TR-494: Anthraquinone

Total Page:16

File Type:pdf, Size:1020Kb

TR-494: Anthraquinone NTP TECHNICAL REPORT ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF ANTHRAQUINONE (CAS NO. 84-65-1) IN F344/N RATS AND B6C3F1 MICE (FEED STUDIES) NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Triangle Park, NC 27709 September 2005 NTP TR 494 NIH PUblication No. 05-3953 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health FOREWORD The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation. The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease. The studies described in this Technical Report were performed under the direction of the NIEHS and were conducted in compliance with NTP laboratory health and safety requirements and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Use of Animals. The prechronic and chronic studies were conducted in compliance with Food and Drug Administration (FDA) Good Laboratory Practice Regulations, and all aspects of the chronic studies were subjected to retrospective quality assurance audits before being presented for public review. These studies are designed and conducted to characterize and evaluate the toxicologic potential, including carcinogenic activity, of selected chemicals in laboratory animals (usually two species, rats and mice). Chemicals selected for NTP toxicology and carcinogenesis studies are chosen primarily on the bases of human exposure, level of production, and chemical structure. The interpretive conclusions presented in this Technical Report are based only on the results of these NTP studies. Extrapolation of these results to other species and quantitative risk analyses for humans require wider analyses beyond the purview of these studies. Selection per se is not an indicator of a chemical’s carcinogenic potential. Details about ongoing and completed NTP studies, abstracts of all NTP Technical Reports, and full versions of the completed reports are available at the NTP’s World Wide Web site: http://ntp.niehs.nih.gov. In addition, printed copies of these reports are available from NTP as supplies last by contacting (919) 541­1371. NTP TECHNICAL REPORT ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF ANTHRAQUINONE (CAS NO. 84-65-1) IN F344/N RATS AND B6C3F1 MICE (FEED STUDIES) NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 September 2005 NTP TR 494 NIH PUblication No. 05-3953 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health 2 CONTRIBUTORS National Toxicology Program NTP Pathology Working Group Evaluated and interpreted results and reported findings Evaluated slides, prepared pathology report on rats (November 10, 1998) R.D. Irwin, Ph.D., Study Scientist J.C. Seely, D.V.M., Chairperson Study Pathologist R.R. Maronpot, D.V.M., PATHCO, Inc. G.M. Blumenthal, Ph.D. G.P. Flake, M.D., Observer J.R. Bucher, Ph.D. E.T. Gaillard, D.V.M., M.S. R.E. Chapin, Ph.D. Experimental Pathology Laboratories, Inc. J.R. Hailey, D.V.M. R.A. Herbert, D.V.M., Ph.D. J.K. Haseman, Ph.D. National Toxicology Program G.N. Rao, D.V.M., Ph.D. N. Izumisawa, D.V.M., Ph.D. J.H. Roycroft, Ph.D. Yamanouchi, USA M.P. Jokinen, D.V.M. C.S. Smith, Ph.D. Pathology Associates International G.S. Travlos, D.V.M. R.R. Maronpot, D.V.M. K.L. Witt, M.S. National Toxicology Program A.W. Singer, D.V.M., Ph.D. Battelle Columbus Laboratories Battelle Columbus Laboratories Conducted studies, evaluated pathology findings Evaluated slides, prepared pathology report on mice (September 17, 1998) P.J. Kurtz, Ph.D., Principal Investigator, 14­week studies J.C. Seely, D.V.M., Chairperson M.R. Hejtmancik, Ph.D., Principal Investigator, PATHCO, Inc. 2­year studies R. Cattley, V.M.D., Ph.D. M.J. Ryan, D.V.M., Ph.D. Chemical Industry Institute of Toxicology A.W. Singer, D.V.M., Ph.D. E.T. Gaillard, D.V.M., M.S. Experimental Pathology Laboratories, Inc. Experimental Pathology Laboratories, Inc. R.A. Herbert, D.V.M., Ph.D. Provided pathology review National Toxicology Program N. Izumisawa, D.V.M, Ph.D., Observer J.F. Hardisty, D.V.M., Principal Investigator Yamanouchi, USA E.T. Gaillard, D.V.M., M.S. R.R. Maronpot, D.V.M. National Toxicology Program Dynamac Corporation A. Nyska, D.V.M. Prepared quality assurance audits National Toxicology Program S. Rehm, D.V.M. S. Brecher, Ph.D., Principal Investigator SmithKline Beecham M.J. Ryan, D.V.M., Ph.D. Analytical Sciences, Inc. Battelle Columbus Laboratories Provided statistical analyses Biotechnical Services, Inc. R.W. Morris, M.S., Principal Investigator Prepared Technical Report D.E. Kendrick, M.S. S.R. Gunnels, M.A., Principal Investigator K.P. McGowan, M.B.A. L.M. Harper, B.S. J.T. Scott, M.S. A.M. Macri­Hanson, M.A., M.F.A. D.C. Serbus, Ph.D. R.A. Willis, B.A. 3 CONTENTS ABSTRACT ............................................................................ 7 EXPLANATION OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY ................ 13 TECHNICAL REPORTS REVIEW SUBCOMMITTEES ...................................... 14 SUMMARIES OF TECHNICAL REPORTS REVIEW SUBCOMMITTEE COMMENTS .......... 17 INTRODUCTION ....................................................................... 23 MATERIALS AND METHODS ........................................................... 27 RESULTS .............................................................................. 37 DISCUSSION AND CONCLUSIONS ....................................................... 83 REFERENCES .......................................................................... 95 APPENDIX A Summary of Lesions in Male Rats in the 2-Year Feed Study of AnthraqUinone ......................................................... 103 APPENDIX B SUmmary of Lesions in Female Rats in the 2-Year Feed StUdy of AnthraqUinone ......................................................... 147 APPENDIX C Summary of Lesions in Male Mice in the 2-Year Feed Study of AnthraqUinone ......................................................... 185 APPENDIX D Summary of Lesions in Female Mice in the 2-Year Feed Study of AnthraqUinone ......................................................... 215 APPENDIX E Genetic Toxicology ........................................................ 245 APPENDIX F Clinical Pathology Results .................................................. 265 APPENDIX G Organ Weights and Organ-Weight-to-Body-Weight Ratios ....................... 275 APPENDIX H Reproductive Tissue Evaluations and Estrous Cycle Characterization .............. 279 APPENDIX I Pharmacokinetic Model and Toxicokinetic ResUlts .............................. 283 APPENDIX J Chemical Characterization and Dose FormUlation StUdies ....................... 305 APPENDIX K Feed and Compound Consumption in the 2-Year Feed Studies of Anthraquinone .... 317 4 Anthraquinone, NTP TR 494 APPENDIX L Ingredients, Nutrient Composition, and Contaminant Levels in NIH-07 Rat and Mouse Ration ............................................ 325 APPENDIX M Sentinel Animal Program .................................................. 329 APPENDIX N Single-Dose Toxicokinetic Studies in F344/N Rats and B6C3F1 Mice ............... 333 APPENDIX O 32-Day Feed Study of Anthraquinone in F344/N Rats ........................... 349 Anthraquinone, NTP TR 494 5 6 Anthraquinone, NTP TR 494 Summary Background: Anthraquinone is used to make dyes and paper and as a bird repellant. We studied anthraquinone to determine if it caused cancer in rats or mice. Methods: We fed groups of 50 male and female rats feed containing 469, 938, 1,875, or 3,750 parts per million (ppm) anthraquinone for 2 years. Similar groups of male and female mice received feed containing 833, 2,500, or 7,500 ppm anthraquinone. Groups of 50 male and female rats and mice receiving undosed feed served as the control groups. Tissues from more than 40 sites were examined for every animal. Results: In each group, the group receiving the highest dose of anthraquinone weighed less than its control group. Male and female rats given anthraquinone had higher rates of tumors of the kidney and urinary bladder. Liver tumors also were increased in female rats and slightly increased in male rats. In male and female mice given anthraquinone, the rates of liver tumors were greatly increased, and a few of these animals developed thyroid gland tumors. Conclusions: We conclude that anthraquinone caused cancer of the kidney and urinary bladder in male and female rats and of the liver in female rats. The occurrence of some liver tumors in male rats may have been related to anthraquinone exposure. We conclude that anthraquinone caused liver cancer in
Recommended publications
  • Molecular Analysis on the Possible Mechanism of Β-Naphthoflavone-Induced Hepatocarcinogenesis in Rats
    J Toxicol Pathol 2007; 20: 29–37 Original Molecular Analysis on the Possible Mechanism of β-Naphthoflavone-Induced Hepatocarcinogenesis in Rats Yusuke Yokouchi1, Masako Muguruma1, Mitsuyoshi Moto1, Miwa Takahashi1, Meilan Jin1, Yusuke Kenmochi1, Taichi Kohno1, Yasuaki Dewa1, and Kunitoshi Mitsumori1 1Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3–5–8 Saiwai-cho, Fuchu, Tokyo 183–8509, Japan Abstract: It has been speculated that oxidative stress is involved in the liver tumor-promoting effect of β- naphthoflavone (BNF; 5,6-benzoflavone) in rats, because of its strong induction of cytochrome P450 (CYP) 1A enzymes. In order to clarify the mechanism of liver tumor promoting effects of BNF, male F344 rats were initiated with a single intraperitoneal injection of 200 mg/kg diethylnitrosamine (DEN), and fed diet containing 2% of BNF for 6 weeks staring 2 weeks after injection. Two/third partial hepatectomy was perfomed at Week 3 after the treatment of BNF. Low-density Rat Toxicology & Drug Resistance Microarray and quantitative analyses of mRNA expressions of the selected genes using real-time reverse transcription (RT) -PCR were carried out on total RNAs extracted from the livers of F344 rats. Collected liver tissues were subjected to light microscopic examinations (hematoxylin and eosin staining), immunohistochemistries of proliferating cell nuclear antigen (PCNA), glutathione S-transferase placental form (GST-P) and CYP1A1, and Schmorl staining to identify lipofuscin. Gene expression analysis showed that 7 genes (CYP1A1, CYP1A2, CYP1B1, Gstm2 (GST mu2), Gstm3, glutathione peroxidase (Gpx)2 and NAD(P)H dehydrogenase, quinone 1(Nqo1)) were up-regulated (> 1.5 fold), and 4 genes (8-oxoguanine DNA glycosylase (Ogg1), Gpx1, peroxiredoxin (Prdx) 1 and P450 oxidoreductase (Por)) were down-regulated (< 0.67 fold) in the DEN + BNF group rats as compared with the DEN alone group.
    [Show full text]
  • ANTHRAQUINONE and ANTHRONE SERIES Part IX
    ANTHRAQUINONE AND ANTHRONE SERIES Part IX. Chromatographic Adsorption of Aminoanthraquinones on Alumina BY N. R. RAo, K. H. SHAH AND K. VENKATARAMAN, F.A.Sc. (Department of Chemical Technology. University of Bombay, Bombay) Received November 10, 1951 CORRELATIONS between chemical constitution and chromatograpl~c behaviour can only be attempted in molecales of the same or similar types and under specified conditions of chromatographic treatment, since complex solvent- adsorbent, solute-solvent and solute-adsorbent relationships are involved. Changes in the sequence of adsorption of the constituents in a mixture have been observed, ooth when the adsorbent is changed and when the deve- loping solvent is changed. Thus Strain was able tc separate some ternary mixtures in four of the six pessible sequences by changing the solvent1; and LeRosen found that cryptoxanthin is aloove lycopene on alumina and on calcium carbonate columns, but the order is inverted on a column of calcium hydroxide, using benzene as developer with all the three adsoroents. 2 An inversion of the sequence of adsorption of N-ethyl-N, N'-diphenylurea and 4-nitro-N-ethylaniline was observed by Schroeder when a slight alteration in the composition of the developer (2 or 5~o of ethyl acetate in light petro- leum) was made. 3 LeRosen has defined the adsorption affinity R as the rate of movement of the adsorptive zone (mm./min.) divided by the rate of flow of developing solvent. 2 R values have been used for standardizing adsorbents and for determining the efficiency of developers; using the same adsorbent and solvent, R values provide a quantitative measure of the adsorption affinities of a series of compounds which can then be correlated with their chemical constitution.
    [Show full text]
  • University of Groningen Drug Metabolism in Human and Rat
    University of Groningen Drug metabolism in human and rat intestine van de Kerkhof, Esther Gesina IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2007 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): van de Kerkhof, E. G. (2007). Drug metabolism in human and rat intestine: an 'in vitro' approach. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 27-09-2021 Chapter 5 Induction of drug metabolism along the rat intestinal tract EG van de Kerkhof IAM de Graaf MH de Jager GMM Groothuis In preparation Chapter 5 Abstract Induction of drug metabolizing enzymes in the intestine can result in a marked variation in the bioavailability of drugs and cause an imbalance between local toxification and detoxification.
    [Show full text]
  • Time-Dependent Inhibition by 2,3,7,8-Tetrachlorodibenzo-P-Dioxin of Skin Tumorigenesis with Polycyclic Hydrocarbons1
    [CANCER RESEARCH 40. 1580-1587, May 1980] 0008-5472/80/0040-OOOOS02.00 Time-dependent Inhibition by 2,3,7,8-Tetrachlorodibenzo-p-dioxin of Skin Tumorigenesis with Polycyclic Hydrocarbons1 J. DiGiovanni,2 D. L. Berry, G. L. Gleason, G. S. Kishore, and T. J. Slaga McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin 53706 ¡J. D.. G. S K.J. and Biology Division, Oak Ridge National Laboratory. Oak Ridge. Tennessee 37830 ¡D.L B . G L G.. T. J. S.J ABSTRACT reactive intermediates that are capable of interacting covalently with cellular macromolecules (20). The interaction with DNA, a The effects of treating female mice with single topical doses target for activated PAH intermediates, has received consid of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) at various times erable attention in recent years and is presently considered a before and after 7,12-dimethylbenz(a)anthracene (DMBA), critical event in the initiation of chemical carcinogenesip. Cur benzo(a)pyrene, 3-methylcholanthrene (MCA), and (±)-trans- rent evidence suggests that bay-region diol-epoxides may be 7/S,8«-dihydroxy-9a,10a-epoxy-7,8,9,10-tetrahydrobenzo(a)- ultimate carcinogenic forms for some PAH (24). This is sup pyrene were studied. TCDD, at doses of 1 /ig/mouse, was ported by recent data concerning BaP and DMBA epoxides applied topically 3 days prior to, 5 min prior to, or 1 day after that produce a DMA-binding product similar to that isolated in the initiator. The application of TCDD 5 min prior to or 1 day vivo after treatment with the parent hydrocarbon (2, 11, 17, after initiation with DMBA, benzo(a)pyrene, or MCA had little 22, 33, 42, 48, 49).
    [Show full text]
  • Role of Aryl Hydrocarbon Receptor in Central Nervous System Tumors: Biological and Therapeutic Implications (Review)
    ONCOLOGY LETTERS 21: 460, 2021 Role of aryl hydrocarbon receptor in central nervous system tumors: Biological and therapeutic implications (Review) MONTSERRAT ZARAGOZA‑OJEDA1,2, ELISA APATIGA‑VEGA1 and FRANCISCO ARENAS‑HUERTERO1 1Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720; 2Posgrado en Ciencias Biológicas, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, México Received January 28, 2020; Accepted January 25, 2021 DOI: 10.3892/ol.2021.12721 Abstract. Aryl hydrocarbon receptor (AHR) is a ligand‑ 6. Non‑canonical AhR pathway activated transcription factor, whose canonical pathway 7. Potential therapeutic applications of the crosstalk between mainly regulates the genes involved in xenobiotic metabolism. AhR pathway and central nervous system tumors However, it can also regulate several responses in a non‑ 8. Conclusions canonical manner, such as proliferation, differentiation, cell death and cell adhesion. AhR plays an important role in central nervous system tumors, as it can regulate several 1. Background of AhR research cellular responses via different pathways. The polymorphisms of the AHR gene have been associated with the development of The study of AhR can be discussed from two standpoints; the gliomas. In addition, the metabolism of tumor cells promotes first one reflects the reality of current times, that is, human tumor growth, particularly in tryptophan synthesis, where exposure to synthetic organic compounds and the conse‑ some metabolites, such as kynurenine, can activate the AhR quences that has on human health. During the 1970s, the pathway, triggering cell proliferation in astrocytomas, medul‑ studies of several toxicologists, biochemists and molecular loblastomas and glioblastomas.
    [Show full text]
  • 3-Methylcholanthrene Induces Chylous Ascites and Lethality in Tiparp Knockout Mice
    3-Methylcholanthrene Induces Chylous Ascites and Lethality in Tiparp Knockout Mice by Tiffany Elizabeth Cho A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Pharmacology and Toxicology University of Toronto © Copyright by Tiffany Elizabeth Cho (2015) 3-Methylcholanthrene Induces Chylous Ascites and Lethality in Tiparp Knockout Mice Tiffany Elizabeth Cho Master of Science Department of Pharmacology and Toxicology University of Toronto 2015 Abstract The aryl hydrocarbon receptor (AHR) is a ligand-regulated transcription factor that is activated upon binding to various ligands. The activated AHR modulates the expression of many genes including cytochrome P450s (CYPs) such as Cyp1a1, Cyp1b1, and 2,3,7,8-tetrachlorodibenzo-p- dioxin (TCDD)-inducible poly(ADP-ribose) polymerase (Tiparp). We recently reported that TIPARP is a transcriptional repressor of AHR and Tiparp knockout mice show increased sensitivity to dioxin-induced toxicities. Because of these findings, we examined the sensitivity of Tiparp knockout mice to 3-methylcholanthrene (3-MC), another potent AHR ligand. Tiparp knockout mice treated with 100mg/kg of 3-MC exhibited increased hepatotoxicity, increased lipolysis, and developed chylous ascites compared with treated wildtype mice. No treated Tiparp knockout mice survived beyond day 16; all wildtype mice survived the 30 day treatment. Collectively, this thesis shows that Tiparp knockout mice exhibit increased sensitivity to 3-MC- induced toxicity and lethality supporting our previous findings that TIPARP is an important negative regulator of AHR activity. ii Acknowledgements My M.Sc. has been a great learning experience and a fulfilling journey. I am forever grateful for the support and help that my supervisor, Dr.
    [Show full text]
  • The Role of Aryl-Hydrocarbon Receptor (Ahr) in Osteoclast Differentiation and Function
    cells Review The Role of Aryl-Hydrocarbon Receptor (AhR) in Osteoclast Differentiation and Function 1, 1, 2, Robin Park y, Shreya Madhavaram y and Jong Dae Ji * 1 MetroWest Medical Center/Tufts University School of Medicine, Framingham, MA 01702, USA; [email protected] (R.P.); [email protected] (S.M.) 2 Department of Rheumatology, College of Medicine, Korea University, Seoul 02841, Korea * Correspondence: [email protected] Robin Park and Shreya Madhavaram contributed equally to this work as first authors. y Received: 23 September 2020; Accepted: 13 October 2020; Published: 14 October 2020 Abstract: Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that plays a crucial role in bone remodeling through altering the interplay between bone-forming osteoblasts and bone-resorbing osteoclasts. While effects of AhR signaling in osteoblasts are well understood, the role and mechanism of AhR signaling in regulating osteoclastogenesis is not widely understood. AhR, when binding with exogenous ligands (environmental pollutants such as polycylic aryl hydrocarbon (PAH), dioxins) or endogenous ligand indoxyl-sulfate (IS), has dual functions that are mediated by the nature of the binding ligand, binding time, and specific pathways of distinct ligands. In this review, AhR is discussed with a focus on (i) the role of AhR in osteoclast differentiation and function and (ii) the mechanisms of AhR signaling in inhibiting or promoting osteoclastogenesis. These findings facilitate an understanding of the role of AhR in the functional regulation of osteoclasts and in osteoclast-induced bone destructive conditions such as rheumatoid arthritis and cancer. Keywords: aryl-hydrocarbon receptor; osteoclastogenesis; bone remodeling; cytochrome P450 1.
    [Show full text]
  • Opinion on the SCCNFP on Disperse Violet 1 Impurified with Disperse Red
    SCCNFP/0504/01, final OPINION OF THE SCIENTIFIC COMMITTEE ON COSMETIC PRODUCTS AND NON-FOOD PRODUCTS INTENDED FOR CONSUMERS CONCERNING DISPERSE VIOLET 1 IMPURIFIED WITH DISPERSE RED 15 Colipa n° C64 & C61 adopted by the SCCNFP during the 19th Plenary meeting of 27 February 2002 SCCNFP/0504/01, final Evaluation and opinion on : Disperse Violet 1 impurified with Disperse Red 15 ____________________________________________________________________________________________ 1. Terms of Reference 1.1 Context of the question The adaptation to technical progress of the Annexes to Council Directive 76/768/EEC of 27 July 1976 on the approximation of the laws of the Member States relating to cosmetic products. 1.2 Request to the SCCNFP The SCCNFP is requested to answer the following questions : * Is Disperse Violet 1 impurified with Disperse Red 15 safe for use in cosmetic products? * Does the SCCNFP propose any restrictions or conditions for its use in cosmetic products? 1.3 Statement on the toxicological evaluation The SCCNFP is the scientific advisory body to the European Commission in matters of consumer protection with respect to cosmetics and non-food products intended for consumers. The Commission’s general policy regarding research on animals supports the development of alternative methods to replace or to reduce animal testing when possible. In this context, the SCCNFP has a specific working group on alternatives to animal testing which, in co-operation with other Commission services such as ECVAM (European Centre for Validation of Alternative Methods), evaluates these methods. The extent to which these validated methods are applicable to cosmetic products and its ingredients is a matter of the SCCNFP.
    [Show full text]
  • Federal Register/Vol. 84, No. 230/Friday, November 29, 2019
    Federal Register / Vol. 84, No. 230 / Friday, November 29, 2019 / Proposed Rules 65739 are operated by a government LIBRARY OF CONGRESS 49966 (Sept. 24, 2019). The Office overseeing a population below 50,000. solicited public comments on a broad Of the impacts we estimate accruing U.S. Copyright Office range of subjects concerning the to grantees or eligible entities, all are administration of the new blanket voluntary and related mostly to an 37 CFR Part 210 compulsory license for digital uses of increase in the number of applications [Docket No. 2019–5] musical works that was created by the prepared and submitted annually for MMA, including regulations regarding competitive grant competitions. Music Modernization Act Implementing notices of license, notices of nonblanket Therefore, we do not believe that the Regulations for the Blanket License for activity, usage reports and adjustments, proposed priorities would significantly Digital Uses and Mechanical Licensing information to be included in the impact small entities beyond the Collective: Extension of Comment mechanical licensing collective’s potential for increasing the likelihood of Period database, database usability, their applying for, and receiving, interoperability, and usage restrictions, competitive grants from the Department. AGENCY: U.S. Copyright Office, Library and the handling of confidential of Congress. information. Paperwork Reduction Act ACTION: Notification of inquiry; To ensure that members of the public The proposed priorities do not extension of comment period. have sufficient time to respond, and to contain any information collection ensure that the Office has the benefit of SUMMARY: The U.S. Copyright Office is requirements. a complete record, the Office is extending the deadline for the extending the deadline for the Intergovernmental Review: This submission of written reply comments program is subject to Executive Order submission of written reply comments in response to its September 24, 2019 to no later than 5:00 p.m.
    [Show full text]
  • Inhibition of Uroporphyrinogen Decarboxylase by Halogenated Biphenyls in Chick Hepatocyte Cultures. Essential Role for Induction of Cytochrome P-448
    Biochem. J. (1984) 222, 737-748 737 Printed in Great Britain Inhibition of uroporphyrinogen decarboxylase by halogenated biphenyls in chick hepatocyte cultures Essential role for inducdon of cytochrome P-448 Peter R. SINCLAIR,*t§ William J. BEMENT,* Herbert L. BONKOVSKY,*j and Jacqueline F. SINCLAIR*t * VA Medical Center, White River Junction, VT 05001, U.S.A., and the Departments of fBiochemistry and tMedicine, Dartmouth Medical School, Hanover, NH 03756, U.S.A. (Received 16 April 1984/Accepted 23 May 1984) Uroporphyrinogen decarboxylase (EC 4.1.1.37) activity was assayed in cultures of chick-embryo hepatocytes by the changes in composition of porphyrins accumulated after addition of excess 5-aminolaevulinate. Control cells accumulated mainly protoporphyrin, whereas cells treated with 3,4,3',4'-tetrachlorobiphenyl or 2,4,5,3',4'- pentabromobiphenyl accumulated mainly uroporphyrin, indicating decreased activ- ity of the decarboxylase. 3-Methylcholanthrene and other polycyclic-hydrocarbon inducers of the P-448 isoenzyme of cytochrome P-450, did not affect the decarboxylase in the absence ofthe biphenyls. Induction ofP-448 was detected as an increase in ethoxyresorufin de-ethylase activity. Pretreatment of cells with methylcholanthrene decreased the time required for the halogenated biphenyls to inhibit the decarboxylase. The dose response of methylcholanthrene showed that less than 40% of the maximal induction of cytochrome P-448 was needed to produce the maximum biphenyl-mediated inhibition of the decarboxylase. In contrast, induction ofthe cytochrome P-450 isoenzyme by propylisopropylacetamide had no effect on the biphenyl-mediated decrease in decarboxylase activity. Use of inhibitors of the P-450 and P-448 isoenzymes (SKF-525A, piperonyl butoxide and ellipticine) supported the concept that only the P-448 isoenzyme is involved in the inhibition of the decarboxylase by the halogenated biphenyls.
    [Show full text]
  • 95[.95]Functionalizable Glyconanoparticles for A
    nanomaterials Communication Functionalizable Glyconanoparticles for a Versatile Redox Platform Marie Carrière 1,2, Paulo Henrique M. Buzzetti 1 , Karine Gorgy 1, Muhammad Mumtaz 2, Christophe Travelet 2 , Redouane Borsali 2,* and Serge Cosnier 1,* 1 UMR 5250, Département de Chimie Moléculaire, CNRS, Université Grenoble Alpes, CEDEX 09, 38058 Grenoble, France; [email protected] (M.C.); [email protected] (P.H.M.B.); [email protected] (K.G.) 2 CERMAV, UPR 5301, CNRS, Université Grenoble Alpes, CEDEX 09, 38058 Grenoble, France; [email protected] (M.M.); [email protected] (C.T.) * Correspondence: [email protected] (R.B.); [email protected] (S.C.) Abstract: A series of new glyconanoparticles (GNPs) was obtained by self-assembly by direct nano- precipitation of a mixture of two carbohydrate amphiphilic copolymers consisting of polystyrene- block-β-cyclodextrin and polystyrene-block-maltoheptaose with different mass ratios, respectively 0–100, 10–90, 50–50 and 0–100%. Characterizations for all these GNPs were achieved using dynamic light scattering, scanning and transmission electron microscopy techniques, highlighting their spher- ical morphology and their nanometric size (diameter range 20–40 nm). In addition, by using the inclusion properties of cyclodextrin, these glyconanoparticles were successfully post-functionalized using a water-soluble redox compound, such as anthraquinone sulfonate (AQS) and characterized by cyclic voltammetry. The resulting glyconanoparticles exhibit the classical electroactivity of free AQS in solution. The amount of AQS immobilized by host–guest interactions is proportional to the percentage of polystyrene-block-β-cyclodextrin entering into the composition of GNPs.
    [Show full text]
  • Structural Changes and Dynamic Behaviour of Vanadium Oxide‐Based Catalysts for Gas‐Phase Selective Oxidations
    Alma Mater Studiorum ‐ Università di Bologna Facoltà di Chimica Industriale Dipartimento di Chimica Industriale e dei Materiali Structural changes and dynamic behaviour of vanadium oxide‐based catalysts for gas‐phase selective oxidations Tesi di Dottorato di Ricerca Presentata da: Relatore: Dott.ssa Silvia Luciani Prof. Fabrizio Cavani Co‐relatore: Dott. Nicola Ballarini Coordinatore: Chiar.mo Prof. Luigi Angiolini Dottorato di Ricerca in Chimica Industriale (settore CHIM/04) ciclo XXI Esame finale anno 2009 Index INDEX ABSTRACT 1 PART A 5 1 Introduction 7 1.1 Maleic Anhydride: production and uses 7 1.1.1 Maleic Anhydride uses 8 1.1.2 Maleic Anhydride production 9 1.2 Catalytic System 16 1.2.1 Synthesis of vanadyl pyrophosphate 16 1.2.2 P/V ratio 21 1.2.3 The role of the different V species 21 1.2.4 Supported systems 22 1.2.5 Recent developments to improve the catalytic system 25 1.3 Reaction scheme and mechanism 28 1.3.1 Reaction scheme 28 1.3.2 Reaction mechanism 30 1.3.3 Nature of active sites 31 1.4 References 34 2 Experimental 41 2.1 Catalysts synthesis 41 2.1.1 Synthesis of vanadyl pyrophosphate, (VO)2P2O7 41 2.1.2 Synthesis of supported catalysts 42 2.2 Samples characterization 42 2.3 Catalytic tests 43 2.3.1 Bench scale plant 43 2.3.2 Analytical system 45 2.3.3 Elaboration of catalytic data 46 I Index 3 Surface dynamic of V/P/O catalyst 47 3.1 Introduction 47 3.2 Experimental 48 3.3 Results and discussion 49 3.3.1 “In‐situ” calcination 49 3.3.2 Ex‐situ characterization 52 3.3.3 “In‐situ” Raman spectroscopy 55 3.3.4 Steady state
    [Show full text]