Recommended Practice for Combatting Ice Jams

Total Page:16

File Type:pdf, Size:1020Kb

Recommended Practice for Combatting Ice Jams ifir m TL 400 Draft Translation 400 RECOMMENDED PRACTICE FOR COMBATTING ICE JAMS <0 % a V.l. Sinotin et al. August 1973^ CORPS OF ENGINEERS, U.S. ARMY COLD REGIONS RESEARCH AND ENGINEERING LABORATORY HANOVER, NEW HAMPSHIRE l APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. ' SC" Draf t^Translation 400 ' HP ?C 7 * Jj f % ENGLISH TITLE: RECOMMENDED PRACTICE FOR COMBATTING ICE JAMS FOREIGN TITLE: ( METODICHESKIE UKAZANIIA PO BOR'BE S ZATORAMI I ZAZHORAMI L'DA*V ~ ' 3 , AUTHOR: ’ V. I. Sinotin "et al. SOURCE: Metodicheskiye Ukazaniya po Bor'be s Zatorami i Zazhorami L'da.yMinisterstvo Energetiki i Elektrifikatsii SSSR^/Glavtekhstroyproyekt (USSR Ministry of Power Engineering and Electri­ fication, Main Technical Construction Project), All-Union Scientific Research Hydraulic Engineering Institute imeni B.Ye. Vedeneyev, Power Engineering Press, Leningrad Branch, 1970, p 1-151 Translated by U.S. Joint Publications Research Service for U.S.‘'Army Cold Regions Research and Engineering Laboratory, 1973, 106 p. NOTICE The contents of this publication have been translated as presented in the original text. No attempt has been made to verify the accuracy of any statement contained herein. This translation is published with a minimum of copy editing and graphics preparation in order to expedite the dissemination of information. Requests for additional copies of this document should be addressed to the Defense Documentation Center, Cameron Station, Alexandria, Virginia 22314. LIBRARY JUL 1 3 2010 Bureau ot Reclamation I« UDC 551.326.83 RECOMMENDED PRACTICE FOR COMBATTING ICE JAMS Metodicheskiye Ukazaniya po Bor1be s Candidate of Technical Sciences Zatorami i Zazhorami L'da (English title V. I. Sinotin et al. as above). Ministerstvo Energetiki i Elektrifikatsii SSSR, Glavtekhstroy- proyekt (USSR Ministry of Power Engineer­ ing and Electrification, Main Technical Construction Project), All-Union Scien­ tific Research Hydraulic Engineering Institute imeni B.Ye. Vedeneyev, Power Engineering Press, Leningrad Branch, 1970, p 1-151 CONTENTS Page Foreword 3 Terminology 6 Chapter 1. GENERAL INFORMATION 1. Ice Jam Definition 7 2. Ice Jam Formation 8 3. Location of Ice Jams 10 4. Factors Influencing Ice Jam Formation 12 5. Ice Jam Classification 14 6. Methods of Combatting Ice Jams 15 7. Single Preventive Measures to Combat Ice Jams 16 8. Repeated Preventive Measures to Combat Ice Jams 18 9. Principles Governing Preventive Measures for Combatting 20 Ice Jams 21 10. Destroying Ice Jams 11. Remarks on the Organization of Jam Countermeasures 23 - 1 - •I Page Chapter 2. FIELD OBSERVATIONS OF ICE JAMS AND DATA ANALYSIS 25 1. Ice Jam Observations 25 2. Data Processing of Ice Jams 29 3. Ice Jam Forecasting 30 4. Predicting the Strength of Ice Jams 32 Chapter 3. ARTIFICIAL WEAKENING OF ICE 34 1. Using Radiant Heat to Destroy the Ice Cover (Dusting Snow-Ice Covers) 34 2 . Chemical Destruction of Ice Cover 41 3. Inhibiting Ice Accretion in Winter 44 Chapter 4. MECHANICAL DESTRUCTION OF ICE 46 1. Ice Cutting Machines and Their Characteristics 46 2. Using Icebreakers to Prevent and Combat Ice Jams 52 Chapter 5. ARTIFICIAL ICE JAMS AND STRAIGHTENING OF CHANNELS 58 1. Artificial Ice Jams 58 2. Channel Straightening to Prevent Ice Jams 61 Chapter 6. USING AIRPLANES TO PREVENT AND DESTROY ICE JAMS 65 1. Aerial Ice Surveys 65 2. Using Planes for Explosive Work 66 3. Aerial Bombing 67 Chapter 7. PREVENTION AND DESTRUCTION OF ICE JAMS WITH EXPLOSIVES 70 1. General Information 70 2. Ice Jam Prevention with Explosives 71 3. Explosion of Large Ice Fields and Jams 75 4. Explosive Destruction of Ice Jams 80 5. Using Helicopters for Explosive Work 80 Chapter 8. PASSAGE OF ICE THROUGH HYDRAULIC STRUCTURES DURING CONSTRUC­ TION AND USE OF HYDROELECTRIC STATIONS WITHOUT ICE JAM FOR­ MATION 83 1* General Conditions for Passage of Ice Through Structures 83 2• Plan for Ice Passage During the Erection of Hydraulic Structures on Rivers with a Heavy Ice Flow 86 — 2 — I» Page 87 3. Passage O f Ice 88 4. Passage Of Ice 90 5. Passage of Ice 91 6. Slowing o f Ice Chapter• 9. HYDRAULIC AND 93 TO PREVENT AND COMBAT ICE JAMS 1. Ice Jam Formation 93 2. Preventing and Combatting Ice Jams 95 3. Hydraulic Regulation of the Current to Inhibit Ice Jam Formation 97 4. Thermal Regulation of Water Bodies and Currents to Inhibit Ice Jam Formation 98 BIBLIOGRAPHY 103 FOREWORD Ice jams are inseparable occurrences in the annual cycle of the life of many rivers. Ice jams are typical of most USSR rivers. They represent a serious danger for two reasons : in relation to the floods which they cause and the possibility of destruction of various hydraulic engineering struc­ tures by ice. The floods caused by ice jams compel us to transfer to safe locations the large industrial objects and increase the cost of building hydraulic engineering and other structures. Every year, the ice jams inflict tremen­ dous losses on the national economy while in individual unfortunate years, these losses increase by many times. For the development of efficient measures for combatting the ice jams, it is necessary to have a thorough knowledge of the physics of the phenomenon and the causes engendering it. The attention of many organizations is being directed toward a study of the ice jam occurrences on the USSR rivers. We have studied the processes of ice jam formation on a number of large rivers (Yenisey, Volga, Ob', Dnestr, Northern Dvina, and Lena), we have conducted studies of the ice jam processes on the Angara River and on the rivers in the Caucasus and Central Asia, we are performing studies with the purpose of developing methods for predicting the ice jams on rivers; we have completed a number of studies on the application of various methods of influencing the ice runoff. As a whole, however, the processes of ice jams have not yet been adequately studied. Specifically we have not developed bases for the theory - 3- «r of formation, stability and breakdown of ice jams; we have studied inadequately the physico-mechanical properties of ice under various conditions; a generally, recognized classification of ice jam occurrences and a listing of the jamming sectors is lacking and we have not established to a complete extent the ef- fectivity of any given means of combatting the ice jams under the various con­ ditions of their formation. Such a situation is explained in terms of the complexity of modeling these phenomena under laboratory conditions, with the awkwardness and high cost of full-scale studies, with the poor state of study of the individual general problems in ice engineering and by the inadequate attention paid to this question. We still lack instructive documents of a procedural and standardizing nature on combatting and avoiding ice jams. This leads to the situation that the preventive measures for combatting these occurrences based on regulating the mechanism of river breakup, runoff of ice and its physico-mechanical properties are rarely utilized. Also we frequently have cases when for the breakup of ice jams, we em­ ploy methods not yielding the necessary results and sometimes leading to un­ desirable consequences and to a useless expenditure of government funds. For example at the present time the methods of combatting ice jams reduce mainly to a timely mechanical destruction of the ice cover in the locations threatened by jams and the elimination of developed jams by ex­ plosions and bombing; this is becoming quite popular owing to the possibility of operational intervention. The explosions and bombing also yield a negative effect associated with killing fish and the risk of inflicting damange to populated points, and as a whole is undesirable. At the same time, the effec­ tiveness of these methods is by no means always the same and depends on the features involved in the ice jam. The modern achievements of science and technology and available ex­ perience permit us to consider the ice jam formation as physical processes subject to control. The loss caused by them even now can be reduced to a definite minimum under the stipulation of a proper organization of combatting these phenomena. For the purpose of facilitating this problem, we have compiled the present "Recommended Practice for Combatting Ice Jams". In the compilation of these guidelines, we have utilized the experience accumulated in the USSR for the control of ice occurrences and combatting the ice jams which have already formed. Since the jamming of ice is regarded as the most dangerous phenomenon, the greater part of the suggested "Recommended Practice has been devoted to ice jams. As we have already indicated, many facets of the complex problem of counteracting ice jams have still been inadequately studied and the available experience and objective data are insufficient for a thorough substantiation of the recommendations. - 4- * Moreover owing to the complex nature and the diverse conditions involved in the origin of the actual ice jams and blockings, the effort toward develop­ ing standard measures for combatting the jams and blockings would in principle be invalid. Guided by this, we adopted the following principle for compiling the "Standard Practices". In the first chapter we present information of a general nature, the classification of the occurrences and certain concepts concerning the choice of a system of measures for counteracting the ice jams. In the subsequent chapters, we clarify in more detail the individual procedures and methods of preventing and counteracting ice jams, and the features involved in their application under different conditions. In the "Standard Practices , we do not cite detailed descriptions of actual cases. They can be found in the literature listed at the end of the document. In this manner the purpose of the present "Standard Practices is to aid in selecting the most feasible combination of measures for the actual local conditions.
Recommended publications
  • Kinikmi Sigum Qanuq Ilitaavut = Wales Inupiaq Sea Ice Dictionary
    Kirjikmi Si gum Qanuq llitaavut Wales Inupiaq Sea Ice Dictionary Iqqaluagigut Agiyagaq (1945—2010) We Cherish the Memory of Herbert Anungazuk (1945- ■2010) •J. tuagikuq The village of Wales, Alaska, as seen from the land-fast ice, tuaq on February 9, 2007. Small pressure ridges, iunilaurat are built on the flat surface of the land-fast ice (tuagikuq) closer to the beach. Photo, Winton Weyapuk, Jr. Kinikmi Sigum Qanuq llitaavut Wales Inupiaq Sea Ice Dictionary Winton Weyapuk, Jr. and Igor Krupnik, compilers Advisers: Pete Sereadlook, Faye Ongtowasruk, and Lawrence Kaplan Editors: Igor Krupnik, Herbert Anungazuk. and Matthew Druckenmiller International Polar Year National Park Service Native Village of Wales Arctic Studies Center 2007-2008 Shared Beringian Heritage Program Wales, Alaska Smithsonian Institution © 2012 by the Arctic Studies Center Smithsonian Institution Washington, D.C. 20013-7012 All rights reserved Printed in the United States of America ISBN 978-0-9673429-3-1 This book may be cited as: Wales Inupiaq Sea Ice Dictionary/Kir)ikmi Sigum Qanuq llitaavut. 2012. Winton Weyapuk, Jr. and Igor Krupnik, compilers. Igor Krupnik, Herbert Anungazuk, and Matthew Druckenmiller, editors. Washington, DC: Arctic Studies Center. Smithsonian Institution. 112 pp. The paper used in this publication meets the minimum requirements of the American National Standard for Information Sciences-Permanence of Paper for Printed Library Materials This project was supported by a grant from the Shared Beringian Heritage Program National Park Service, Alaska Office Volume design: Igor Krupnik and Winton Weyapuk, Jr. Production editor: Allison Maslow This book has been produced for the ‘SIKU - Sea Ice Knowledge and Use’ Project (IPY #166), a part of The International Polar Year 2007-2008 sponsored by The International Council for Science (ICSU) and The World Meteorological Organization (WMO) Front cover: Ice-covered Bering Strait off the Village of Wales, Alaska, February 2007.
    [Show full text]
  • Internal Frost Damage in Concrete - Experimental Studies of Destruction Mechanisms
    Internal frost damage in concrete - experimental studies of destruction mechanisms Fridh, Katja 2005 Link to publication Citation for published version (APA): Fridh, K. (2005). Internal frost damage in concrete - experimental studies of destruction mechanisms. Division of Building Materials, LTH, Lund University. Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Download date: 09. Oct. 2021 LUND INSTITUTE OF TECHNOLOGY LUND UNIVERSITY Division of Building Materials INTERNAL FROST DAMAGE IN CONCRETE Experimental studies of destruction mechanisms Katja Fridh Report TVBM-1023 Doctoral thesis Lund 2005 ISRN LUTVDG/TVBM--05/1023--SE(1-276) ISSN 0348-7911 TVBM ISBN 91-628-6558-7 Lund Institute of Technology Telephone: 46-46-2227415 Division of Building Materials Telefax: 46-46-2224427 Box 118 www.byggnadsmaterial.lth.se SE-221 00 Lund, Sweden Preface The work presented here was carried out at the Division of Building Materials at the Lund Institute of Technology.
    [Show full text]
  • A Guide to Hazard Mitigation Planning for Wisconsin Coastal Communities
    GGUUIIDDEE TTOO HHAAZZAARRDD MMIITTIIGGAATTIIOONN LANNING FOR PPLANNING FOR WWIISSCCOONNSSIINN COOAASSTTAALL C CCOOMMMMUUNNIITTIIEESS Prepared by: Bay-Lake Regional Planning Commission June 2007 GGUUIIDDEE TTOO HHAAZZAARRDD MMIITTIIGGAATTIIOONN PPLLAANNNNIINNGG FFOORR WWIISSCCOONNSSIINN CCOOAASSTTAALL CCOOMMMMUUNNIITTIIEESS Prepared by: Bay-Lake Regional Planning Commission 441 South Jackson Street Green Bay, WI 54301 (920) 448-2820 WCMP Agreement #AD9014-007.42 BLRPC Contract #0601209 Principal Author: Angela M. Pierce, Natural Resources Planner II Acknowledgement Funded by the Wisconsin Coastal Management Program and the National Oceanic and Atmospheric Administration, Office of Ocean and Coastal Resource Management under the Coastal Zone Management Act, Grant #NA06NOS4190183. ABOUT THE BAY-LAKE REGIONAL PLANNING COMMISSION The Bay-Lake Regional Planning Commission was created in April 1972 under section 66.945 of the Wisconsin Statutes as the official area-wide planning agency for northeastern Wisconsin. At the request of seven county boards within the region, Governor Lucey established the Bay-Lake Regional Planning Commission by Executive Order 35. In December 1973, Florence County joined the Commission, bringing the total number of counties within the region to eight. The Commission serves a region in northeastern Wisconsin consisting of the counties of Brown, Door, Florence, Kewaunee, Manitowoc, Marinette, Oconto, and Sheboygan. The Bay-Lake Region is comprised of 185 units of government: 8 counties, 17 cities, 39 villages, 120 towns, and the Oneida Nation of Wisconsin. The total area of the region is 5,433 square miles or 9.7 percent of the area of the State of Wisconsin. The region has over 400 miles of coastal shoreline along Lake Michigan and Green Bay and contains 12 major watershed areas that drain into the waters of Green Bay and Lake Michigan.
    [Show full text]
  • Dicionarioct.Pdf
    McGraw-Hill Dictionary of Earth Science Second Edition McGraw-Hill New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Copyright © 2003 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be repro- duced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. 0-07-141798-2 The material in this eBook also appears in the print version of this title: 0-07-141045-7 All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. For more information, please contact George Hoare, Special Sales, at [email protected] or (212) 904-4069. TERMS OF USE This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw- Hill”) and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decom- pile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent.
    [Show full text]
  • An Experimental Study of Ice-Bed Separation During Glacial Sliding Benjamin Brett Etp Ersen Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2012 An experimental study of ice-bed separation during glacial sliding Benjamin Brett etP ersen Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Geology Commons, and the Geophysics and Seismology Commons Recommended Citation Petersen, Benjamin Brett, "An experimental study of ice-bed separation during glacial sliding" (2012). Graduate Theses and Dissertations. 12701. https://lib.dr.iastate.edu/etd/12701 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. An experimental study of ice-bed separation during glacial sliding by Benjamin Brett Petersen A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Geology Program of Study Committee: Neal R. Iverson, Major Professor Igor Beresnev Carl E. Jacobson Iowa State University Ames, Iowa 2012 Copyright © Benjamin Brett Petersen, 2012. All rights reserved. ii TABLE OF CONTENTS ACKNOWLEDGMENTS iii ABSTRACT iv CHAPTER 1. INTRODUCTION 1 1.1 Ice-bed separation 1 1.2 Sliding models 2 1.3 Hydrology models 5 1.4 Quarrying 8 1.5 Experimental studies of cavitation 9 1.6 Motivation and objectives 10 CHAPTER 2. METHODS 12 2.1 The ring-shear device 12 2.2 Procedure 19 2.3 Data processing 25 CHAPTER 3.
    [Show full text]
  • Andrew R. Mahoney
    CURRICULUM VITAE Andrew R. Mahoney Personal information Nationality British Date of Birth 11 January 1977 Address PO Box 83251, Fairbanks, Alaska 99708, USA Phone +1 (907) 474-5382 E-mail [email protected] Website http: //seaice.alaska.edu/gi/people/mahoney Professional preparation 2006 PhD Geophysics, University of Alaska Fairbanks, Fairbanks, AK, USA. 1999 BSc Hons Geophysical Sciences, University of East Anglia, Norwich, UK Appointments 2010- Research Assistant Professor, Geophysical Institute, University of present Alaska Fairbanks 2008-2010 Post Doctoral Fellow, Department of Physics, University of Otago, Dunedin, New Zealand. 2006-2008 Post Doctoral Researcher, National Snow and Ice Data Center, University of Colorado, Boulder, Colorado. 2000-2006 Graduate research assistant, Geophysical Institute, University of Alaska Fairbanks 1999-2000 Field studies tutor, Kingswood Group, Norwich, UK. 1999 Geophysical research assistant, University of East Anglia, Norwich, UK. Research interests My broad field of expertise is sea ice geophysics, but my research interests encompass climate change, coastal dynamics, ice-ocean interaction and the relationship between humans and sea ice. Arctic sea ice is a rapidly changing component of the global climate system and reports of its retreat make frequent headlines in international media. My research interests include the local implications of these changes for the Arctic residents. Sea ice geophysics also has an important role to play in providing data and information to stake holders and policy makers as commercial interests in the Arctic grow. At the opposite end of the world, Antarctic sea ice is not undergoing the same reduction in extent. The two Polar Regions are geographically very different from each other, so a difference should not be surprising.
    [Show full text]
  • Glacial Geology of the Stony Brook-Setauket-Port Jefferson Area1 Gilbert N
    Glacial Geology of the Stony Brook-Setauket-Port Jefferson Area1 Gilbert N. Hanson Department of Geosciences Stony Brook University Stony Brook, NY 11794-2100 Fig. 1 Digital elevation model of Long Island High resolution digital elevation models are available for the State of New York including Long Island. These have a horizontal resolution of 10 meters and are based on 7.5' topographic maps. For those quadrangles with 10' contour intervals, interpolation results in elevations with an uncertainty of about 4'. The appearance is as if one were viewing color-enhanced images of a barren terrain, for example Mars (see Fig. 1). This allows one to see much greater detail than is possible on a standard topographic map. The images shown on this web site have a much lower resolution than are obtainable from the files directly. Digital Elevation Models for Long Island and surrounding area can be downloaded as self extracting zip files at http://www.geo.sunysb.edu/reports/dem_2/dems/ A ca. five foot long version (jpg) of the DEM of Long Island (see above except with scale and north arrow) for printing can be downloaded at this link. A DEM of Long Island (shown above in Fig. 1) in PowerPoint can be downloaded at this link. The geomorphology of Long Island has been evaluated earlier based on US Geological Survey topographic maps (see for example, Fuller, 1914; and Sirkin, 1983). Most of the observations presented here are consistent with previous interpretations. Reference to earlier work is made mainly where there is a significant disagree- ment based on the higher quality of the information obtainable from the DEM's.
    [Show full text]
  • Reconstructing the Confluence Zone Between Laurentide and Cordilleran Ice Sheets Along the Rocky Mountain Foothills, Southwest Alberta
    This is a repository copy of Reconstructing the confluence zone between Laurentide and Cordilleran ice sheets along the Rocky Mountain Foothills, southwest Alberta. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/105138/ Version: Accepted Version Article: Utting, D., Atkinson, N., Pawley, S. et al. (1 more author) (2016) Reconstructing the confluence zone between Laurentide and Cordilleran ice sheets along the Rocky Mountain Foothills, southwest Alberta. Journal of Quaternary Science, 31 (7). pp. 769-787. ISSN 0267-8179 https://doi.org/10.1002/jqs.2903 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Reconstructing the confluence zone between Laurentide and Cordilleran ice sheets along the Rocky Mountain Foothills, south-west Alberta Daniel J. Utting1, Nigel Atkinson1, Steven Pawley1, Stephen J.
    [Show full text]
  • Stratigraphic Signature of the Late Palaeozoic Ice Age in the Parmeener Supergroup of Tasmania, SE Australia, and Inter- Regional Comparisons
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Earth and Atmospheric Sciences, Department Papers in the Earth and Atmospheric Sciences of 2010 Stratigraphic signature of the late Palaeozoic Ice Age in the Parmeener Supergroup of Tasmania, SE Australia, and inter- regional comparisons Christopher R. Fielding University of Nebraska-Lincoln, [email protected] Tracy D. Frank University of Nebraska-Lincoln, [email protected] John L. Isbell University of Wisconsin-Milwaukee, [email protected] Lindsey C. Henry University of Wisconsin-Milwaukee Eugene W. Domack Hamilton College, Clinton, NY, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/geosciencefacpub Part of the Earth Sciences Commons Fielding, Christopher R.; Frank, Tracy D.; Isbell, John L.; Henry, Lindsey C.; and Domack, Eugene W., "Stratigraphic signature of the late Palaeozoic Ice Age in the Parmeener Supergroup of Tasmania, SE Australia, and inter-regional comparisons" (2010). Papers in the Earth and Atmospheric Sciences. 263. https://digitalcommons.unl.edu/geosciencefacpub/263 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in the Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Palaeogeography, Palaeoclimatology, Palaeoecology 298 (2010), pp. 70–90; doi:10.1016/j.palaeo.2010.05.023 Copyright © 2010 Elsevier B.V. Used by permission Submitted September 25, 2009; revised April 20, 2010; accepted May 20, 2010; published online June 1, 2010. Stratigraphic signature of the late Palaeozoic Ice Age in the Parmeener Supergroup of Tasmania, SE Australia, and inter-regional comparisons Christopher R.
    [Show full text]
  • Ice Crystal Growth Through Nonbasal Plane Adsorption of Antifreeze Proteins
    Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins Luuk L. C. Olijvea,b, Konrad Meisterc, Arthur L. DeVriesd, John G. Dumane, Shuaiqi Guof,g, Huib J. Bakkerc, and Ilja K. Voetsa,b,h,1 aInstitute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; bLaboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; cInstitute for Atomic and Molecular Physics, Foundation for Fundamental Research on Matter, 1098 XG Amsterdam, The Netherlands; dDepartment of Animal Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801; eDepartment of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556; fProtein Function Discovery Group, Queen’s University, Kingston, ON, Canada K7l 3N6; gDepartment of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada K7l 3N6; and hLaboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands Edited by Pablo G. Debenedetti, Princeton University, Princeton, NJ, and approved January 26, 2016 (received for review December 14, 2015) Antifreeze proteins (AFPs) are a unique class of proteins that bind AFPs also target different—sometimes multiple—ice crystal planes, to growing ice crystal surfaces and arrest further ice growth. AFPs including prism, pyramidal, and basal faces (Fig. 1) (13). Recent have gained a large interest for their use in antifreeze formula- Monte Carlo and molecular dynamics simulations confirm this tions for water-based materials, such as foods, waterborne paints, specificity (14–16). and organ transplants. Instead of commonly used colligative AFPs exhibit two forms of activities.
    [Show full text]
  • Geologic Site of the Month: Maine's Glacial Moraines: Living on the Edge
    Maine's Glacial Moraines: Living on the Edge Maine Geological Survey Maine Geologic Facts and Localities January, 2000 Maine's Glacial Moraines: Living on the Edge Text by Woodrow Thompson Maine Geological Survey, Department of Agriculture, Conservation & Forestry 1 Maine's Glacial Moraines: Living on the Edge Maine Geological Survey Introduction Toward the end of the "Ice Age," a glacier of vast proportions covered Maine. This was the Laurentide Ice Sheet, which advanced southward out of Canada about 25,000 years ago and remained here for nearly 15,000 years. The slowly flowing ice was thick enough to cover Maine's highest mountains. It swept away much of the evidence of earlier glaciations, eroding both the bedrock and previously existing sediment cover. Many glacial features that we see today were actually left behind during the final northward retreat of the ice sheet, when the pulverized rock debris was released from the melting ice. Even as the ice margin withdrew, internal flow within the glacier continued to transport its sediment load southward toward the edge of the ice sheet. Through a variety of processes, this dirty material was either released directly from the ice, forming a stony deposit called "till," or washed out of the glacier in meltwater streams. The water-laid sediments were deposited as layered accumulations in river valleys, lake basins, and Maine's coastal lowland. They include the majority of our sand and gravel deposits, and the finer silts and clays commonly found near the coast. Maine Geological Survey, Department of Agriculture, Conservation & Forestry 2 Maine's Glacial Moraines: Living on the Edge Maine Geological Survey Introduction The clearest markers of glacial retreat are ridges of sediment called "end moraines," which will be referred to here as simply "moraines" (Figure 1).
    [Show full text]
  • CAT — Creative Authors' Treasury
    SCIO WRITERS CLUB December 2016 Volume 5, Issue 2 Elementary CAT — Creative Authors’ Treasury Winter Edition— Inside this issue: Winter Snow Winter Snow 1 Winter is Coming Winter Snow Winter Oh, so much snow Thank You 2 Who would ever know how I Like People No, no, no too much snow, why? Our river is going to over flow from snow So much depends The Winter Sorrow 3 It’s too much for our shovels to handle The Cabin We can have snow, not too much Winter Snow is falling down fast Acrostic Poems 4 It is vast Sled 6 By Noah Little Pigs 9 Ginger Bread Guys Winter is Coming Brrr feel that cold wind Snowathysis 10 That means winter is coming Snow 12 With its great Christmas cheer The Winter Race So get out your coats Puzzle Page 13 Because winter is on the way. The Snowman 14 By Lillian Cline Page 2 CAT — Creative Authors’ Treasury Winter Winter is here Winter is the coldest time of year Winter is like ice Winter is the best time of year Snow is cold Winter is cold all around I Like By Kiara Grover I like my family I like my brothers I like my life I like my friend Thank You I like the snow Thank you! I like Christmas Thank You, for being there for me Thank You, for loving me Thank You, for taking care of me By Cameron Halsey And most of all, thank You for keeping a smile on my face By Alivia Thomason People People There’s people just like you and me Short people, tall people, skinny people, fat people, bald people, hairy people, short hair people, Long haired people, fashion people, old people, young people, rich people, poor people, people with hats, people with no hats, smart people, people with a job, cool people, not cool people, mean people, nice people and so many more people like me don’t judge anyone no matter what By Emma Eck Page 3 So much depends upon The Cabin So much depends upon A Christmas present In the woods To cherish, and keep, Where it was snowing Until the end of time A cabin was lit up The best present ever With Christmas lights Oh thank you, Dad.
    [Show full text]