The Evolutionary Ecology of Venomous Catfishes, with a Focus on Members of the North American Family Ictaluridae (Teleostei: Siluriformes)

Total Page:16

File Type:pdf, Size:1020Kb

The Evolutionary Ecology of Venomous Catfishes, with a Focus on Members of the North American Family Ictaluridae (Teleostei: Siluriformes) THE EVOLUTIONARY ECOLOGY OF VENOMOUS CATFISHES, WITH A FOCUS ON MEMBERS OF THE NORTH AMERICAN FAMILY ICTALURIDAE (TELEOSTEI: SILURIFORMES) by Jeremy J. Wright A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ecology and Evolutionary Biology) in the University of Michigan 2012 Doctoral Committee: Professor William L. Fink, Co-Chair Associate Professor Thomas F. Duda, Jr., Co-Chair Professor Mark D. Hunter Emeritus Professor Gerald R. Smith ACKNOWLEDGEMENTS The completion of this work would not have been possible without the contributions of a number of people who were gracious enough to offer their assistance and support over the course of my time as a Ph.D. student at the University of Michigan. First and foremost is my wife, Jacqueline, who has unprotestingly been conscripted as a field assistant, sounding board and source for research ideas and methodological improvement, reviewer and editor of manuscripts, and constant source of encouragement. It is no exaggeration to say that this research would not be what it is without her input and assistance. My dissertation committee has provided invaluable encouragement, advice, and logistical support throughout the process of formulating and executing the research contained herein. Bill Fink (initially my committee’s sole chair) deserves credit for first encouraging me to pursue the area of venomous fish research, which has proved enormously fruitful in terms of projects, publications and professional interactions and recognition. His enthusiasm for the research program that I’ve developed, as well as his trust in my ability to complete these and other research projects during my time at the University of Michigan, have always been greatly appreciated. Tom Duda (co-chair) generously provided lab space for many of the preparations and experiments necessary to this research, as well as greatly enhancing my understanding of and ability to implement a number of molecular techniques which, while not necessarily directly involved in the following chapters, have nevertheless allowed for the pursuit of a number of additional ii research projects and a broader understanding of the tools and techniques available to augment future studies of venom production in fishes. Jerry Smith has always been available for the discussion of research ideas and methodology, and has provided innumerable suggestions that have served to improve the scope and rigor of the research presented here. In the early years of my Ph.D. study, Jerry was also instrumental in collecting Michigan catfishes, both through his knowledge of localities in the area that were likely to produce the specimens that I required, and often the contribution of his time to physically help me in the field. Finally, Mark Hunter has offered valuable perspective (both ecological and evolutionary) and suggestions for research directions, such that I entered committee meetings with excitement, rather than the trepidation that precedes so many of these discussions, knowing that his thoughts and suggestions for improvement would invariably lead to a stronger finished product. Additional improvements to various aspects of this dissertation were inspired by conversations with former and current members of the UMMZ fish division’s “FishClub”, including Doug Nelson, Prosanta Chakrabarty, Clyde Barbour, Peter Esselman, Peter McIntyre, Ron Oldfield, Solomon David, and Katherine Birkett. My gratitude is also due to a number of additional people who have contributed their time and efforts to help me in acquiring live fishes. Nicole and Tim Matos enthusiastically allowed themselves to be led on tours of some of the more…”interesting” areas of the southern United States in search of catfishes, in the process pioneering a new and very effective seining method and contributing to some of my fondest memories related to this work. Thanks “Stompy”; thanks “Hulk”. “Pous” Mcguinness provided constant encouragement and good cheer in times when it appeared that collecting efforts iii in certain regions and localities would be futile. Field assistance was also, at various times, provided by family (Ty, Sue and Max Ruhland; Bill and Michelle Kelly), friends (Sam and Kassia Martin), colleagues (Wayne Starnes and Morgan Raley, North Carolina State Natural History Museum; Katherine Birkett, University of Michigan School of Natural Resources), and members of state wildelife agencies (Bill Collart, North Carolina Wildlife Resources Commission; Brad Utrup, Michigan Department of Natural Resources). Tanganyikan Synodontis specimens used in the completion of Chapter 5 were kindly obtained for me by David Assemany (The Aquarium Shop, Royal Oak, MI) and Jim Ellenberger (Mainly Cichlids, Santa Clara, CA). Funding for this research was provided by a number of sources, most substantially by the University of Michigan Museum of Zoology, through the Carl L. and Laura Hubbs Fellowship, Hinsdale and Walker Scholarships, and the UMMZ Fish Division Graduate Student Research Fund. Additional support was provided by the Horace H. Rackham School of Graduate Studies through two (precandidate and candidate) Graduate Student Research Grants, and several Graduate Student Travel Grants that have allowed me to present this research and gain valuable feedback at professional society meetings. Finally, a Raney Award from the American Society of Ichthyologists and Herpetologists supplemented costs associated with travel and collection of specimens required for the completion of Chapter 4. Several natural resources agencies, including the Alabama Department of Conservation and Natural Resources, Arkansas Game and Fish Commission, Kentucky Department of Fish and Wildlife Resources, Michigan Department of Natural Resources, North Carolina Wildlife Resources Commission, and Tennessee Wildlife Resources iv Agency provided scientific collecting permits which were used to obtain the specimens used in this research. The University of Michigan Committee on the Use and Care of Animals (UCUCA) regulations and Guidelines provided approval for all experimental procedures involving live animals were approved under UCUCA protocol numbers 09713, 10249, and 10504. v TABLE OF CONTENTS Acknowledgements ............................................................................................................. ii List of Tables ..................................................................................................................... ix List of Figures .................................................................................................................... xi Abstract ........................................................................................................................... xvii Chapter 1. The Venom Glands of Fishes: A Review and Discussion of Their Classification as Adaptive Traits.....................................................................................................................1 Abstract ....................................................................................................................1 Introduction ..............................................................................................................2 Venom Gland and Delivery System Morphology ...................................................4 Gross Morphology .......................................................................................4 Cellular Morphology ....................................................................................6 Piscine Axillary Glands ...........................................................................................8 Gross Morphology .......................................................................................8 Cellular Morphology ....................................................................................9 Possible Function .........................................................................................9 Pharmacology and Toxicology of Piscine Venoms ...............................................10 Chemistry of Piscine Venoms ................................................................................12 Proteins ......................................................................................................12 Other Toxic Components ...........................................................................14 Chemical Complexity of Piscine Venoms .................................................14 Do Piscine Venom Glands Fit Existing Definitions of Adaptive Traits? ..............16 Teleonomic Definitions .............................................................................16 Derived Trait Definitions ...........................................................................19 Selective Spread Definitions ......................................................................22 Nonhistorical Definitions ...........................................................................23 Selective Advantage? .................................................................................25 Summary ................................................................................................................27 Acknowledgements ................................................................................................28 Literature Cited ......................................................................................................36 2. Diversity, Phylogenetic Distribution, and Origins of Venomous Catfishes ..................45
Recommended publications
  • Aphanotorulus Ammophilus ERSS
    Aphanotorulus ammophilus (a catfish, no common name) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, August 2011 Revised, August 2018 Web Version, 8/31/2018 1 Native Range and Status in the United States Native Range From Froese and Pauly (2018a): “South America: Portuguesa River basin [Colombia, Venezuela].” From Ray and Armbruster (2016): “Type locality: Venezuela, Estado Cojedes, Río San Carlos, R. Portuguesa drainage at Caño Hondo, 2 km west of Las Vegas on the road from Las Vegas to Campo Allegre – 9º31'51"N, 68º39'39"W.” From Armbruster and Page (1996): “Rio Orinoco drainage of Venezuela […]; mainly known from the Rio Apure system.” 1 Status in the United States No records of Aphanotorulus ammophilus in trade or in the wild in the United States were found. Means of Introductions in the United States No records of Aphanotorulus ammophilus in the wild in the United States were found. Remarks Information searches were conducted using the accepted species name, Aphanotorulus ammophilus, and the synonym Hypostomus ammophilus. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing According to Eschmeyer et al. (2018), Aphanotorulus ammophilus (Armbruster and Page 1996) is the valid name for this species; Hypostomus ammophilus (Armbruster and Page 1996) used to be a valid name for this species and now is a synonym. From Froese and Pauly (2018b): “Kingdom Animalia Phylum Chordata Class Actinopterygii Order Siluriformes Family Loricariidae Genus Aphanotorulus” Size, Weight, and Age Range From Froese and Pauly (2018a): “Max length : 16.1 cm SL male/unsexed; [Weber 2003]” Environment From Froese and Pauly (2018a): “Freshwater; benthopelagic.” Climate/Range From Froese and Pauly (2018a): “Tropical” 2 Distribution Outside the United States Native From Froese and Pauly (2018a): “South America: Portuguesa River basin [Colombia and Venezuela].” From Ray and Armbruster (2016): “Type locality: Venezuela, Estado Cojedes, Río San Carlos, R.
    [Show full text]
  • Year of the Catfish with the Intention of Writing an Article Relating to Some Aspect of Catfish in the Aquarium on a Monthly Basis
    YYeeaarr ooff tthhee CCaattffiisshh A monthly column about Catfish Talking... (Doradidae) by Derek Tustin (Author’s Note: I started The Year of the Catfish with the intention of writing an article relating to some aspect of Catfish in the aquarium on a monthly basis. Last month, April 2013, I did not. I know this caused a bit of consternation on the part of Klaus Steinhaus, the editor of Tank Talk, and he had to find another article to fill the space. As such, I offer both he and the readers of Tank Talk my sincere apologies and to make up for it, give you a double helping of The Year of the Catfish this month. – Derek P.S. Tustin) o you have that one fish species of fish that you have Agamyxis pectinifrons D an unbridled affinity for? That one special species that just strikes a chord with you that you want to keep no matter what? Perhaps something that you have kept every time the opportunity presents? I think we all have a small group of species that no matter how unattractive other aquarists may find them, we want to keep them. I think you all know by now my absolute fascination with rainbowfish, and the extent that I am willing to go to obtain certain species. Given that, you might be surprised to know that my “soft-spot species” isn’t a rainbowfish, but rather a catfish, specifically the White-Spotted Doradid, Agamyxis pectinifrons. (Or it actually might be… but I’ll get to that in a bit.) Agamyxis pectinifrons is a member of the Doradidae family.
    [Show full text]
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Faculdade De Biociências
    FACULDADE DE BIOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM ZOOLOGIA ANÁLISE FILOGENÉTICA DE DORADIDAE (PISCES, SILURIFORMES) Maria Angeles Arce Hernández TESE DE DOUTORADO PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL Av. Ipiranga 6681 - Caixa Postal 1429 Fone: (51) 3320-3500 - Fax: (51) 3339-1564 90619-900 Porto Alegre - RS Brasil 2012 PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE BIOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM ZOOLOGIA ANÁLISE FILOGENÉTICA DE DORADIDAE (PISCES, SILURIFORMES) Maria Angeles Arce Hernández Orientador: Dr. Roberto E. Reis TESE DE DOUTORADO PORTO ALEGRE - RS - BRASIL 2012 Aviso A presente tese é parte dos requisitos necessários para obtenção do título de Doutor em Zoologia, e como tal, não deve ser vista como uma publicação no senso do Código Internacional de Nomenclatura Zoológica, apesar de disponível publicamente sem restrições. Dessa forma, quaisquer informações inéditas, opiniões, hipóteses e conceitos novos apresentados aqui não estão disponíveis na literatura zoológica. Pessoas interessadas devem estar cientes de que referências públicas ao conteúdo deste estudo somente devem ser feitas com aprovação prévia do autor. Notice This thesis is presented as partial fulfillment of the dissertation requirement for the Ph.D. degree in Zoology and, as such, is not intended as a publication in the sense of the International Code of Zoological Nomenclature, although available without restrictions. Therefore, any new data, opinions, hypothesis and new concepts expressed hererin are not available
    [Show full text]
  • A Practical Handbook for Determining the Ages of Gulf of Mexico And
    A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes THIRD EDITION GSMFC No. 300 NOVEMBER 2020 i Gulf States Marine Fisheries Commission Commissioners and Proxies ALABAMA Senator R.L. “Bret” Allain, II Chris Blankenship, Commissioner State Senator District 21 Alabama Department of Conservation Franklin, Louisiana and Natural Resources John Roussel Montgomery, Alabama Zachary, Louisiana Representative Chris Pringle Mobile, Alabama MISSISSIPPI Chris Nelson Joe Spraggins, Executive Director Bon Secour Fisheries, Inc. Mississippi Department of Marine Bon Secour, Alabama Resources Biloxi, Mississippi FLORIDA Read Hendon Eric Sutton, Executive Director USM/Gulf Coast Research Laboratory Florida Fish and Wildlife Ocean Springs, Mississippi Conservation Commission Tallahassee, Florida TEXAS Representative Jay Trumbull Carter Smith, Executive Director Tallahassee, Florida Texas Parks and Wildlife Department Austin, Texas LOUISIANA Doug Boyd Jack Montoucet, Secretary Boerne, Texas Louisiana Department of Wildlife and Fisheries Baton Rouge, Louisiana GSMFC Staff ASMFC Staff Mr. David M. Donaldson Mr. Bob Beal Executive Director Executive Director Mr. Steven J. VanderKooy Mr. Jeffrey Kipp IJF Program Coordinator Stock Assessment Scientist Ms. Debora McIntyre Dr. Kristen Anstead IJF Staff Assistant Fisheries Scientist ii A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes Third Edition Edited by Steve VanderKooy Jessica Carroll Scott Elzey Jessica Gilmore Jeffrey Kipp Gulf States Marine Fisheries Commission 2404 Government St Ocean Springs, MS 39564 and Atlantic States Marine Fisheries Commission 1050 N. Highland Street Suite 200 A-N Arlington, VA 22201 Publication Number 300 November 2020 A publication of the Gulf States Marine Fisheries Commission pursuant to National Oceanic and Atmospheric Administration Award Number NA15NMF4070076 and NA15NMF4720399.
    [Show full text]
  • Two New Species of Sea Catfish Named
    Media only: Elisabeth King (507) 212-8216; [email protected] June 30, 2017 Sean Mattson (507) 212-8290; [email protected] Media website: http://www.stri.si.edu/english/about_stri/media/press_releases/index.php Two new species of sea catfish named A group of scientists from Panama, Colombia, Brazil and Puerto Rico have described two new species of sea catfish in the genus Ariopsis, in a report published in the journal Zootaxa. Based on a specimen from Casaya Island in Panama’s Las Perlas archipelago, they named the first new species, Jimenez’s Sea Catfish, Ariopsis jimenzi for Máximo Jiménez Acosta, a zooarchaeology technician in archaeologist Richard Cooke’s lab at the Smithsonian Tropical Research Institute. Jiménez drew attention to the possible existence of a new species based on his examination of bone characteristics in specimens formerly originally believed to be A. seemanni, or the Colombian shark catfish. His observation that the bones belonged to a new species was immediately confirmed by molecular analysis. The second new species was named the New Granada sea catfish, Ariopsis canteri, for Diego Canter Ríos (1984-2007), a young and talented Colombian ichthyologist who died in a traffic accident near Santa Marta, Colombia along with three other biology undergraduates. He collected the data on the new species and also worked on this group of catfish for part of his bachelor’s thesis in marine biology. The zoologists in the team — Alexandre Marceniuk from Brazil’s Museu Paraense Emílio Goeldi; Arturo Acero of the Universidad Nacional de Colombia, and Ricardo Betancur of the University of Puerto Rico — constructed a family tree showing how the eight different species in the genus Ariopsis are related.
    [Show full text]
  • Odia: Dhudhiya Magara / Sorrah Magara / Haladia Magara
    FISH AND SHELLFISH DIVERSITY AND ITS SUSTAINABLE MANAGEMENT IN CHILIKA LAKE V. R. Suresh, S. K. Mohanty, R. K. Manna, K. S. Bhatta M. Mukherjee, S. K. Karna, A. P. Sharma, B. K. Das A. K. Pattnaik, Susanta Nanda & S. Lenka 2018 ICAR- Central Inland Fisheries Research Institute Barrackpore, Kolkata - 700 120 (India) & Chilika Development Authority C- 11, BJB Nagar, Bhubaneswar- 751 014 (India) FISH AND SHELLFISH DIVERSITY AND ITS SUSTAINABLE MANAGEMENT IN CHILIKA LAKE V. R. Suresh, S. K. Mohanty, R. K. Manna, K. S. Bhatta, M. Mukherjee, S. K. Karna, A. P. Sharma, B. K. Das, A. K. Pattnaik, Susanta Nanda & S. Lenka Photo editing: Sujit Choudhury and Manavendra Roy ISBN: 978-81-938914-0-7 Citation: Suresh, et al. 2018. Fish and shellfish diversity and its sustainable management in Chilika lake, ICAR- Central Inland Fisheries Research Institute, Barrackpore, Kolkata and Chilika Development Authority, Bhubaneswar. 376p. Copyright: © 2018. ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, Kolkata and Chilika Development Authority, C-11, BJB Nagar, Bhubaneswar. Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission from the copyright holders. Photo credits: Sujit Choudhury, Manavendra Roy, S. K. Mohanty, R. K. Manna, V. R. Suresh, S. K. Karna, M. Mukherjee and Abdul Rasid Published by: Chief Executive Chilika Development Authority C-11, BJB Nagar, Bhubaneswar-751 014 (Odisha) Cover design by: S. K. Mohanty Designed and printed by: S J Technotrade Pvt.
    [Show full text]
  • Harmful Non-Indigenous Species in the United States
    Harmful Non-Indigenous Species in the United States September 1993 OTA-F-565 NTIS order #PB94-107679 GPO stock #052-003-01347-9 Recommended Citation: U.S. Congress, Office of Technology Assessment, Harmful Non-Indigenous Species in the United States, OTA-F-565 (Washington, DC: U.S. Government Printing Office, September 1993). For Sale by the U.S. Government Printing Office ii Superintendent of Documents, Mail Stop, SSOP. Washington, DC 20402-9328 ISBN O-1 6-042075-X Foreword on-indigenous species (NIS)-----those species found beyond their natural ranges—are part and parcel of the U.S. landscape. Many are highly beneficial. Almost all U.S. crops and domesticated animals, many sport fish and aquiculture species, numerous horticultural plants, and most biologicalN control organisms have origins outside the country. A large number of NIS, however, cause significant economic, environmental, and health damage. These harmful species are the focus of this study. The total number of harmful NIS and their cumulative impacts are creating a growing burden for the country. We cannot completely stop the tide of new harmful introductions. Perfect screening, detection, and control are technically impossible and will remain so for the foreseeable future. Nevertheless, the Federal and State policies designed to protect us from the worst species are not safeguarding our national interests in important areas. These conclusions have a number of policy implications. First, the Nation has no real national policy on harmful introductions; the current system is piecemeal, lacking adequate rigor and comprehensiveness. Second, many Federal and State statutes, regulations, and programs are not keeping pace with new and spreading non-indigenous pests.
    [Show full text]
  • Evidence of Hidden Diversity and Taxonomic Conflicts in Five Stream Fishes from the Eastern Zimbabwe Highlands Freshwater Ecoregion
    A peer-reviewed open-access journal ZooKeys 768: 69–95Evidence (2018) of hidden diversity and taxonomic conflicts in five stream fishes... 69 doi: 10.3897/zookeys.768.21944 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Evidence of hidden diversity and taxonomic conflicts in five stream fishes from the Eastern Zimbabwe Highlands freshwater ecoregion Albert Chakona1,2, Wilbert T. Kadye2, Taurai Bere3, Daniel N. Mazungula1,2, Emmanuel Vreven4,5 1 South African Institute for Aquatic Biodiversity, Private Bag 1015, Grahamstown, South Africa, 6140 2 Department of Ichthyology and Fisheries Science, Rhodes University, P.O. Box 94, Grahamstown, South Africa, 6140 3 School of Wildlife, Ecology and Conservation, Chinhoyi University of Technology, P. Bag 7724, Chinhoyi, Zimbabwe 4 Royal Museum for Central Africa, Section of Vertebrates, Ichthyology, Leuvensesteenweg 13, 3080, Tervuren, Belgium 5 KU Leuven, Department of Biology, Laboratory of Biodiversity and Evolutio- nary Genomics, Deberiotstraat 32, 3000 Leuven, Belgium Corresponding author: Albert Chakona ([email protected]) Academic editor: N. Bogutskaya | Received 30 October 2018 | Accepted 25 April 2018 | Published 19 June 2018 http://zoobank.org/9621930C-8C43-40D0-8554-684035E99FAA Citation: Chakona A, Kadye WT, Bere T, Mazungula DN, Vreven E (2018) Evidence of hidden diversity and taxonomic conflicts in five stream fishes from the Eastern Zimbabwe Highlands freshwater ecoregion. ZooKeys 768: 69–95. https://doi.org/10.3897/zookeys.768.21944 Abstract
    [Show full text]
  • Fish, Various Invertebrates
    Zambezi Basin Wetlands Volume II : Chapters 7 - 11 - Contents i Back to links page CONTENTS VOLUME II Technical Reviews Page CHAPTER 7 : FRESHWATER FISHES .............................. 393 7.1 Introduction .................................................................... 393 7.2 The origin and zoogeography of Zambezian fishes ....... 393 7.3 Ichthyological regions of the Zambezi .......................... 404 7.4 Threats to biodiversity ................................................... 416 7.5 Wetlands of special interest .......................................... 432 7.6 Conservation and future directions ............................... 440 7.7 References ..................................................................... 443 TABLE 7.2: The fishes of the Zambezi River system .............. 449 APPENDIX 7.1 : Zambezi Delta Survey .................................. 461 CHAPTER 8 : FRESHWATER MOLLUSCS ................... 487 8.1 Introduction ................................................................. 487 8.2 Literature review ......................................................... 488 8.3 The Zambezi River basin ............................................ 489 8.4 The Molluscan fauna .................................................. 491 8.5 Biogeography ............................................................... 508 8.6 Biomphalaria, Bulinis and Schistosomiasis ................ 515 8.7 Conservation ................................................................ 516 8.8 Further investigations .................................................
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • Schistura Udomritthiruji, a New Loach from Southern Thailand (Cypriniformes: Nemacheilidae)
    319 Ichthyol. Explor. Freshwaters, Vol. 20, No. 4, pp. 319-324, 5 figs., 1 tab., December 2009 © 2009 by Verlag Dr. Friedrich Pfeil, München, Germany – ISSN 0936-9902 Schistura udomritthiruji, a new loach from southern Thailand (Cypriniformes: Nemacheilidae) Jörg Bohlen* and Vendula Šlechtová* Schistura udomritthiruji, new species, is described from streams draining to the Andaman Sea in southern Thailand between Takua Pa and Ranong. It is distinguished from congeners by the following characters: dark bars on the body much thinner in the anterior half of the body than in the posterior half; 9+8 branched rays in the caudal fin; males with suborbital flap; lateral line ends above base of anal fin; caudal fin hyaline and dark bars on posterior half of body more than twice as wide as interspaces. Introduction Material and methods The genus Schistura is the largest genus within The specimens were either fixed in 4 % formal- the family Nemacheilidae, containing at present dehyde and later transferred into 70 % ethanol about 190 nominal species. They are typically for storage (ZRC 51724, ZRC 51725) or fixed and found amongst stones in moderately to fast flow- stored in 96 % pure ethanol (IAPG A2546-2552, ing streams and rivers in foothill to mountainous A2455-2459, A1129-1131, A1780, CMK 21704, habitats. The distribution area of the genus CMK 21705). All measurements and counts follow stretches from the Near East through the Indian Kottelat (1990). Measurements were made point- subcontinent until Vietnam and southern China to-point with dial callipers to the nearest 0.1 mm. (Bânârescu, 1991). Except S. maculiceps from the Drawings were done using a camera lucida on Kapuas basin on Borneo, the southern margin of an Olympus SZX7 stereomicroscope.
    [Show full text]