Chapter 2 Incandescent Light Bulb

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 2 Incandescent Light Bulb Lamp Contents 1 Lamp (electrical component) 1 1.1 Types ................................................. 1 1.2 Uses other than illumination ...................................... 2 1.3 Lamp circuit symbols ......................................... 2 1.4 See also ................................................ 2 1.5 References ............................................... 2 2 Incandescent light bulb 3 2.1 History ................................................. 3 2.1.1 Early pre-commercial research ................................ 4 2.1.2 Commercialization ...................................... 5 2.2 Tungsten bulbs ............................................. 6 2.3 Efficacy, efficiency, and environmental impact ............................ 8 2.3.1 Cost of lighting ........................................ 9 2.3.2 Measures to ban use ...................................... 9 2.3.3 Efforts to improve efficiency ................................. 9 2.4 Construction .............................................. 10 2.4.1 Gas fill ............................................ 10 2.5 Manufacturing ............................................. 11 2.6 Filament ................................................ 12 2.6.1 Coiled coil filament ...................................... 12 2.6.2 Reducing filament evaporation ................................ 12 2.6.3 Bulb blackening ........................................ 13 2.6.4 Halogen lamps ........................................ 13 2.6.5 Incandescent arc lamps .................................... 14 2.7 Electrical characteristics ........................................ 14 2.7.1 Power ............................................. 14 2.7.2 Current and resistance .................................... 14 2.8 Physical characteristics ........................................ 14 2.8.1 Bulb shapes .......................................... 14 2.8.2 Lamp bases .......................................... 15 2.9 Light output and lifetime ....................................... 16 2.10 See also ................................................ 17 i ii CONTENTS 2.11 References ............................................... 17 2.12 External links ............................................. 20 3 Halogen lamp 21 3.1 History ................................................. 21 3.2 Halogen cycle ............................................. 22 3.3 Effect of voltage on performance ................................... 22 3.4 Spectrum ............................................... 23 3.5 Safety ................................................. 23 3.5.1 Handling precautions ..................................... 23 3.6 Applications .............................................. 24 3.6.1 Automotive .......................................... 24 3.6.2 Architectural ......................................... 24 3.6.3 Cooking ............................................ 24 3.6.4 Home use ........................................... 24 3.6.5 Stage lighting ......................................... 24 3.6.6 Specialized .......................................... 24 3.7 Disposal ................................................ 25 3.8 External links ............................................. 25 3.9 See also ................................................ 25 3.10 References ............................................... 25 4 Fused quartz 26 4.1 Production ............................................... 26 4.1.1 Feedstock ........................................... 26 4.1.2 Fusion ............................................. 26 4.1.3 Product quality ........................................ 26 4.2 Applications .............................................. 26 4.2.1 Refractory material applications ............................... 27 4.3 Physical properties ........................................... 27 4.4 Optical properties ........................................... 28 4.5 Typical properties of clear fused silica ................................ 28 4.6 See also ................................................ 28 4.7 References ............................................... 28 4.8 External links ............................................. 29 5 LED lamp 30 5.1 Technology overview ......................................... 31 5.2 Application .............................................. 31 5.3 Household LED lamps ........................................ 32 5.3.1 Replacement for existing lighting ............................... 32 5.3.2 Lighting designed for LEDs .................................. 33 CONTENTS iii 5.4 Specialty uses ............................................. 33 5.5 Comparison to other lighting technologies .............................. 33 5.5.1 Energy Star qualification ................................... 34 5.6 Limitations .............................................. 34 5.6.1 Efficiency droop ........................................ 35 5.7 Development and adoption history .................................. 35 5.7.1 Examples of early adoption .................................. 36 5.8 See also ................................................ 36 5.9 References ............................................... 36 5.10 Further reading ............................................ 38 5.11 External links ............................................. 38 6 Light-emitting diode 39 6.1 History ................................................. 40 6.1.1 Discoveries and early devices ................................. 40 6.1.2 Initial commercial development ................................ 41 6.1.3 The blue and white LED ................................... 41 6.1.4 Illumination breakthrough ................................... 41 6.2 Working ................................................ 42 6.3 Technology .............................................. 42 6.3.1 Physics ............................................ 42 6.3.2 Refractive index ........................................ 43 6.3.3 Efficiency and operational parameters ............................ 43 6.3.4 Lifetime and failure ...................................... 44 6.4 Colors and materials .......................................... 45 6.4.1 RGB ............................................. 45 6.4.2 Ultraviolet and blue LEDs .................................. 45 6.4.3 White light .......................................... 46 6.4.4 Organic light-emitting diodes (OLEDs) ............................ 48 6.4.5 Quantum dot LEDs ...................................... 49 6.5 Types ................................................. 49 6.5.1 Miniature ........................................... 49 6.5.2 Mid-range ........................................... 50 6.5.3 High-power .......................................... 50 6.5.4 AC driven LED ........................................ 50 6.5.5 Application-specific variations ................................ 51 6.6 Considerations for use ......................................... 51 6.6.1 Power sources ......................................... 51 6.6.2 Electrical polarity ....................................... 52 6.6.3 Safety and health ....................................... 52 6.6.4 Advantages .......................................... 52 6.6.5 Disadvantages ......................................... 53 iv CONTENTS 6.7 Applications .............................................. 53 6.7.1 Indicators and signs ...................................... 54 6.7.2 Lighting ............................................ 54 6.7.3 Data communication and other signaling ........................... 55 6.7.4 Sustainable lighting ...................................... 56 6.7.5 Light sources for machine vision systems ........................... 56 6.7.6 Other applications ....................................... 57 6.8 See also ................................................ 57 6.9 References ............................................... 58 6.10 Further reading ............................................ 63 6.11 External links ............................................. 63 7 Arc lamp 64 7.1 Operation ............................................... 64 7.2 Carbon arc lamp ........................................... 65 7.3 History ................................................ 66 7.3.1 Carbon-arc lighting in the U.S. ................................ 66 7.4 See also ................................................ 67 7.5 References .............................................. 68 7.6 Bibliography ............................................. 68 7.7 External links ............................................. 68 8 Xenon arc lamp 69 8.1 Types ................................................. 69 8.2 History and modern usage ...................................... 69 8.3 Lamp construction .......................................... 70 8.4 Light generation mechanism ..................................... 70 8.5 Ceramic xenon lamps ......................................... 71 8.6 Power supply requirements ...................................... 71 8.7 Automotive headlamps ........................................ 72 8.8 Xenon long-arc-lamps ......................................... 72 8.9 See also ................................................ 72 8.10 References ............................................... 72 8.11 External links ............................................. 72 9 Ultra-high-performance lamp 73 9.1 Known manufacturers of high pressure discharge lamps (UHP or similar) .............. 73 9.2 Devices using UHP lamps .....................................
Recommended publications
  • DAF Truck Spare Parts and Accessories
    www.europart.net DAF Truck Spare parts and accessories Spare parts to fit: XF, CF, LF Technical equipment and accessories EUROPART – Europe's No. 1 for truck, trailer, van and bus spare parts. www.europart.net Exacting standards required. Impressive quality delivered. The EUROPART brand: Excellent products, based on manufacturer standards With EUROPART own-brand products, you Our strict and careful selection of suppliers benefi t from a competitively priced alternative. refl ects our high standards. These are products Whether you need vehicle parts such as brake that impress even under extreme conditions discs, linings, batteries and fi lters or workshop and are of a quality based on manufacturer materials such as chemical products, oils and standards. This you can depend on – always. tools – our constantly growing and technically advanced range of over 6,500 own-brand products provides the right solution for every situation and every customer requirement. EUROPART – Europe's No. 1 for truck, trailer, van and bus spare parts. Dear Customers, this catalogue offers you an overview of our top sellers that are suitable for DAF trucks. From our comprehensive range we have compiled about 1,500 items for you, that are suitable for the XF, CF and LF series from model years 1997 to 2016. The catalogue is clearly divided by series in the product areas: • engine • axles and steering • lighting and electrics • drive • braking system • bodywork • suspension and damping • compressed air • cab Series overview: Model series Model year Cab variants XF Euro
    [Show full text]
  • Compact Fluorescent Light Bulbs
    Compact Fluorescent Light Bulbs What is a compact fluorescent lamp (CFL) bulb? A CFL bulb is a type of fluorescent bulb that screws into a standard light socket, such as a lamp or ceiling light fixture. CFLs use much less energy and last up to 10 times longer than standard light bulbs. What is in a compact fluorescent lamp (CFL) bulb? A CFL bulb is made of glass, a ceramic and metal base, a luminous powder called phosphor, and a small amount of mercury. How much mercury is contained in a CFL bulb? Manufacturers report that the amount of mercury contained in a CFL bulb is five milligrams, which is less than two ten-thousandths of an ounce. The mercury could be in the form of an invisible vapor or in a bead the size of the period at the end of this sentence. A mercury fever thermometer contains about 100 times more mercury than a CFL bulb. Is it harmful is it to be in the room where a CFL bulb has broken? The amount of mercury vapor that is released from one broken bulb is not enough to make anyone sick. However, it is best to avoid any exposure to mercury. We recommend that you ventilate the room air to the outdoors by opening a window or a door and leave the room for a few hours before cleaning up the broken bulb. How should I clean up a broken CFL bulb? It is not necessary to hire a professional to clean up the bulb. By following the directions below, you can safely clean up a broken CFL bulb.
    [Show full text]
  • Visit Inspiration Guide 2017
    VISIT INSPIRATION GUIDE 2017 PLEASANTON LIVERMORE DUBLIN DANVILLE Discover Everything The Tri-Valley Has To Offer 2 1 4 5 6 Daytripping in Danville Dublin—Have Fun in Our Backyard Discover Danville’s charming historical downtown. Enjoy the While You’re Away From Yours variety of shops, boutiques, restaurants, cafés, spas, wine Explore our outstanding, family-friendly amenities, including bars, museums, galleries, parks and trails. Start at Hartz and our gorgeous parks (our new aquatic center, “The Wave,” Prospect Avenue-the heart of downtown. You’ll fnd plenty opens in late spring 2017) and hiking trails, quality shopping, of free parking, and dogs are welcome, making Danville the wonderful international cuisine, an iMax theater, Dublin Ranch perfect day trip destination. Visit our website to plan your Robert Trent Jones Jr. golf course, bowling, laser tag, ice upcoming adventure through Danville, and for the historic skating, and a trampoline park. Also, join us for our signature walking tour map of the area. Once you visit Danville we know St. Patrick’s Day Festival. It’s all right here in our backyard. you’ll be back. Visit dublin.ca.gov Visit ShopDanvilleFirst.com Discover Everything The Tri-Valley Has To Offer 3 7 8 Living It Up in Livermore Pleasanton— Livermore is well known for world-class innovation, rich An Extraordinary Experience western heritage, and a thriving wine industry. Enjoy 1,200 acres of parks and open space, 24 miles of trails We offer a wide variety of shopping and dining options— and a round of golf at award-winning Callippe Preserve.
    [Show full text]
  • U.S. Department of Transportation
    234144· REPORT NO. FRA-OR&D-75-54 PB244532 1111111111111111111111111111 FIELD EVALUATION OF LOCOMOTIVE CONSPICUITY LIGHTS D.8. Devoe C.N. Abernethy . :~ . • REPRODUCED BY U.S. DEPARTMENT OF .COMMERCE NATIONAL TECHNICAL INFORMATiON SERVICE SPRINGFIELD, VA 22161 MAY 1975 FINAL REPORT DOCUMENT IS AVAILABLE TO THE PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VIRGINIA 22161 Prepared for U.S. DEPARTMENT OF TRANSPORTATION FEDERAL RAILROAD ADMINISTRATION Office of Research and Development Washington DC 20590 NOTICE This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Govern­ ment assumes no liability for its contents or use thereof. \ \ NOTICE The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are con­ sidered essential to the object of this report. Technical keport Documentation Page 1. Report No. 2. Governmenl Accession No. FRA-OR&D-75-54 t--:~;-,--....,...,.....,......--:-------_..L.-_--------------f'-,~'.:---:--:::---':"'-':"'-'---""~-""--'-'----'---1 4. T,ll_ and Subtitle 5. Report Date FIELD EVALUATION OF LOCOMOTIVE CONSPICUITY May 1975 LIGHTS 6. Performing Organization C"de h~:--:""""'"7-;---'-----------------------j8. Performing Organi zation Report No. 7. Author l s) D.B. Devoe CN AbernethY DOT-TSC-FRA-74-11 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) U.S. Department of Transportation RR402/R 5331 Transportation Systems Center 11. Contract or Grant No. Kendall Square Cambridge MA 02142 12. Sponsoring A.gency Name and Address Final Report U.S. Depar~ment of Transportation March - June 1974 Federal Railroad Administration Office of Research and Development 14.
    [Show full text]
  • Comparison of Life-Cycle Analyses of Compact Fluorescent and Incandescent Lamps Based on Rated Life of Compact Fluorescent Lamp
    Comparison of Life-Cycle Analyses of Compact Fluorescent and Incandescent Lamps Based on Rated Life of Compact Fluorescent Lamp Laurie Ramroth Rocky Mountain Institute February 2008 Image: Compact Fluorescent Lamp. From Mark Stozier on istockphoto. Abstract This paper addresses the debate over compact fluorescent lamps (CFLs) and incandescents through life-cycle analyses (LCA) conducted in the SimaPro1 life-cycle analysis program. It compares the environmental impacts of providing a given amount of light (approximately 1,600 lumens) from incandescents and CFLs for 10,000 hours. Special attention has been paid to recently raised concerns regarding CFLs—specifically that their complex manufacturing process uses so much energy that it outweighs the benefits of using CFLs, that turning CFLs on and off frequently eliminates their energy-efficiency benefits, and that they contain a large amount of mercury. The research shows that the efficiency benefits compensate for the added complexity in manufacturing, that while rapid on-off cycling of the lamp does reduce the environmental (and payback) benefits of CFLs they remain a net “win,” and that the mercury emitted over a CFL’s life—by power plants to power the CFL and by leakage on disposal—is still less than the mercury that can be attributed to powering the incandescent. RMI: Life Cycle of CFL and Incandescent 2 Heading Page Introduction................................................................................................................... 5 Background...................................................................................................................
    [Show full text]
  • The Electric Arc Plasma Temperature
    DIAGNOSTICS OF MULTICOMPONENT ELECTRIC ARC PLASMA A.I. Cheredarchuk, V.F. Boretskij, A.N. Veklich Taras Shevchenko Kiev National University, Kiev, Ukraine E-mail: [email protected] The plasma parameters of electric arc discharge in a gas flow between copper electrodes were investigated. The electrical conductivity of copper-argon and copper-carbon dioxide plasma was calculated. It was found that at low temperatures (5000 K<T<9000 K) the electrical conductivity considerably depends on the amount of copper in plasma. PACS: 51.20.d 1. INTRODUCTION Ne(r) in discharge at 30 A were obtained from width of The electric arc between evaporated electrodes has spectral lines CuI 448.0 nm, broadened due to the quadratic diverse technological applications. It is well known that Stark effect. In the case of low current (3.5 A) absolute electrode vapours have a determining influence on intensity of CuI 465.1 nm spectral line was used. properties of arc plasma. The insignificant impurity N , m-3 (about 1 %) of electrode metal vapour appreciably j CO 2 changes plasma parameters of the discharge in a rather CO wide temperature range [1]. Unfortunately the influence O O e of metal impurity on the plasma of free burning electric 1E23 2 C arc discharge in different working gases is not O+ experimentally investigated in detail yet. The main aim of this study is a development of complex diagnostics techniques of determination of 1E20 plasma parameters of electric arc discharge in a gas flow between copper electrodes. + CO 2. TRANSPORT PROPERTIES C 2 T, K 1E17 OF THERMAL PLASMA 5000 10000 15000 20000 In calculations of the transport properties of thermal plasma it is necessary to know the proportion between Fig.
    [Show full text]
  • GE Consumer & Industrial
    GE Consumer & Industrial LIGHTING GE Consumer & Industrial specialty 2004⁄2005 LAMP CATALOG Specialty Lighting Lamp Products Catalog 2004/2005 GE imagination at work 000 Cover_Ideas_06 2 07/09/04, 11:56 AM 000 Cover_Ideas_06 1 07/09/04, 11:56 AM Introduction SPECIALTY Introduction This catalog lists and provides essential technical data for available General Electric lamps that are used in lighting for specialty markets worldwide including Stage/Studio/TV, Projection/Photo, Sealed Beams, Fluorescent, Incandescent and Discharge Lamps optimized for specific applications. Applications can be severe service (cold, vibration, accessibility), architectural (color, black light), industrial (appliances, germicidal, safety, low voltage, infrared/heat), transportation (aircraft, railroad, marine), and infrastructure (airport, emergency building lighting, traffic signal, sign). Lamp listings are grouped into market/application sections, each containing a “family” of lamps by application or commonalities (such as base, shape, spectral distribution, color temperature), to assist in selection or interchange. Ordering Lamps To order lamps use the GE Order Code, Description and Case Quantity columns. If a lamp is colored BLUE it is stocked in Europe, GREEN is Europe and North America, BLACK is North America only. Otherwise procurement must be through an international distributor or your GE sales representative. North America, European and International sales offices are in the appendix. Other GE Publications All the lamps in this Specialty Catalog come from other GE catalogs/websites. These catalogs and websites contain data for other lamps that may be of interest: In North America: • Lamp Products Catalog (PC 25265) • Miniature/Sealed Beam Catalog (PC 20699) • Stage and Studio SHOWBIZ (PC23766) • www.GELighting.com • or 1-800-GELAMPS In Europe: • GE Consumer and Industrial Lighting Lamp Catalogue-Spectrum • SHOWBIZ® (ENTCAT 02/2003) Lamp Index There is a sorted (numeric/alphabetic) index by description with ANSI/LIF code, if available, which provides page number.
    [Show full text]
  • Indoor Lighting Design Guide
    CSU Office of the Chancellor Indoor Lighting Design Guide Indoor Lighting Design Guide Rev: 12/12/18 CSU Office of the Chancellor Indoor Lighting Design Guide ACKNOWLEDGEMENT The California State University (CSU) gratefully acknowledges the effort and work of Jai Agaram, John Andary, Douglas Effenberger, Kent Peterson, Steven Strauss, and Steve Taylor. Comments or inquiries may be directed to: The California State University Office of the Chancellor Capital Planning Design and Construction Long Beach, California Attention: Thomas Kennedy, Chief Architecture and Engineering Telephone: (562) 951-4129 E-mail: [email protected] CSU Office of the Chancellor Indoor Lighting Design Guide TABLE OF CONTENTS EXECUTIVE SUMMARY .......................................................................................................................................................... 1 SECTION 1: INTRODUCTION ............................................................................................................................................ 2 CSU POLICY .................................................................................................................................................................................. 2 DEFINITIONS .................................................................................................................................................................................. 2 UTILITY INCENTIVES .......................................................................................................................................................................
    [Show full text]
  • Phenomena of Perturbation in Electrical Systems
    Chapter 1 Phenomena of Perturbation in Electrical Systems 1.1. Electromagnetic perturbations in energy systems 1.1.1. Introduction Power electronic systems are increasingly being used in every field; initially, they were used in the industrial sector and then used increasingly in transportation, services and housing sectors. The flexibility in the control of electrical energy explains this evolution well. For the purposes of illustration, we estimate that the electrification of service or control functions in an aircraft offers the following gains1: – 10% on the mass; – 9% onCOPYRIGHTEDfuel consumption; MATERIAL – 13% on thrust from the engines; – 15% on maintenance costs; – 10% on the buying price. 1 According to SAFRAN company, symposium SPEC 2007. 2 Electromagnetic Compatibility in Power Electronics The field of automobiles is also subject to this evolution: the development of hybrid vehicles over the last 10 years and, more recently, the re-emergence of the fully electric car (while waiting for fuel cells vehicles) are evidence of this. Already, a large number of services have been electrified in thermal engine automobiles because of the flexibility of controls (speed variation) and high yield of the electrical systems: power steering, anti-blocking system (ABS), various pumps, window winders, air conditioning (to come). The introduction of this technology, as a consequence, must take into consideration its implementation constraints; electromagnetic compatibility (EMC) in particular. Indeed, static converters based on power electronics are important sources of electromagnetic perturbations that can occasionally cause malfunctions in their local or distant electronic environment: avionics, navigation systems, reception antennae, etc. Thus, it is important to understand the origin of these phenomena, their mode of propagation and the effects on their potential “victims” in order to optimize the essential reduction or protection devices necessary to conform to the standards of EMC.
    [Show full text]
  • Incandescent: Light Bulbs and Conspiracies1
    Dr Grace Halden recently completed her PhD at Birkbeck, University of London. Her doctoral research on science fiction brings together her interest in philosophy, technology and literature. She has a range of diverse VOLUME 5 NUMBER 2 SPRING 2015 publications including an edited book Concerning Evil and articles on Derrida and Doctor Who. [email protected] Article Incandescent: 1 Light Bulbs and Conspiracies Grace Halden / __________________________________________ Light bulbs are with us every day, illuminating the darkness or supplementing natural light. Light bulbs are common objects with a long history; they seem innocuous and easily terminated with the flick of a switch. The light bulb is an important invention that, as Roger Fouquet notes, was transformational with regard to industry, economy and the revolutionary ability to ‘live and work in a well-illuminated environment’.2 Wiebe Bijker, in Of Bicycles, Bakelites and Bulbs (1997), explains that light bulbs show an integration between technology and society and how these interconnected advancements have led to a sociotechnical evolution.3 However, in certain texts the light bulb has been portrayed as insidious, controlling, and dehumanising. How this everyday object has been curiously demonised will be explored here. Through looking at popular cultural conceptions of light and popular conspiracy theory, I will examine how the incandescent bulb has been portrayed in dystopian ways.4 By using the representative texts of The Light Bulb Conspiracy (2010), The X-Files (1993-2002), and Thomas Pynchon’s Gravity’s Rainbow (1973), I will explore how this commonplace object has been used to symbolise the malevolence of individuals and groups, and the very essence of technological development itself.
    [Show full text]
  • Evaluation of Electric Lighting Products
    U.S. CONSUMER PRODUCT SAFETY COMMISSION DIRECTORATE FOR ENGINEERING SCIENCES EVALUATION OF ELECTRIC LIGHTING PRODUCTS December 2007 Anna Luo Electrical Engineer Division of Electrical Engineering Directorate for Engineering Sciences This report has not been reviewed or approved by, and may not necessarily reflect the views of, the Commission. Table of Contents I. INTRODUCTION...................................................................................................................... 1 II. PROJECT OUTLINE................................................................................................................ 1 III. VOLUNTARY STANDARDS................................................................................................ 1 IV. TERMINOLOGY.................................................................................................................... 2 V. PRODUCT CHARACTERISTICS........................................................................................... 3 VI. TASK 1 – Review of Incident Data......................................................................................... 4 A. Portable Lighting Incidents ............................................................................................ 4 B. Installed Lighting Incidents............................................................................................ 5 C. Incidents Associated with Other Factors........................................................................ 6 VII. TASK 2 - Inspection of Collected Samples ..........................................................................
    [Show full text]
  • !History of Lightingv2.Qxd
    CONTENTS Introduction 3 The role of lighting in modern society 3 1. The oldest light sources 4 Before the advent of the lamp 4 The oldest lamps 4 Candles and torches 5 Further development of the oil lamp 6 2. Gaslight 9 Introduction 9 Early history 9 Gas production 10 Gaslight burners 10 The gas mantle 11 3. Electric lighting before the incandescent lamp 14 Introduction 14 Principle of the arc lamp 15 Further development of the arc lamp 16 Applications of the arc lamp 17 4. The incandescent lamp 20 The forerunners 20 The birth of the carbon-filament lamp 22 Further development of the carbon-filament lamp 25 Early metal-filament lamps 27 The Nernst lamp 28 The birth of the tungsten-filament lamp 29 Drawn tungsten filaments 30 Coiled filaments 30 The halogen incandescent lamp 31 5. Discharge lamps 32 Introduction 32 The beginning 32 High-voltage lamps 33 Early low-pressure mercury lamps 34 The fluorescent lamp 35 High-pressure mercury lamps 36 Sodium lamps 37 The xenon lamp 38 6. Electricity production and distribution 39 Introduction 39 Influence machines and batteries 39 Magneto-electric generators 40 Self-exciting generators 41 The oldest public electricity supply systems 41 The battle of systems 42 The advent of modern a.c. networks 43 The History of Light and Lighting While the lighting industry is generally recognized as being born in 1879 with the introduction of Thomas Alva Edison’s incandescent light bulb, the real story of light begins thousands of years earlier. This brochure was developed to provide an extensive look at one of the most important inventions in mankind’s history: artificial lighting.
    [Show full text]