Diatomic Molecular Spectroscopy with Standard and Anomalous Commutators

Total Page:16

File Type:pdf, Size:1020Kb

Diatomic Molecular Spectroscopy with Standard and Anomalous Commutators © International Science PrDiatomicess, ISSN: Molecular 2229-3159 Spectroscopy with Standard and Anomalous Commutators REVIEW ARTICLE DIATOMIC MOLECULAR SPECTROSCOPY WITH STANDARD AND ANOMALOUS COMMUTATORS CHRISTIAN G. PARIGGER AND JAMES O. HORNKOHL The University of Tennessee Space Institute, Tullahoma, Tennessee 37388, U.S.A. Abstract: In this review, we address computation of diatomic molecular spectra. An overview of the theory is discussed based on symmetries of the diatomic molecule. The standard quantum theory of angular momentum fully accounts for the rotational states of the diatomic molecule. Details are elaborated in view of standard versus anomalous commutators for generation of a synthetic spectrum. Specific example spectra are presented for selected diatomic molecules in view of diagnostic applications in laser-induced optical breakdown spectroscopy. Keywords: Molecular Spectra (PACS 33.20), Intensities and Shapes of Molecular Spectral Lines and Bands (PACS 33.70), Plasma Diagnostics (PACS 52.70), Laser-Induced Optical Breakdown. 1. INTRODUCTION of standard angular momentum eigenfunctions. A specific Although Van Vleck's reversed angular momentum element of the rotation matrix cannot represent a standard technique [1] is little used today, the anomalous angular angular momentum state because the rotation matrix momentum commutators [2] upon which it was based element carries two magnetic quantum numbers. A still appear in current texts [3–5]. In this review, we show fundamental property of angular momentum is that the that the standard quantum theory of angular momentum square of the total angular momentum and only one of fully accounts for the rotational states of the diatomic its components are constants of motion. An equation molecule. We find that the commutators which define giving operation of the raising and lowering operators angular momentum are not changed in a transformation on the rotation matrix is derived. Some matrix elements from a laboratory coordinate system to one which rotates of the rotational Hamiltonian are calculated to with the molecule, and the seemingly anomalous behavior demonstrate that standard results can be obtained without of the rotated angular momentum operators J¢ and N¢ is resorting to Van Vleck's argument [1] that the unexpected ± ± ¢ ¢ simply the result of their operating on the complex behavior of J± and N± is the result of the anomalous conjugate of rotation matrix elements. commutators. Specifically, we show below that: A rotation is a unitary transformation and, therefore, ¢ preserves the commutation relationships which define JJ± W = JJJ( +1) - W W ±( 1 W) ± , 1 ... (1) angular momentum. Also, operation of the raising and lowering operators on standard angular momentum states JD¢ J* (abg ) is the same in all coordinate systems connected by proper ±M W rotations. Two approaches are presented to show that + - W WJ* abg = JJD( 1) ( 1) W ( ) proper rotations preserve the angular momentum M , 1 commutators. The frequently applied nonstandard ... (2) behavior of the raising and lowering operators on Notice the molecule-fixed operator J±¢ acts on the state diatomic states is illustrated as a result of the operators whose magnetic quantum number W is referenced to the ¢ W acting on elements of the rotation operator matrix instead molecule-fixed z axis as expected, but that J+ lowers International Review of Atomic and Molecular Physics, 1 (1), January-June 2010 25 Christian G. Parigger and James O. Hornkohl Î when operating on the complex conjugate of the rotation Ji¢ Jj¢ – Jj¢ Ji¢ = –i i¢ j¢ k¢ Jk¢ ... (4) ¢ W J* (abg ) matrix element while J– raises of DM W . Here, the primed index denotes a rotated coordinate. This equation containing the reversed sign of i is known The fully standard formalism of angular momentum as Klein's [2] anomalous commutation formula. is applicable without modification to the theory of diatomic spectra as will be demonstrated here: (i) An Two approaches are debated in this work, namely an exact equation for the total angular momentum states of operator and an algebraic approach, without utilizing the diatomic molecule will be derived. (ii) The Hund's Klein's anomalous commutation formula. Each approach cases (a) and (b) basis sets will be obtained from the begins with the standard commutator formula, Eq. (3). We point out that in principle, Eq. (4) can be utilized in exact equation. (iii) The effects of J , J , J¢ , and J¢ on + – + – building angular momentum theory. However, in analogy J (abg ) DM W and its complex conjugate will be calculated. to distinction between right- and left- handed coordinate (iv) Some case (a) matrix elements of the rotational systems, different signs occur. We only use the standard Hamiltonian will be evaluated to show that the standard sign as indicated in Eq. (3) in computation of a molecular angular momentum formalism gives the accepted results. diatomic spectrum [6], i.e., without resorting to use of Also, Hönl-London factors for all n-photon a « a and Klein's anomaly and Van Vleck's reversed angular b « b transitions obeying the D S = 0 selection rule will momentum method. be calculated. Applications will be illustrated in the study Here, the reversal of the sign in Eq. (3) is briefly of molecular spectra recorded following laser-induced investigated for an unitary and an anti-unitary optical breakdown. transformation. The Euler rotation matrix is a real, unitary matrix (see Eq. (11) below). The determinate of the Euler 1.1 Review of Standard and Anomalous Angular rotation matrix is +1 meaning that the sign of vectors is Momentum Commutators preserved under rotations. A spatial rotation of coordinates is a proper transformation. The customary starting point for the quantum theory of angular momentum is the commutation formula for Conversely, the inversion or parity operator the cartesian components of the angular momentum constitutes an improper rotation— this transformation operator J, cannot be described exclusively in terms of the Euler angles. However, angular momentum is a pseudo or axial JiJj – JjJi = iijkJk ... (3) vector, preserving the sign of J under improper rotations. where The parity operator is also unitary and Eq. (3) is preserved by the parity operator. Time reversal (time inversion or ì +1i , j , k in cyclic order reversal of motion) changes the sign of J and it complex- ï conjugates the imaginary unit due to time reversal being = í - 1i , j , k not in cyclic order . ijk ï anti-unitary. Thus, Eq. (3) is invariant under time reversal. î 0 if any indices equal As shown in texts (e.g. Messiah [7]), the time reversal operator has been designed to be anti-unitary for the very The above commutator property usually defines the purpose of preserving the sign of i in commutation angular momentum operator. Coordinate transformations formulae. leave the angular momentum operator definition invariant. The conservation law for angular momentum 1.2 Effect of Unitary Transformation on Angular is fundamental. The definition of angular momentum, Momentum Commutators Eq. (3), is, of course, invariant under specifically spatial In a brief review we show that unitary transformations translations and rotations. Furthermore, Eq. (3) is preserve commutation formulae. Consider the operators invariant under coordinate inversion and time reversal. A, B, and C which satisfy the commutation formula Van Vleck's reversed angular momentum method AB – BA = iC, ... (5) starts with Eq. (3) but then utilizes change of sign of i and subject these operators to the unitary transformation for angular momentum when a transformation of U. That is, coordinates to a system attached to a rotating molecule is made, A¢ = U AU † ... (6) 26 International Review of Atomic and Molecular Physics, 1 (1), January-June 2010 Diatomic Molecular Spectroscopy with Standard and Anomalous Commutators and determinants, are equal to the corresponding matrix † abg A = U A¢ U, ... (7) elements of D ( ) labeled mij, i.e., mij is its own cofactor. For example, with similar equations holding for B¢ and C¢ . The operator † J ¢ J ¢ – J ¢ J ¢ U is unitary, i.e., U = U – 1, so x y y x = i [(m12m23 – m13m22) (Jy Jz – Jz Jy) + U † A¢ UU † B¢ U – U † B¢ UU † A¢ U (m13m21 – m11m23) (Jx Jz – Jz Jx) + = U † A¢ B¢ U – U † B¢ A¢ U = i U † C¢ U, ... (8) (m m – m m ) (J J – J J )], ... (13) or 11 22 12 21 x y y x and since A¢ B¢ – B¢ A¢ = iC¢ ... (9) m12m23 – m13m22 = m31, The above textbook discussion (e.g. Davydov [8]) m m – m m = –m , confirms that the angular momentum quantum 13 21 11 23 32 commutators, Eq. (3), are preserved under unitary m11m22 – m12m21 = m33, ... (14) transformations. The Euler rotation matrix, Eq. (11) the right side of the Eq. (12) reduces to iJz¢ . below, is easily demonstrated to be unitary. Comparison with Van Vleck's [1] treatment of Klein's An algebraic approach is used in the following to anomalous formula, given between his Eqs (4) and (5), show that the commutator Eq. (3) remains invariant when shows that we do not require reversal of sign in our proper rotation of coordinates is applied. The laboratory approach. The anomalous sign in Eq. (4) does not reveal referenced J is transformed to the rotated coordinate a novel aspect of the nature of diatomic molecules. system by application of the rotation matrix D (abg ), Noteworthy is that the anomalous commutation formula remains today a time honored tradition in the theory of ¢ abg J = D ( ) J, ... (10) molecular spectra, e.g., see Refs. [2– 5, 14– 22]. Klein's where a , b , and g are the Euler angles and D (abg ) is an anomalous commutators are means by which matrix orthogonal matrix whose determinant is +1, Goldstein[9], elements of various operators in the molecular Hamiltonian, in particular those expressed in terms of D (abg ) = angular momentum raising and lowering operators, are æcosabg-ag cos cos sin sin abg+ag-bg sin cos cos cos sin sin cos ö obtained.
Recommended publications
  • Further Quantum Physics
    Further Quantum Physics Concepts in quantum physics and the structure of hydrogen and helium atoms Prof Andrew Steane January 18, 2005 2 Contents 1 Introduction 7 1.1 Quantum physics and atoms . 7 1.1.1 The role of classical and quantum mechanics . 9 1.2 Atomic physics—some preliminaries . .... 9 1.2.1 Textbooks...................................... 10 2 The 1-dimensional projectile: an example for revision 11 2.1 Classicaltreatment................................. ..... 11 2.2 Quantum treatment . 13 2.2.1 Mainfeatures..................................... 13 2.2.2 Precise quantum analysis . 13 3 Hydrogen 17 3.1 Some semi-classical estimates . 17 3.2 2-body system: reduced mass . 18 3.2.1 Reduced mass in quantum 2-body problem . 19 3.3 Solution of Schr¨odinger equation for hydrogen . ..... 20 3.3.1 General features of the radial solution . 21 3.3.2 Precisesolution.................................. 21 3.3.3 Meanradius...................................... 25 3.3.4 How to remember hydrogen . 25 3.3.5 Mainpoints.................................... 25 3.3.6 Appendix on series solution of hydrogen equation, off syllabus . 26 3 4 CONTENTS 4 Hydrogen-like systems and spectra 27 4.1 Hydrogen-like systems . 27 4.2 Spectroscopy ........................................ 29 4.2.1 Main points for use of grating spectrograph . ...... 29 4.2.2 Resolution...................................... 30 4.2.3 Usefulness of both emission and absorption methods . 30 4.3 The spectrum for hydrogen . 31 5 Introduction to fine structure and spin 33 5.1 Experimental observation of fine structure . ..... 33 5.2 TheDiracresult ..................................... 34 5.3 Schr¨odinger method to account for fine structure . 35 5.4 Physical nature of orbital and spin angular momenta .
    [Show full text]
  • 2. Molecular Stucture/Basic Spectroscopy the Electromagnetic Spectrum
    2. Molecular stucture/Basic spectroscopy The electromagnetic spectrum Spectral region fooatocadr atomic and molecular spectroscopy E. Hecht (2nd Ed.) Optics, Addison-Wesley Publishing Company,1987 Per-Erik Bengtsson Spectral regions Mo lecu lar spec troscopy o ften dea ls w ith ra dia tion in the ultraviolet (UV), visible, and infrared (IR) spectltral reg ions. • The visible region is from 400 nm – 700 nm • The ultraviolet region is below 400 nm • The infrared region is above 700 nm. 400 nm 500 nm 600 nm 700 nm Spectroscopy: That part of science which uses emission and/or absorption of radiation to deduce atomic/molecular properties Per-Erik Bengtsson Some basics about spectroscopy E = Energy difference = c /c h = Planck's constant, 6.63 10-34 Js ergy nn = Frequency E hn = h/hc /l E = h = hc / c = Velocity of light, 3.0 108 m/s = Wavelength 0 Often the wave number, , is used to express energy. The unit is cm-1. = E / hc = 1/ Example The energy difference between two states in the OH-molecule is 35714 cm-1. Which wavelength is needed to excite the molecule? Answer = 1/ =35714 cm -1 = 1/ = 280 nm. Other ways of expressing this energy: E = hc/ = 656.5 10-19 J E / h = c/ = 9.7 1014 Hz Per-Erik Bengtsson Species in combustion Combustion involves a large number of species Atoms oxygen (O), hydrogen (H), etc. formed by dissociation at high temperatures Diatomic molecules nitrogen (N2), oxygen (O2) carbon monoxide (CO), hydrogen (H2) nitr icoxide (NO), hy droxy l (OH), CH, e tc.
    [Show full text]
  • Ijmp.Jor.Br V
    INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P) http://www.ijmp.jor.br v. 10, n. 8, Special Edition Seng 2019 ISSN: 2236-269X DOI: 10.14807/ijmp.v10i8.1046 A NEW HYPOTHESIS ABOUT THE NUCLEAR HYDROGEN STRUCTURE Relly Victoria Virgil Petrescu IFToMM, Romania E-mail: [email protected] Raffaella Aversa University of Naples, Italy E-mail: [email protected] Antonio Apicella University of Naples, Italy E-mail: [email protected] Taher M. Abu-Lebdeh North Carolina A and T State Univesity, United States E-mail: [email protected] Florian Ion Tiberiu Petrescu IFToMM, Romania E-mail: [email protected] Submission: 5/3/2019 Accept: 5/20/2019 ABSTRACT In other papers already presented on the structure and dimensions of elemental hydrogen, the elementary particle dynamics was taken into account in order to be able to determine the size of the hydrogen. This new work, one comes back with a new dynamic hypothesis designed to fundamentally change again the dynamic particle size due to the impulse influence of the particle. Until now it has been assumed that the impulse of an elementary particle is equal to the mass of the particle multiplied by its velocity, but in reality, the impulse definition is different, which is derived from the translational kinetic energy in a rapport of its velocity. This produces an additional condensation of matter in its elemental form. Keywords: Particle structure; Impulse; Condensed matter. [http://creativecommons.org/licenses/by/3.0/us/] Licensed under a Creative Commons Attribution 3.0 United States License 1749 INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P) http://www.ijmp.jor.br v.
    [Show full text]
  • Chemical Formulas the Elements
    Chemical Formulas A chemical formula gives the numbers and types of atoms that are found in a substance. When the substance is a discrete molecule, then the chemical formula is also its molecular formula. Fe (iron) is a chemical formula Fe2O3 is a molecular formula The Elements The chemical formulas of most of the elements are simply their elemental symbol: Na (sodium) Fe (iron) He (helium) U (uranium) These chemical formulas are said to be monatomic—only an atom in chemical formula 1 The Elements There are seven elements that occur naturally as diatomic molecules—molecules that contain two atoms: H2 (hydrogen) N2 (nitrogen) O2 (oxygen) F2 (fluorine) Cl2 (chlorine) Br2 (bromine) I2 (iodine) The last four elements in this list are in the same family of the Periodic Table Binary Compounds A binary compound is one composed of only two different types of atoms. Rules for binary compound formulas 1. Element to left in Periodic Table comes first except for hydrogen: KCl PCl3 Al2S3 Fe3O4 2 Binary Compounds 2. Hydrogen comes last unless other element is from group 16 or 17: LiH, NH3, B2H4, CH4 3. If both elements are from the same group, the lower element comes first: SiC, BrF3 Other Compounds For compounds with three or more elements that are not ionic, if it contains carbon, this comes first followed by hydrogen. Other elements are then listed in alphabetical order: C2H6O C4H9BrO CH3Cl C8H10N4O2 3 Other Compounds However, the preceding rule is often ignored when writing organic formulas (molecules containing carbon, hydrogen, and maybe other elements) in order to give a better idea of how the atoms are connected: C2H6O is the molecular formula for ethanol, but nobody ever writes it this way—instead the formula is written C2H5OH to indicate one H atom is connected to the O atom.
    [Show full text]
  • Total Angular Momentum
    Total Angular momentum Dipanjan Mazumdar Sept 2019 1 Motivation So far, somewhat deliberately, in our prior examples we have worked exclusively with the spin angular momentum and ignored the orbital component. This is acceptable for L = 0 systems such as filled shell atoms, but properties of partially filled atoms will depend both on the orbital and the spin part of the angular momentum. Also, when we include relativistic corrections to atomic Hamiltonian, both spin and orbital angular momentum enter directly through terms like L:~ S~ called the spin-orbit coupling. So instead of focusing only on the spin or orbital angular momentum, we have to develop an understanding as to how they couple together. One of the ways is through the total angular momentum defined as J~ = L~ + S~ (1) We will see that this will be very useful in many cases such as the real hydrogen atom where the eigenstates after including the fine structure effects such as spin-orbit interaction are eigenstates of the total angular momentum operator. 2 Vector model of angular momentum Let us first develop an intuitive understanding of the total angular momentum through the vector model which is a semi-classical approach to \add" angular momenta using vector algebra. We shall first ask, knowing L~ and S~, what are the maxmimum and minimum values of J^. This is simple to answer us- ing the vector model since vectors can be added or subtracted. Therefore, the extreme values are L~ + S~ and L~ − S~ as seen in figure 1.1 Therefore, the total angular momentum will take up values between l+s Figure 1: Maximum and minimum values of angular and jl − sj.
    [Show full text]
  • 1. the Hamiltonian, H = Α Ipi + Βm, Must Be Her- Mitian to Give Real
    1. The hamiltonian, H = αipi + βm, must be her- yields mitian to give real eigenvalues. Thus, H = H† = † † † pi αi +β m. From non-relativistic quantum mechanics † † † αi pi + β m = aipi + βm (2) we know that pi = pi . In addition, [αi,pj ] = 0 because we impose that the α, β operators act on the spinor in- † † αi = αi, β = β. Thus α, β are hermitian operators. dices while pi act on the coordinates of the wave function itself. With these conditions we may proceed: To verify the other properties of the α, and β operators † † piαi + β m = αipi + βm (1) we compute 2 H = (αipi + βm) (αj pj + βm) 2 2 1 2 2 = αi pi + (αiαj + αj αi) pipj + (αiβ + βαi) m + β m , (3) 2 2 where for the second term i = j. Then imposing the Finally, making use of bi = 1 we can find the 26 2 2 2 relativistic energy relation, E = p + m , we obtain eigenvalues: biu = λu and bibiu = λbiu, hence u = λ u the anti-commutation relation | | and λ = 1. ± b ,b =2δ 1, (4) i j ij 2. We need to find the λ = +1/2 helicity eigenspinor { } ′ for an electron with momentum ~p = (p sin θ, 0, p cos θ). where b0 = β, bi = αi, and 1 n n idenitity matrix. ≡ × 1 Using the anti-commutation relation and the fact that The helicity operator is given by 2 σ pˆ, and the posi- 2 1 · bi = 1 we are able to find the trace of any bi tive eigenvalue 2 corresponds to u1 Dirac solution [see (1.5.98) in http://arXiv.org/abs/0906.1271].
    [Show full text]
  • Bound-State Solutions of Dirac Equation Plan of the Lecture
    Lecture 3 Bound-state solutions of Dirac equation Plan of the lecture • Few comments about Dirac equation • Free- and bound-state solutions • Dirac’s spectroscopic notations – Integrals of motion – Parity of states • Energy levels of the bound-state Dirac’s particle • Structure of Dirac’s wavefunction • Radial components of the Dirac’s wavefunction Four-vectors In the relativistic world it is more convenient to work with four-vectors: Contravariant vectors Covariant vectors 휇 푥 = 푡, 푥, 푦, 푧 푥휇 = 푡, −푥, −푦, −푧 휕 휕 휕 휕 휕 휕 휕 휕 휕휇 = , − , − , − 휕 = , , , 휕푡 휕푥 휕푦 휕푧 휇 휕푡 휕푥 휕푦 휕푧 휇 푝 = 퐸, 푝푥, 푝푦, 푝푧 푝휇 = 퐸, −푝푥, −푝푦, −푝푧 Lorentz transformation 푥′휇 = ෍ 푎휈 푥휇 ′ 휈 휇 푥휇 = ෍ 푎휇 푥휇 휈 휈 훾 −훾훽 0 0 훾 훾훽 0 0 −훾훽 훾 훾훽 훾 0 0 푎휈 = 0 0 푎휈 = 휇 0 0 1 0 휇 0 0 1 0 0 0 0 1 0 0 0 1 Klein-Gordon equation Based on the relativistic energy-mass equation: 퐸2 = 푝ҧ2 + 푚2 One can derive Klein-Gordon equation for scalar (zero-spin) relativistic particles: Oscar Klein 휇 2 휕 휕휇 + 푚 휑 푥 = 0 By introducing d'Alembert operator: 휕2 휕휇휕 =⊡= − 휵2 휇 휕푡2 We can re-write Klein-Gordon equation as: ⊡ + 푚2 휑 푥 = 0 Klein-Gordon equation We can derive Klein-Gordon equation for scalar (zero-spin) relativistic particles: 휇 2 휕 휕휇 + 푚 휑 푥 = 0 Free-particle solutions of this equation: Oscar Klein 휑 푥 = 푁 푒−푖 푝푥 = 푁 푒−푖퐸푡+푖풑풓 Allow particles with both positive and negative energy: 퐸 = ± 풑2 + 푚2 And with positive and negative probability density: 푗0 = 2 푁 2 퐸 How do we understand negative-energy solutions? And what is much worse, the negative probability density? Dirac equation We can re-write
    [Show full text]
  • Syllabus of Biochemistry (Hons.)
    Syllabus of Biochemistry (Hons.) for SEM-I & SEM-II under CBCS (to be effective from Academic Year: 2017-18) The University of Burdwan Burdwan, West Bengal 1 1. Introduction The syllabus for Biochemistry at undergraduate level using the Choice Based Credit system has been framed in compliance with model syllabus given by UGC. The main objective of framing this new syllabus is to give the students a holistic understanding of the subject giving substantial weight age to both the core content and techniques used in Biochemistry. The ultimate goal of the syllabus is that the students at the end are able to secure a job. Keeping in mind and in tune with the changing nature of the subject, adequate emphasis has been given on new techniques of mapping and understanding of the subject. The syllabus has also been framed in such a way that the basic skills of subject are taught to the students, and everyone might not need to go for higher studies and the scope of securing a job after graduation will increase. It is essential that Biochemistry students select their general electives courses from Chemistry, Physics, Mathematics and/or any branch of Life Sciences disciplines. While the syllabus is in compliance with UGC model curriculum, it is necessary that Biochemistry students should learn “Basic Microbiology” as one of the core courses rather than as elective while. Course on “Concept of Genetics” has been moved to electives. Also, it is recommended that two elective courses namely Nutritional Biochemistry and Advanced Biochemistry may be made compulsory. 2 Type of Courses Number of Courses Course type Description B.
    [Show full text]
  • 5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008
    MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Lecture #1 Supplement Contents A. Spectroscopic Notation . 1 1. H. N. Russell, A. G. Shenstone, and L. A. Turner, \Report on Notation for Atomic Spectra," 1 2. W. F. Meggers and C. E. Moore, \Report of Subcommittee f (Notation for the Spectra of Diatomic Molecules)" . 2 3. F. A. Jenkins, \Report of Subcommittee f (Notation for the Spectra of Diatomic Molecules)" 2 4. No author, \Report on Notation for the Spectra of Polyatomic Molecules" . 2 B. Good Quantum Numbers . 2 C. Perturbation Theory and Secular Equations . 3 D. Non-Orthonormal Basis Sets . 6 E. Transformation of Matrix Elements of any Operator into Perturbed Basis Set . 7 A. Spectroscopic Notation The language of spectroscopy is very explicit and elegant, capable of describing a wide range of unanticipated situations concisely and unambiguously. The coherence of this language is diligently preserved by a succession of august committees, whose agreements about notation are codified. These agreements are often published as authorless articles in major journals. The following list of citations include the best of these notation-codifying articles. 1. H. N. Russell, A. G. Shenstone, and L. A. Turner, \Report on Notation for Atomic Spectra," Phys. Rev. 33, 900-906 (1929). At an informal meeting of spectroscopists at Washington in April, 1928, the writers of this report were requested to draw up a scheme for the clarification of spectroscopic notation. After much discussion and correspondence with spectroscopists both in this country and abroad we are able to present the following recommendations.
    [Show full text]
  • GANPAT UNIVERSITY FACULTY of SCIENCE TEACHING and EXAMINATION SCHEME Programme Bachelor of Science Branch/Spec
    GANPAT UNIVERSITY FACULTY OF SCIENCE TEACHING AND EXAMINATION SCHEME Programme Bachelor of Science Branch/Spec. Microbiology Semester I Effective from Academic Year 2015- Effective for the batch Admitted in June 2015 16 Teaching scheme Examination scheme (Marks) Subject Subject Name Credit Hours (per week) Theory Practical Code Lecture(DT) Practical(Lab.) Lecture(DT) Practical(Lab.) CE SEE Total CE SEE Total L TU Total P TW Total L TU Total P TW Total UMBA101FOM FUNDAMENTALS 04 - 04 - - - 04 - 04 - - - 40 60 100 - - - OF MICROBIOLOGY UCHA101GCH GENERAL 04 - 04 - - - 04 - 04 - - - 40 60 100 - - - CHEMISTRY-I UPHA101GPH GENERAL 04 - 04 - - - 04 - 04 - - - 40 60 100 - - - PHYSICS-I UENA101ENG ENGLISH-I 02 - 02 - - - 02 - 02 - - - 40 60 100 - - - OPEN SUBJECT – 1 02 - 02 - - - 02 - 02 - - - 40 60 100 - - - UPMA101PRA PRACTICAL - - - 02 - 02 - - - 04 - 04 - - - - 50 50 MODULE-I UPCA101PRA PRACTICAL - - - 02 - 02 - - - 04 - 04 - - - - 50 50 MODULE-I UPPA101PRA PRACTICAL - - - 02 - 02 - - - 04 - 04 - - - - 50 50 MODULE-I Total 16 - 16 06 - 06 16 - 16 12 - 12 200 300 500 - 150 150 GANPAT UNIVERSITY FACULTY OF SCIENCE Programme Bachelor of Science Branch/Spec. Microbiology Semester I Version 1.0.1.0 Effective from Academic Year 2015-16 Effective for the batch Admitted in July 2015 Subject code UMBA 101 Subject Name FUNDAMENTALS OF MICROBIOLOGY FOM Teaching scheme Examination scheme (Marks) (Per week) Lecture(DT) Practical(Lab.) Total CE SEE Total L TU P TW Credit 04 -- -- -- 04 Theory 40 60 100 Hours 04 -- -- -- 04 Practical -- -- -- Pre-requisites: Students should have basic knowledge of Microorganisms and microscopy of 10+2 level. Learning Outcome: The course will help the student to understand basic fundamentals of Microbiology and history of Microbiology.
    [Show full text]
  • Chemistry in One Dimension Pierre-Fran¸Coisloos,1, A) Caleb J
    Chemistry in One Dimension Pierre-Fran¸coisLoos,1, a) Caleb J. Ball,1 and Peter M. W. Gill1, b) Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia We report benchmark results for one-dimensional (1D) atomic and molecular sys- tems interacting via the Coulomb operator jxj−1. Using various wavefunction-type approaches, such as Hartree-Fock theory, second- and third-order Møller-Plesset per- turbation theory and explicitly correlated calculations, we study the ground state of atoms with up to ten electrons as well as small diatomic and triatomic molecules containing up to two electrons. A detailed analysis of the 1D helium-like ions is given and the expression of the high-density correlation energy is reported. We report the total energies, ionization energies, electron affinities and other interesting properties of the many-electron 1D atoms and, based on these results, we construct the 1D analog of Mendeleev's periodic table. We find that the 1D periodic table contains only two groups: the alkali metals and the noble gases. We also calculate the dissociation + 2+ 3+ curves of various 1D diatomics and study the chemical bond in H2 , HeH , He2 , + 2+ H2, HeH and He2 . We find that, unlike their 3D counterparts, 1D molecules are + primarily bound by one-electron bonds. Finally, we study the chemistry of H3 and we discuss the stability of the 1D polymer resulting from an infinite chain of hydrogen atoms. PACS numbers: 31.15.A-, 31.15.V-, 31.15.xt Keywords: one-dimensional atom; one-dimensional molecule; one-dimensional polymer; helium-like ions arXiv:1406.1343v1 [physics.chem-ph] 5 Jun 2014 a)Electronic mail: Corresponding author: [email protected] b)Electronic mail: [email protected] 1 I.
    [Show full text]
  • Laser Cooling and Slowing of a Diatomic Molecule John F
    Abstract Laser cooling and slowing of a diatomic molecule John F. Barry 2013 Laser cooling and trapping are central to modern atomic physics. It has been roughly three decades since laser cooling techniques produced ultracold atoms, leading to rapid advances in a vast array of fields and a number of Nobel prizes. Prior to the work presented in this thesis, laser cooling had not yet been extended to molecules because of their complex internal structure. However, this complex- ity makes molecules potentially useful for a wide range of applications. The first direct laser cooling of a molecule and further results we present here provide a new route to ultracold temperatures for molecules. In particular, these methods bridge the gap between ultracold temperatures and the approximately 1 kelvin temperatures attainable with directly cooled molecules (e.g. with cryogenic buffer gas cooling or decelerated supersonic beams). Using the carefully chosen molecule strontium monofluoride (SrF), decays to unwanted vibrational states are suppressed. Driving a transition with rotational quantum number R=1 to an excited state with R0=0 eliminates decays to unwanted ro- tational states. The dark ground-state Zeeman sublevels present in this specific scheme are remixed via a static magnetic field. Using three lasers for this scheme, a given molecule should undergo an average of approximately 100; 000 photon absorption/emission cycles before being lost via un- wanted decays. This number of cycles should be sufficient to load a magneto-optical trap (MOT) of molecules. In this thesis, we demonstrate transverse cooling of an SrF beam, in both Doppler and a Sisyphus-type cooling regimes.
    [Show full text]