Pdf.Thelancet.Com/ 23

Total Page:16

File Type:pdf, Size:1020Kb

Pdf.Thelancet.Com/ 23 A Peer-Reviewed Journal Tracking and Analyzing Disease Trends pages 2065–2274 EDITOR-IN-CHIEF D. Peter Drotman EDITORIAL STAFF EDITORIAL BOARD Founding Editor Dennis Alexander, Addlestone Surrey, United Kingdom Joseph E. McDade, Rome, Georgia, USA Ban Allos, Nashville, Tennessee, USA Managing Senior Editor Michael Apicella, Iowa City, Iowa, USA Barry J. Beaty, Ft. Collins, Colorado, USA Polyxeni Potter, Atlanta, Georgia, USA Martin J. Blaser, New York, New York, USA Associate Editors David Brandling-Bennet, Washington, D.C., USA Charles Ben Beard, Ft. Collins, Colorado, USA Donald S. Burke, Baltimore, Maryland, USA David Bell, Atlanta, Georgia, USA Charles H. Calisher, Ft. Collins, Colorado, USA Patrice Courvalin, Paris, France Arturo Casadevall, New York, New York, USA Stephanie James, Bethesda, Maryland, USA Thomas Cleary, Houston, Texas, USA Anne DeGroot, Providence, Rhode Island, USA Brian W.J. Mahy, Atlanta, Georgia, USA Vincent Deubel, Lyon, France Takeshi Kurata, Tokyo, Japan Ed Eitzen, Washington, D.C., USA Martin I. Meltzer, Atlanta, Georgia, USA Duane J. Gubler, Honolulu, Hawaii, USA David Morens, Bethesda, Maryland, USA Scott Halstead, Arlington, Virginia, USA J. Glenn Morris, Baltimore, Maryland, USA David L. Heymann, Geneva, Switzerland Sakae Inouye, Tokyo, Japan Tanja Popovic, Atlanta, Georgia, USA Charles King, Cleveland, Ohio, USA Patricia M. Quinlisk, Des Moines, Iowa, USA Keith Klugman, Atlanta, Georgia, USA Gabriel Rabinovich, Buenos Aires, Argentina S.K. Lam, Kuala Lumpur, Malaysia Didier Raoult, Marseilles, France Bruce R. Levin, Atlanta, Georgia, USA Pierre Rollin, Atlanta, Georgia, USA Myron Levine, Baltimore, Maryland, USA Mario Raviglione, Geneva, Switzerland Stuart Levy, Boston, Massachusetts, USA John S. MacKenzie, Brisbane, Australia David Walker, Galveston, Texas, USA Tom Marrie, Edmonton, Alberta, Canada Henrik C. Wegener, Copenhagen, Denmark John E. McGowan, Jr., Atlanta, Georgia, USA Copy Editors Stephen S. Morse, New York, New York, USA Angie Frey, Ronnie Henry, Anne Mather, Carol Snarey, Philip P. Mortimer, London, United Kingdom Cathy Young Fred A. Murphy, Davis, California, USA Production Barbara E. Murray, Houston, Texas, USA P. Keith Murray, Ames, Iowa, USA Reginald Tucker, Ann Jordan, Maureen Marshall Stephen Ostroff, Atlanta, Georgia, USA Editorial Assistant Rosanna W. Peeling, Geneva, Switzerland Carolyn Collins David H. Persing, Seattle, Washington, USA www.cdc.gov/eid Gianfranco Pezzino, Topeka, Kansas, USA Richard Platt, Boston, Massachusetts, USA Emerging Infectious Diseases Leslie Real, Atlanta, Georgia, USA Emerging Infectious Diseases is published monthly by the David Relman, Palo Alto, California, USA National Center for Infectious Diseases, Centers for Disease Nancy Rosenstein, Atlanta, Georgia, USA Control and Prevention, 1600 Clifton Road, Mailstop D61, Connie Schmaljohn, Frederick, Maryland, USA Atlanta, GA 30333, USA. Telephone 404-371-5329, fax 404-371-5449, email [email protected]. Tom Schwan, Hamilton, Montana, USA Ira Schwartz, Valhalla, New York, USA The opinions expressed by authors contributing to this journal Tom Shinnick, Atlanta, Georgia, USA do not necessarily reflect the opinions of the Centers for Disease Patricia Simone, Atlanta, Georgia, USA Control and Prevention or the institutions with which the authors Bonnie Smoak, Bethesda, Maryland, USA are affiliated. Rosemary Soave, New York, New York, USA All material published in Emerging Infectious Diseases is in P. Frederick Sparling, Chapel Hill, North Carolina, USA the public domain and may be used and reprinted without special Jan Svoboda, Prague, Czech Republic permission; proper citation, however, is required. Bala Swaminathan, Atlanta, Georgia, USA Robert Swanepoel, Johannesburg, South Africa Use of trade names is for identification only and does not Phillip Tarr, Seattle, Washington, USA imply endorsement by the Public Health Service or by the U.S. Timothy Tucker, Cape Town, South Africa Department of Health and Human Services. Elaine Tuomanen, Memphis, Tennessee, USA ∞ Emerging Infectious Diseases is printed on acid-free paper that meets Mary E. Wilson, Cambridge, Massachusetts, USA the requirements of ANSI/NISO 239.48-1992 (Permanence of Paper) John Ward, Atlanta, Georgia, USA Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 10, No. 12, December 2004 A Peer-Reviewed Journal Tracking and Analyzing Disease Trends Vol. 10, No. 12, December 2004 On the Cover Origin of Amphibian Edward Hicks (1780–1849). Chytrid Fungus . .2100 Peaceable Kingdom (c. 1833) C. Weldon et al. Histologic evidence indicates southern Africa as the origin Oil on canvas of amphibian chytrid fungus. (44.5 cm x 60.2 cm) Nonsusceptibility of Primate Worcester Art Museum Cells to Taura Syndrome Virus . .2106 C.R. Pantoja et al. Primate cells commonly used to test for viruses of the About the Cover p. 2269 Picornaviridae family are not susceptible to infection by Taura syndrome virus of penaeid shrimp. Venezuelan Equine Encephalitis Introduction Virus, Southern Mexico . .2113 J.G. Estrada-Franco et al. Links between Human p. 2101 Serosurveys and virus isolations have shown enzootic and and Animal Health . .2065 endemic Venezuelan equine encephalitis virus circulation in N. Marano and M. Pappaioanou southern Mexico since the 1996 epizootic. Opisthorchiasis from Perspective Imported Raw Fish . .2122 Wildlife as Source of O. Yossepowitch et al. Zoonotic Infections . .2067 Acute liver fluke infection results from eating raw fish ille- H. Kruse et al. gally imported from Siberia. Zoonoses with wildlife reservoirs are a major public health problem on all continents. Identifying Rodent Hantavirus Reservoirs, Brazil . .2127 Synopsis A. Suzuki et al. Bolomys lasiurus and Oligoryzomys nigripes are rodent Potential Mammalian reservoirs of Araraquara-like and Juquitiba-like hantaviruses, Filovirus Reservoirs . .2073 which cause hantavirus pulmonary syndrome in Brazil. A.T. Peterson et al. Biologic principles and explicit assumptions reduce the West Nile Virus Outbreak in range of possibilities in identifying the reservoir of North American Owls . .2135 filoviruses. A.Y. Gancz et al. Susceptibility of North American owls to West Nile virus is Research associated with native breeding range. Nipah Virus Reemergence, Crimean-Congo Hemorrhagic Bangladesh . .2082 Fever, Mauritania . .2143 V.P. Hsu et al. P. Nabeth et al. Two Nipah virus encephalitis outbreaks in Bangladesh may Hospital outbreak of Crimean-Congo hemorrhagic fever be associated with person-to-person transmission. in Mauritania alerted authorities to sporadic cases in the community. Risk Factors for Alveolar Echinococcosis . .2088 Alligators as West Nile P. Kern et al. Virus Amplifiers . .2150 A case-control study of alveolar echinococcosis in Germany K. Klenk et al. identifies several risk factors for the disease. Juvenile alligators may help transmit West Nile virus in some areas. Exposure to Nonhuman p. 2124 Primates, Cameroon . .2094 Interspecies Transmission of N.D. Wolfe et al. Swine Influenza . .2156 A high percentage of rural villagers are exposed to blood of Y.K. Choi et al. nonhuman primates and risk acquiring infectious diseases. Swinelike H3N2 influenza viruses were isolated from two geographically distinct turkey farms in the United States. West Nile Strain Virulence for American Crows . .2161 A.C. Brault et al. Increased viremia and deaths in American Crows inoculat- A Peer-Reviewed Journal Tracking and Analyzing Disease Trends Vol. 10, No. 12, December 2004 ed with a North American West Nile viral genotype indicate 2231 Lyssavirus in Bats, Cambodia that viral genetic determinants enhance avian pathogenicity J.-M. Reynes et al. and increase transmission potential of WNV. 2235 Human-to-Dog Transmission of Cats as Risk for Transmission MRSA of Salmonella . .2169 E. van Duijkeren et al. F. Van Immerseel et al. 2238 Tularemia with Peritonitis Cats can shed drug-resistant Salmonella serotypes in the X.Y. Han et al. environment. 2241 Tickborne Encephalitis, Norway VecTest for Detecting T. Skarpaas et al. West Nile Virus . .2175 2244 Antibodies to SARS Coronavirus W.B. Stone et al. in Civets The VecTest West Nile virus assay is adequate for diagnos- C. Tu et al. tic and surveillance purposes in American Crows, Blue Jays, and House Sparrows. 2249 Salmonella Associated with Veterinary Clinic Everglades Virus Infection B. Cherry et al. of Cotton Rats . .2182 2252 West Nile Virus Viremia in Wild L.L. Coffey et al. Rock Pigeons We characterized Everglades virus infection of cotton rats p. 2194 A.B. Allison et al. to validate their role as reservoir hosts in the enzootic transmission cycle. Letters Dispatches 2256 Cryptosporidium felis and 2189 Avian Influenza in Tigers and C. meleagridis in Persons with HIV Leopards 2257 Bartonella henselae in African Lion, J. Keawcharoen et al. South Africa 2192 Novel Avian Influenza H7N3 Strain 2258 M. tuberculosis Transmission, M. Hirst et al. Human to Canine 2196 Human Illness from Avian 2260 Taura Syndrome Virus and Influenza, British Columbia Mammalian Cell Lines S.A. Tweed et al. 2261 Bartonella clarridgeiae and 2200 Molecular Detection of SARS B. henselae in Dogs Coronavirus p. 2208 2263 Hantavirus Infection in Humans, C. Drosten et al. Colombia 2204 Detecting West Nile Virus in Owls and Raptors A.Y. Gancz et al. Book Reviews 2265 Emergence and Control of Viral 2207 Parastrongylus cantonensis in a Encephalitides Nonhuman Primate, Florida M. Pappaioanou M.S. Duffy et al. 2265 Prions and Prion Diseases: Current 2211 Simian Malaria in Human
Recommended publications
  • Repositiorio | FAUBA | Artículos De Docentes E Investigadores De FAUBA
    Biodivers Conserv (2011) 20:3077–3100 DOI 10.1007/s10531-011-0118-9 REVIEW PAPER Effects of agriculture expansion and intensification on the vertebrate and invertebrate diversity in the Pampas of Argentina Diego Medan • Juan Pablo Torretta • Karina Hodara • Elba B. de la Fuente • Norberto H. Montaldo Received: 23 July 2010 / Accepted: 15 July 2011 / Published online: 24 July 2011 Ó Springer Science+Business Media B.V. 2011 Abstract In this paper we summarize for the first time the effects of agriculture expansion and intensification on animal diversity in the Pampas of Argentina and discuss research needs for biodiversity conservation in the area. The Pampas experienced little human intervention until the last decades of the 19th century. Agriculture expanded quickly during the 20th century, transforming grasslands into cropland and pasture lands and converting the landscape into a mosaic of natural fragments, agricultural fields, and linear habitats. In the 1980s, agriculture intensification and replacement of cattle grazing- cropping systems by continuous cropping promoted a renewed homogenisation of the most productive areas. Birds and carnivores were more strongly affected than rodents and insects, but responses varied within groups: (a) the geographic ranges and/or abundances of many native species were reduced, including those of carnivores, herbivores, and specialist species (grassland-adapted birds and rodents, and probably specialized pollinators), sometimes leading to regional extinction (birds and large carnivores), (b) other native species were unaffected (birds) or benefited (bird, rodent and possibly generalist pollinator and crop-associated insect species), (c) novel species were introduced, thus increasing species richness of most groups (26% of non-rodent mammals, 11.1% of rodents, 6.2% of birds, 0.8% of pollinators).
    [Show full text]
  • Medical Parasitology
    MEDICAL PARASITOLOGY Anna B. Semerjyan Marina G. Susanyan Yerevan State Medical University Yerevan 2020 1 Chapter 15 Medical Parasitology. General understandings Parasitology is the study of parasites, their hosts, and the relationship between them. Medical Parasitology focuses on parasites which cause diseases in humans. Awareness and understanding about medically important parasites is necessary for proper diagnosis, prevention and treatment of parasitic diseases. The most important element in diagnosing a parasitic infection is the knowledge of the biology, or life cycle, of the parasites. Medical parasitology traditionally has included the study of three major groups of animals: 1. Parasitic protozoa (protists). 2. Parasitic worms (helminthes). 3. Arthropods that directly cause disease or act as transmitters of various pathogens. Parasitism is a form of association between organisms of different species known as symbiosis. Symbiosis means literally “living together”. Symbiosis can be between any plant, animal, or protist that is intimately associated with another organism of a different species. The most common types of symbiosis are commensalism, mutualism and parasitism. 1. Commensalism involves one-way benefit, but no harm is exerted in either direction. For example, mouth amoeba Entamoeba gingivalis, uses human for habitat (mouth cavity) and for food source without harming the host organism. 2. Mutualism is a highly interdependent association, in which both partners benefit from the relationship: two-way (mutual) benefit and no harm. Each member depends upon the other. For example, in humans’ large intestine the bacterium Escherichia coli produces the complex of vitamin B and suppresses pathogenic fungi, bacteria, while sheltering and getting nutrients in the intestine. 3.
    [Show full text]
  • Reproductive Seasonality in Captive Wild Ruminants: Implications for Biogeographical Adaptation, Photoperiodic Control, and Life History
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2012 Reproductive seasonality in captive wild ruminants: implications for biogeographical adaptation, photoperiodic control, and life history Zerbe, Philipp Abstract: Zur quantitativen Beschreibung der Reproduktionsmuster wurden Daten von 110 Wildwiederkäuer- arten aus Zoos der gemässigten Zone verwendet (dabei wurde die Anzahl Tage, an denen 80% aller Geburten stattfanden, als Geburtenpeak-Breite [BPB] definiert). Diese Muster wurden mit verschiede- nen biologischen Charakteristika verknüpft und mit denen von freilebenden Tieren verglichen. Der Bre- itengrad des natürlichen Verbreitungsgebietes korreliert stark mit dem in Menschenobhut beobachteten BPB. Nur 11% der Spezies wechselten ihr reproduktives Muster zwischen Wildnis und Gefangenschaft, wobei für saisonale Spezies die errechnete Tageslichtlänge zum Zeitpunkt der Konzeption für freilebende und in Menschenobhut gehaltene Populationen gleich war. Reproduktive Saisonalität erklärt zusätzliche Varianzen im Verhältnis von Körpergewicht und Tragzeit, wobei saisonalere Spezies für ihr Körpergewicht eine kürzere Tragzeit aufweisen. Rückschliessend ist festzuhalten, dass Photoperiodik, speziell die abso- lute Tageslichtlänge, genetisch fixierter Auslöser für die Fortpflanzung ist, und dass die Plastizität der Tragzeit unterstützend auf die erfolgreiche Verbreitung der Wiederkäuer in höheren Breitengraden wirkte. A dataset on 110 wild ruminant species kept in captivity in temperate-zone zoos was used to describe their reproductive patterns quantitatively (determining the birth peak breadth BPB as the number of days in which 80% of all births occur); then this pattern was linked to various biological characteristics, and compared with free-ranging animals. Globally, latitude of natural origin highly correlates with BPB observed in captivity, with species being more seasonal originating from higher latitudes.
    [Show full text]
  • Vet February 2017.Indd 85 30/01/2017 09:32 SMALL ANIMAL I CONTINUING EDUCATION
    CONTINUING EDUCATION I SMALL ANIMAL Trematodes in farm and companion animals The comparative aspects of parasitic trematodes of companion animals, ruminants and humans is presented by Maggie Fisher BVetMed CBiol MRCVS FRSB, managing director and Peter Holdsworth AO Bsc (Hon) PhD FRSB FAICD, senior manager, Ridgeway Research Ltd, Park Farm Building, Gloucestershire, UK Trematodes are almost all hermaphrodite (schistosomes KEY SPECIES being the exception) flat worms (flukes) which have a two or A number of trematode species are potential parasites of more host life cycle, with snails featuring consistently as an dogs and cats. The whole list of potential infections is long intermediate host. and so some representative examples are shown in Table Dogs and cats residing in Europe, including the UK and 1. A more extensive list of species found globally in dogs Ireland, are far less likely to acquire trematode or fluke and cats has been compiled by Muller (2000). Dogs and cats infections, which means that veterinary surgeons are likely are relatively resistant to F hepatica, so despite increased to be unconfident when they are presented with clinical abundance of infection in ruminants, there has not been a cases of fluke in dogs or cats. Such infections are likely to be noticeable increase of infection in cats or dogs. associated with a history of overseas travel. In ruminants, the most important species in Europe are the In contrast, the importance of the liver fluke, Fasciola liver fluke, F hepatica and the rumen fluke, Calicophoron hepatica to grazing ruminants is evident from the range daubneyi (see Figure 1).
    [Show full text]
  • Novltatesamerican MUSEUM PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y
    NovltatesAMERICAN MUSEUM PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 3085, 39 pp., 17 figures, 6 tables December 27, 1993 A New Genus for Hesperomys molitor Winge and Holochilus magnus Hershkovitz (Mammalia, Muridae) with an Analysis of Its Phylogenetic Relationships ROBERT S. VOSS1 AND MICHAEL D. CARLETON2 CONTENTS Abstract ............................................. 2 Resumen ............................................. 2 Resumo ............................................. 3 Introduction ............................................. 3 Acknowledgments ............... .............................. 4 Materials and Methods ..................... ........................ 4 Lundomys, new genus ............... .............................. 5 Lundomys molitor (Winge, 1887) ............................................. 5 Comparisons With Holochilus .............................................. 11 External Morphology ................... ........................... 13 Cranium and Mandible ..................... ........................ 15 Dentition ............................................. 19 Viscera ............................................. 20 Phylogenetic Relationships ....................... ...................... 21 Character Definitions ................... .......................... 23 Results .............................................. 27 Phylogenetic Diagnosis and Contents of Oryzomyini ........... .................. 31 Natural History and Zoogeography
    [Show full text]
  • Investigating Evolutionary Processes Using Ancient and Historical DNA of Rodent Species
    Investigating evolutionary processes using ancient and historical DNA of rodent species Thesis submitted for the degree of Doctor of Philosophy (PhD) University of London Royal Holloway University of London Egham, Surrey TW20 OEX Selina Brace November 2010 1 Declaration I, Selina Brace, declare that this thesis and the work presented in it is entirely my own. Where I have consulted the work of others, it is always clearly stated. Selina Brace Ian Barnes 2 “Why should we look to the past? ……Because there is nowhere else to look.” James Burke 3 Abstract The Late Quaternary has been a period of significant change for terrestrial mammals, including episodes of extinction, population sub-division and colonisation. Studying this period provides a means to improve understanding of evolutionary mechanisms, and to determine processes that have led to current distributions. For large mammals, recent work has demonstrated the utility of ancient DNA in understanding demographic change and phylogenetic relationships, largely through well-preserved specimens from permafrost and deep cave deposits. In contrast, much less ancient DNA work has been conducted on small mammals. This project focuses on the development of ancient mitochondrial DNA datasets to explore the utility of rodent ancient DNA analysis. Two studies in Europe investigate population change over millennial timescales. Arctic collared lemming (Dicrostonyx torquatus) specimens are chronologically sampled from a single cave locality, Trou Al’Wesse (Belgian Ardennes). Two end Pleistocene population extinction-recolonisation events are identified and correspond temporally with - localised disappearance of the woolly mammoth (Mammuthus primigenius). A second study examines postglacial histories of European water voles (Arvicola), revealing two temporally distinct colonisation events in the UK.
    [Show full text]
  • Angiostrongylus, Opisthorchis, Schistosoma, and Others in Europe
    Parasites where you least expect them: Angiostrongylus, Opisthorchis, Schistosoma, and others in Europe Edoardo Pozio Istituto Superiore di Sanità ESCMIDRome, eLibrary Italy © by author Scenario of human parasites in Europe in the 21th century • Cosmopolitan and autochthonous parasites • Parasite infections acquired outside Europe and development of the disease in Europe • Parasites recently discovered or rediscovered in Europe – imported by humans or animals (zoonosis) – always present but never investigated ESCMID– new epidemiological scenarios eLibrary © by author Parasites recently discovered in Europe: Schistosoma spp. Distribution of human schistosomiasis in 2012 What we knew on the distribution of schistosomiasis, worldwide up to 2012 ESCMID eLibrary © by author Parasites recently discovered in Europe: Schistosoma spp. • Knowledge on Schistosoma sp. in Europe before 2013 – S. bovis in cattle, sheep and goats of Portugal, Spain, Italy (Sardinia), and France (Corsica) – S. bovis strain circulating in Sardinia was unable to infect humans – intermediate host snail, Bulinus truncatus, is present in Portugal, Spain, Italy, France and Greece – S. haematobium foci were described in Algarve (Portugal) ESCMIDfrom 1921 to early 1970s eLibrary © by author Parasites recently discovered in Europe: Schistosoma spp. • more than 125 schistosomiasis infections were acquired in Corsica (France) from 2013 to 2015 • eggs excreted from patients in the urine were identified as – S. haematobium – S. bovis – S. haematobium/S. bovis hybrid ESCMID eLibrary Outbreak of urogenital schistosomiasis in Corsica (France): an epidemiological case study Boissier et al. Lancet Infect Dis . 2016 Aug;16(8):971 ©-9. by author Parasites recently discovered in Europe: Schistosoma spp. • What we known today – intermediate host snail, Bulinus truncatus, of Corsica can be vector of: – Zoonotic strain of S.
    [Show full text]
  • Updated Molecular Phylogenetic Data for Opisthorchis Spp
    Dao et al. Parasites & Vectors (2017) 10:575 DOI 10.1186/s13071-017-2514-9 RESEARCH Open Access Updated molecular phylogenetic data for Opisthorchis spp. (Trematoda: Opisthorchioidea) from ducks in Vietnam Thanh Thi Ha Dao1,2,3, Thanh Thi Giang Nguyen1,2, Sarah Gabriël4, Khanh Linh Bui5, Pierre Dorny2,3* and Thanh Hoa Le6 Abstract Background: An opisthorchiid liver fluke was recently reported from ducks (Anas platyrhynchos) in Binh Dinh Province of Central Vietnam, and referred to as “Opisthorchis viverrini-like”. This species uses common cyprinoid fishes as second intermediate hosts as does Opisthorchis viverrini, with which it is sympatric in this province. In this study, we refer to the liver fluke from ducks as “Opisthorchis sp. BD2013”, and provide new sequence data from the mitochondrial (mt) genome and the nuclear ribosomal transcription unit. A phylogenetic analysis was conducted to clarify the basal taxonomic position of this species from ducks within the genus Opisthorchis (Digenea: Opisthorchiidae). Methods: Adults and eggs of liver flukes were collected from ducks, metacercariae from fishes (Puntius brevis, Rasbora aurotaenia, Esomus metallicus) and cercariae from snails (Bithynia funiculata) in different localities in Binh Dinh Province. From four developmental life stage samples (adults, eggs, metacercariae and cercariae), the complete cytochrome b (cob), nicotinamide dehydrogenase subunit 1 (nad1) and cytochrome c oxidase subunit 1 (cox1) genes, and near-complete 18S and partial 28S ribosomal DNA (rDNA) sequences were obtained by PCR-coupled sequencing. The alignments of nucleotide sequences of concatenated cob + nad1+cox1, and of concatenated 18S + 28S were separately subjected to phylogenetic analyses. Homologous sequences from other trematode species were included in each alignment.
    [Show full text]
  • Cytogenetics of Some Mammal Species from Central
    CYTOGENETICS OF SOME MAMMAL SPECIES FROM CENTRAL ARGENTINA by SERGIO I. TIRANTl, B.S. A THESIS IN ZOOLOGY Submitted to the Gradúate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Approved August, 1996 ^f5 'f\\iV 30- Ho i^'í> "h Copyright 1996, Sergio I. Tiranti ACKNOWLEDGMENTS My special thanks go to Robert J. Baker, my committee chairman, for his encouragement and support throughout my stay at Texas Tech. Committee members Robert D. Bradley and Michael R. Willig, offered comments and suggestions that benefited the final outcome of this thesis. Portions of this thesis were reviewed by John Bickham, Meredith J. Hamilton, Steve Kasper, Karen McBee and Lara E. Wiggins, thus contributing to its improvement. My work in La Pampa Province, Argentina, was supported by the Subsecretaría de Cultura, where Norma Durango, Gustavo Siegenthaler and Eduardo Fiorucci contributed in many ways to the accomplishment of this research project. Numerous localities visited in this study were sampled as part of La Pampa Province Vertébrate Survey. My stay at TTU is supported in part by the Dirección Nacional de Cooperación Internacional, Ministerio de Cultura y Educación, Argentina and the Universidad Nacional de La Pampa, Argentina. Finally, I am heartedly indebted to my parents, Iván and Irene, for their neverending encouragement and support. 11 TABLE OF CONTENTS ACKNOWLEDGMENTS ü ABSTRACT v LIST OF TABEES vi LIST OF FIGURES vii CHAPTER I. INTRODUCTION 1 II. THE KARYOTYPE OFMYQTIS.LEYIS (CHIROPTERA, VESPERTILIONIDAE). 7 Introduction...... 7 Material and Methods . 7 Results and Discussion .... 9 III. CHROMOSOMAL POLYMORPHISM VARL\TION IN THE SCRUB MOUSE AKODON MOLINAE (RODENTL\: SIGMODONTINAE) IN CENTRAL ARGENTINA 11 Abstract.
    [Show full text]
  • Transboundary Species Project
    TRANSBOUNDARY SPECIES PROJECT ROAN, SABLE AND TSESSEBE Rowan B. Martin Species Report for Roan, Sable and Tsessebe in support of The Transboundary Mammal Project of the Ministry of Environment and Tourism, Namibia facilitated by The Namibia Nature Foundation and World Wildlife Fund Living in a Finite Environment (LIFE) Programme Cover picture adapted from the illustrations by Clare Abbott in The Mammals of the Southern African Subregion by Reay H.N. Smithers Published by the University of Pretoria Republic of South Africa 1983 Transboundary Species Project – Background Study Roan, Sable and Tsessebe CONTENTS 1. BIOLOGICAL INFORMATION ...................................... 1 a. Taxonomy ..................................................... 1 b. Physical description .............................................. 3 c. Habitat ....................................................... 6 d. Reproduction and Population Dynamics ............................. 12 e. Distribution ................................................... 14 f. Numbers ..................................................... 24 g. Behaviour .................................................... 38 h. Limiting Factors ............................................... 40 2. SIGNIFICANCE OF THE THREE SPECIES ........................... 43 a. Conservation Significance ........................................ 43 b. Economic Significance ........................................... 44 3. STAKEHOLDING ................................................. 48 a. Stakeholders .................................................
    [Show full text]
  • Stau D E Et a L . / Meta Mo Rp H O Sis 31 (3 ): 1 – 3 8 0
    Noctuoidea: Erebidae: Aganainae, Anobinae, Arctiinae Date of Host species Locality collection (c), Ref. no. Lepidoptera species Rearer Final instar larva Adult (Family) pupation (p), emergence (e) Erebidae: Aganainae M1637 Asota speciosa Ficus sur Jongmansspruit; c 13.1.2017 A. & I. Sharp (Moraceae) Hoedspruit; p 13.1.2017 Limpopo; e 26.1.2017 South Africa AM113 Asota speciosa Ficus natalensis Kameelfontein, farm; c 23.11.2017 A. & I. Sharp (Moraceae) Pretoria; p 1.12.2017 Gauteng; e 18.12.2017 South Africa Staude M1699 Asota speciosa Ficus sycamorus Epsom (North); c 5.4.2017 A. & I. Sharp (Moraceae) Hoedspruit; p 15.4.2017 et al Limpopo; e 25.10.2017 . South Africa / Metamorphosis L20180331-1V Asota speciosa Ficus sp. Wilderness; c 31.3.2018 J. Balona (Moraceae) Hoekwil; p 9.4.2018 Western Cape; e 22.5.2018 South Africa 31 (3) : 1 ‒ 380 MJB052 Asota speciosa Ficus sur St Lucia; c 9.12.2018 M. J. Botha (Moraceae) KwaZulu-Natal; p 18.12.2018 South Africa e 2.1.2019 138 Noctuoidea: Erebidae: Aganainae, Anobinae, Arctiinae SBR014 Asota speciosa Ficus sur Westville; c 14.1.2018 S. Bradley (Moraceae) Durban; p 16.1.2018 KwaZulu-Natal; e 31.1.2018 South Africa M1832 Digama aganais Carissa edulis Jongmansspruit; c 14.6.2017 A. & I. Sharp (Apocynaceae) Hoedspruit; p 25.6.2017 Limpopo; e 18.7.2017 South Africa M1861 Digama aganais Carissa edulis Glen Lyden (Franklyn c 23.9.2017 A. & I. Sharp (Apocynaceae) Park); p 30.9.2017 Staude Kampersrus; e 14.10.2017 Mpumalanga; South Africa et al .
    [Show full text]
  • Proquest Dissertations
    The Neotropical rodent genus Rhipidom ys (Cricetidae: Sigmodontinae) - a taxonomic revision Christopher James Tribe Thesis submitted for the degree of Doctor of Philosophy University College London 1996 ProQuest Number: 10106759 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10106759 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 ABSTRACT South American climbing mice and rats, Rhipidomys, occur in forests, plantations and rural dwellings throughout tropical South America. The genus belongs to the thomasomyine group, an informal assemblage of plesiomorphous Sigmodontinae. Over 1700 museum specimens were examined, with the aim of providing a coherent taxonomic framework for future work. A shortage of discrete and consistent characters prevented the use of strict cladistic methodology; instead, morphological assessments were supported by multivariate (especially principal components) analyses. The morphometric data were first assessed for measurement error, ontogenetic variation and sexual dimorphism; measurements with most variation from these sources were excluded from subsequent analyses. The genus is characterized by a combination of reddish-brown colour, long tufted tail, broad feet with long toes, long vibrissae and large eyes; the skull has a small zygomatic notch, squared or ridged supraorbital edges, large oval braincase and short palate.
    [Show full text]