) Application number: 16190336.4 (22) Date of filing: 23.09.2016 (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • NA, Se-Hwan GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO 10895 Gyeonggi-do (KR) PL PT RO RS SE SI SK SM TR • LEE, Jae-Young Designated Extension States: 07350 Seoul (KR) BA ME • KIM, Mi-Jung Designated Validation States: 06923 Seoul (KR) MA MD (74) Representative: Viering, Jentschura & Partner (30) Priority: 25.09.2015 KR 20150136459 mbB Patent- und Rechtsanwälte (71) Applicant: LG Display Co., Ltd. Am Brauhaus 8 Yeongdeungpo-gu 01099 Dresden (DE) Seoul 07336 (KR) (54) ORGANIC LIGHT-EMITTING DIODE (OLED) DISPLAY PANEL, OLED DISPLAY DEVICE AND METHOD FOR DRIVING THE SAME (57) Disclosed herein are an OLED display panel (410) further including a switching transistor (T-SW) for controlling application of supply voltage (VDD_EL) in the initializing interval of a pixel (P), an OLED display device including the same, and a method for driving the same. The OLED display panel (410) avoids a short-circuit be- tween supply voltage VDD_EL and reference voltage Vref to thereby reduce initialization voltage applied to the gate terminal of the driving transistor T_dr. The OLED display device can achieve various effects such as im- proved response characteristics of pixels by reducing de- viation in the initial voltage used in sampling.
    [Show full text]
  • Virtual Reality and Augmented Reality a Survey from Scania’S Perspective
    EXAMENSARBETE INOM MASKINTEKNIK, AVANCERAD NIVÅ, 30 HP STOCKHOLM, SVERIGE 2019 Virtual Reality and Augmented Reality A Survey from Scania’s Perspective KARL INGERSTAM KTH SKOLAN FÖR INDUSTRIELL TEKNIK OCH MANAGEMENT Virtual Reality and Augmented Reality A Survey from Scania’s Perspective Karl Ingerstam 2019 Master of Science Thesis TPRMM 2019 KTH – Industrial Engineering and Management Production Engineering SE-100 44 Stockholm Abstract Virtual reality and augmented reality are technological fields that have developed and expanded at a great pace the last few years. A virtual reality is a digitally created environment where computer- generated elements are displayed to a user via different interfaces for the respective senses. Video is used for displaying images, creating a realistic environment, while audio is played to stimulate hearing and other sorts of feedback is used to stimulate the sense of touch in particular. Augmented reality is a sub-category of virtual reality where the user sees the real surroundings, but computer-generated imagery is displayed on top of objects in the environment. This type of technology brings a lot of new possibilities and potential use cases in all sorts of areas, ranging from personal entertainment, communication and education to medicine and heavy industry. Scania is a global manufacturer of heavy trucks and buses, and provider of related services, based in Sweden. By studying Scania’s different departments and surveying the fields of virtual reality and augmented reality, the aim of this thesis is to identify situations and use cases where there is potential for Scania to implement virtual reality and augmented reality technology. This thesis also studies what obstacles implementation of these technologies bring.
    [Show full text]