Chapter 4 Crystallography

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 4 Crystallography Chapter 4 Crystallography 4.1 Crystalline substances 75 4.2 Symmetry operations 77 4.3 Two - dimensional motifs and lattices (meshes) 81 4.4 Three - dimensional motifs and lattices 83 4.5 Crystal systems 85 4.6 Indexing crystallographic planes 89 4.7 Twinned crystals 100 4.8 Crystal defects 101 4.9 Polymorphs and pseudomorphs 105 4.1 CRYSTALLINE SUBSTANCES this text, a more detailed treatment of crystal- lography cannot be provided . Crystallography emphasizes the long - range order or crystal structure of crystalline sub- stances. It focuses on the symmetry of crystal- 4.1.1 Crystals and c rystal f aces line materials and on the ways in which their Mineral crystals are one of nature’ s most long - range order is related to the three - dimen- beautiful creations. Many crystals are enclosed sional repetition of fundamental units of by fl at surfaces called crystal faces. Crystal pattern during crystal growth. In minerals, faces are formed when mineral crystals grow, the fundamental units of pattern are molecu- and enclose crystalline solids when they stop lar clusters of coordination polyhedra or growing. Perfectly formed crystals are notable stacking sequences (Chapter 2 ). The ways in for their remarkable symmetry (Figure 4.1 ). which these basic units can be repeated to The external symmetry expressed by crystal produce crystal structures with long - range faces permits us to infer the geometric pat- order are called symmetry operations. In terns of the atoms in mineral crystal struc- addition, crystallography focuses on the tures as well. These patterns inferred from description and signifi cance of planar features external symmetry have been confi rmed by in crystals including planes of atoms, cleavage advanced analytical techniques such as X - ray planes, crystal faces and the forms of crystals. diffraction (XRD) and atomic force micro- Crystallography is also concerned with crystal scopy (AFM). defects, local imperfections in the long - range Mineralogists have developed language to order of crystals. Given the broad scope of describe the symmetry of crystals and the crystal faces that enclose them. Familiarizing students with the concepts and terminology Earth Materials, 1st edition. By K. Hefferan and of crystal symmetry and crystal faces is one J. O’Brien. Published 2010 by Blackwell Publishing Ltd. of the primary goals of this chapter. A second 76 EARTH MATERIALS (a) (b) Figure 4.1 Representative mineral crystals: (a) pyrite; (b) tourmaline. (Photos courtesy of the Smithsonian Institute.) (For color version, see Plate 4.1, between pp. 248 and 249. ) goal of this chapter is to build connections macroscopic crystal. Growth continues in this between crystal chemistry (Chapters 2 and 3 ) manner until the environmental conditions and crystallography by explaining the rela- that promote growth change and growth tionships between chemical composition and ceases. coordination polyhedra and the form, sym- Long - range, geometric arrangements of metry and crystal faces that develop as crys- atoms and/or ions in crystals are produced tals grow. when a fundamental array of atoms, a unit of pattern or motif, is repeated in three dimen- sions to produce the crystal structure. A motif 4.1.2 Motifs and n odes is the smallest unit of pattern that, when When minerals begin to form, atoms or ions repeated by a set of symmetry operations, will bond together, so that partial or complete generate the long - range pattern characteristic coordination polyhedra develop (Chapter 2 ). of the crystal. In minerals, the motif is com- Because the ions on the edges and corners of posed of one or more coordination polyhedra. coordination polyhedra have unsatisfi ed elec- In wallpaper, it is a basic set of design ele- trostatic charges, they tend to bond to addi- ments that are repeated to produce a two - tional ions available in the environment as the dimensional pattern, whereas in a brick wall mineral grows. Eventually, a small cluster of the fundamental motif is that of a single brick coordination polyhedra is formed that con- that is repeated in space to form the three - tains all the coordination polyhedra charac- dimensional structure. The repetition of these teristic of the mineral and its chemical fundamental units of pattern by a set of rules composition. In any mineral, we can recog- called symmetry operations can produce a nize a small cluster of coordination polyhedra two - or three - dimensional pattern with long - that contains the mineral ’ s fundamental com- range order. When several different motifs position and unit of pattern or motif. As the could be repeated by a similar set of symmetry mineral continues to grow, additional clusters operations, we may wish to emphasize the of the same pattern of coordination polyhedra general rules by which different motifs may are added to form a mineral crystal with a be repeated to produce a particular type of three - dimensional geometric pattern – a long - long - range order. In such cases it is useful to range, three - dimensional crystal structure. represent motifs by using a point. A point Clusters of coordination polyhedra are added, used to represent any motif is called a node . one atom or ion at a time, as (1) the crystal The pattern or array of atoms about every nucleates, (2) it becomes a microscopic crystal, node must be the same throughout the pattern and, if growth continues, (3) it becomes a the nodes represent. CRYSTALLOGRAPHY 77 (a) 4.2 SYMMETRY OPERATIONS t1 t2 4.2.1 Simple s ymmetry o perations Symmetry operations may be simple or com- pound. Simple symmetry operations produce repetition of a unit of pattern or motif using a single type of operation. Compound sym- (b) metry operations produce repetition of a unit t1 of pattern or motif using a combination of t two types of symmetry operation. Simple 2 symmetry operations include (1) translation, by specifi c distances in specifi ed directions, (2) rotation, about a specifi ed set of axes, (3) refl ection, across a mirror plane, and (4) inversion, through a point called a center. (c) These operations are discussed below and provide useful insights into the geometry of crystal structures and the three - dimensional t3 properties of such crystals. t1 t1 t1 Translation t2 The symmetry operation called translation t involves the periodic repetition of nodes or 2 motifs by systematic linear displacement. One - dimensional translation of basic design Figure 4.2 (a) Two - dimensional translation at elements generates a row of similar elements right angles (t1 and t2 ) to generate a two- (Figure 4.2 a). The translation is defi ned by the dimensional mesh of motifs or nodes. unit translation vector (t) , a specifi c length (b) Two - dimensional translation (t1 and t2 ) and direction of systematic displacement by not at right angles to generate a two - which the pattern is repeated. Motifs other dimensional mesh or lattice. (c) Three - than commas could be translated by the same dimensional translation (t1 , t2 and t3 ) to unit translation vector to produce a one - generate a three - dimensional space lattice. dimensional pattern. In minerals, the motifs (From Klein and Hurlbut, 1985 ; with are clusters of atoms or coordination polyhe- permission of John Wiley & Sons.) dra that are repeated by translation. Two - dimensional translations are defi ned by two unit translation vectors ( ta and tb or t1 or t1 , t2 and t3 , respectively). The translation and t2 , respectively). The translation in one in one direction is represented by the length direction is represented by the length and and direction of ta or t1 , the translation in the direction of ta or t1 ; translation in the second direction is represented by tb or t2 and second direction is represented by the length the translation in the third direction is repre- and direction of tb or t2 . The pattern generated sented by tc or t3 . The result of any three - depends on the length of the two unit transla- dimensional translation is a space lattice . A tion vectors and the angles between their space lattice is a three - dimensional array of directions. The result of any two - dimensional motifs or nodes in which every node has an translation is a plane lattice or plane mesh . A environment similar to every other node in plane lattice is a two - dimensional array of the array. Since crystalline substances such as motifs or nodes in which every node has an minerals have long - range, three - dimensional environment similar to every other node in order and since they may be thought of as the array (Figure 4.2 a,b). motifs repeated in three dimensions, the Three- dimensional translations are defi ned resulting array of motifs is a crystal lattice . by three unit translation vectors ( ta , tb and tc Figure 4.2 c illustrates a space lattice produced 78 EARTH MATERIALS 1 turn of 360° rotation 2 turns of 180° rotation 3 turns of 120° rotation 1 2 3 4 turns of 90° rotation 6 turns of 60° rotation 4 6 Figure 4.3 Examples of the major types of rotational symmetry (n = 1, 2, 3, 4 or 6) that occur in minerals. (From Klein and Hurlbut, 1985 ; with permission of John Wiley & Sons.) by a three - dimensional translation of nodes or motifs. Table 4.1 Five common axes of rotational symmetry in minerals. Rotation Symbolic Type notation Description Motifs can also be repeated by non- translational symmetry operations. Many One - fold (1 or A1 ) Any axis of rotation patterns can be repeated by rotation (n). axis of about which the motif rotation is repeated only once Rotation (n) is a symmetry operation that during a 360 ° rotation involves the rotation of a pattern about an (Figure 4.3 , (1)) imaginary line or axis, called an axis of rota- tion , in such a way that every component of Two - fold (2 or A2 ) Motifs repeated every the pattern is perfectly repeated one or more axis of 180 ° or twice during a rotation 360 ° rotation (Figure times during a complete 360 ° rotation.
Recommended publications
  • CORDIERITE-GARNET GNEISS and ASSOCIATED MICRO- CLINE-RICH PEGMATITE at STURBRIDGE, I,{ASSA- CHUSETTS and UNION, CONNECTICUTI Fnor B.Cnrbn, [
    THE AMERICAN MINERALOGIST, VOL 47, IVLY AUGUST, 1962 CORDIERITE-GARNET GNEISS AND ASSOCIATED MICRO- CLINE-RICH PEGMATITE AT STURBRIDGE, I,{ASSA- CHUSETTS AND UNION, CONNECTICUTI Fnor B.cnrBn, [/. S. GeologicalSurttey, Washington,D. C. Aesrnacr Gneiss of argillaceous composition at Sturbridge, Massachusetts, and at Union, Connecticut, 10 miles to the south, consists of the assemblagebiotite-cordierite-garnet- magnetite-microcline-quartz-plagioclase-sillimanite. The conclusion is made that this assemblagedoes not violate the phase rule. The cordierite contains 32 mole per cent of Fe- end member, the biotite is aluminous and its ratio MgO: (MgOf I'eO) is 0.54, and the gar- net is alm6e5 pyr26.agro2.espe1.2.Lenses of microcline-quartz pegmatite are intimately as- sociated with the gneissl some are concordant, others cut acrossthe foliation and banding of the gneiss. The pegmatites also contain small amounts of biotite, cordierite, garnet, graphite, plagioclase, and sillimanite; each mineral is similar in optical properties to the corresponding one in the gneiss. It is suggestedthat muscovite was a former constituent of the gneiss at a lower grade of metamorphism, and that it decomposedwith increasing metamorphism, and reacted with quartz to form siliimanite in situ and at lerst part of the microcline of the gneiss and pegmatites These rocks are compared with similar rocks of Fennoscandia and Canada. INtnouucrroN Cordierite-garnet-sillimanitegneisses that contain microcline-quartz pegmatiteare found in Sturbridge,Massachusetts, and Union, Connecti- cut. The locality (Fig. 1) at Sturbridgeis on the south sideof the \{assa- chusettsTurnpike at the overpassof the New Boston Road; this is about 1 mile west of the interchangeof Route 15 with the Turnpike.
    [Show full text]
  • The Regional Distribution of Zeolites in the Basalts of the Faroe Islands and the Significance of Zeolites As Palaeo- Temperature Indicators
    The regional distribution of zeolites in the basalts of the Faroe Islands and the significance of zeolites as palaeo- temperature indicators Ole Jørgensen The first maps of the regional distribution of zeolites in the Palaeogene basalt plateau of the Faroe Islands are presented. The zeolite zones (thomsonite-chabazite, analcite, mesolite, stilbite-heulandite, laumontite) continue below sea level and reach a depth of 2200 m in the Lopra-1/1A well. Below this level, a high temperature zone occurs characterised by prehnite and pumpellyite. The stilbite-heulan- dite zone is the dominant mineral zone on the northern island, Vágar, the analcite and mesolite zones are the dominant ones on the southern islands of Sandoy and Suðuroy and the thomsonite-chabazite zone is dominant on the two northeastern islands of Viðoy and Borðoy. It is estimated that zeolitisa- tion of the basalts took place at temperatures between about 40°C and 230°C. Palaeogeothermal gradients are estimated to have been 66 ± 9°C/km in the lower basalt formation of the Lopra area of Suðuroy, the southernmost island, 63 ± 8°C/km in the middle basalt formation on the northernmost island of Vágar and 56 ± 7°C/km in the upper basalt formation on the central island of Sandoy. A linear extrapolation of the gradient from the Lopra area places the palaeosurface of the basalt plateau near to the top of the lower basalt formation. On Vágar, the palaeosurface was somewhere between 1700 m and 2020 m above the lower formation while the palaeosurface on Sandoy was between 1550 m and 1924 m above the base of the upper formation.
    [Show full text]
  • Download PDF About Minerals Sorted by Mineral Name
    MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky.
    [Show full text]
  • Large-Scale Hydrothermal Zoning Reflectedin The
    Canadian Mineralogist Vol. 27, pp. 383-400 (1989) LARGE-SCALE HYDROTHERMAL ZONING REFLECTED IN THE TETRAHEDRITE-FREIBERGITE SOLID SOLUTION, KENO HILL Ag-Pb-Zn DISTRICT, YUKON J.V. GREGORY LYNCH* Department of Geology, The University of Alberta, Edmonton, Alberta T6G 2E3 ABSTRACT en argent se distinguent aussi par une augmentation dans Ie nombre de cations dans leur formule chimique. Le rap- The zoned Keno Hill vein system of central Yukon port Sb/ As demeure uniformement eleve. extends laterally from a Cretaceous plutonic-metamorphic center and surrounding quartz-feldspar veins, to (Traduit par la Redaction) carbonate-Ag-Pb-Zn deposits, and further to peripheral veins having epithermal characteristics. Seven distinct Mots-cles: zonation hydrothermale, nappe aquifere, tetra- mineralogical zones are recognized, and the entire sequence edrite, solution solide, plutonique, epithermal, altera- is continuous from east to west in a 4O-km belt. The fault- tion, district de Keno Hill, Yukon. and fracture-controlled veins are stratabound to the brit- tle moderately dipping Keno Hill Quartzite unit, of Mis- INTRODUCTION sissippian age. The unit is graphitic and appears to have acted as a large-scale hydrothermal aquifer, restricting fluid This paper concerns the large-scale nature of the flow during minera1ization and" development of zoning predominantly to the lateral direction. Tetrahedrite is dis- Keno Hill hydrothermal system. A broad and con- tributed along a 25-km-Iong portion of the system, and is tinuous sequence of mineral zoning can be the principal ore mineral of Ag. Both Ag/Cu and Fe/Zn documented within veins distributed along an exten- values in tetrahedrite are highest at the outer extremity of sive portion of the Keno Hill Quartzite, which is the the system, where freibergite dominates over tetrahedrite; main host rock to the ore in the area.
    [Show full text]
  • Mineralization at Le Pulec, Jersey, Channel Islands; No. 1 Lode
    134 SHORT COMMUNICATIONS REFERENCES McKay, W. J. (1975) Woodlawn copper-lead-zinc orebody. Ibid. 701-10. Davis, L. W. (1975) Captains Flat lead-zinc orebody. In Knight, C. L. (ed.). Economic Geology of Australia and Papua New Guinea I. Metals. Melbourne, Australasian [Revised manuscript received 2 June 1981] Institute of Mining and Metallurgy, 691-700. Malone, E. J., Olgers, F., Cucchi, F. G., Nicholas, T., and t~) Copyright the Mineralogical Society Dept. of Geology, University of Wollonoong, New South Wales, Australia F. IVOR ROBERTS [Present address: School of Applied Geology, University of New South Wales, PO Box 1, Kensinoton , NSW 2033, Australia] MINERALOGICAL MAGAZINE, MARCH 1982, VOL. 46, PP. 134-6 Mineralization at Le Pulec, Jersey, Channel Islands; No. 1 Lode THE No. 1 Lode is the westernmost and most Mineralization within the Brioverian sediments extensive of three lead-zinc veins cutting Brioverian sediments at Le Pulec. It was described by Williams Anatase is common within the sediments as 2-10 (1871) as being between 1.5 and 1.8 m in width and pm anhedral grains associated with silicates or 183 m in length, with a trend of 340 ~ and the as 10 x 2 #m laths, parallel to the basal cleavage galena was reported to have a high silver content. of the altered phyllosilicates, particularly musco- Since the investigation of the No. 3 Lode (Ixer and vite. Anatase is also found with hematite laths Stanley, 1980) it has been possible to examine (20x 2 /~m) included in early pyrite grains. A several specimens, collected from the recently re- coarse-grained (600 x 20 pm) generation of anatase discovered No.
    [Show full text]
  • Crystal Chemistry of Wulfenite (Pbmoo4) and Wolframite (Fe,Mn)WO4 Author Information – Darren A
    Crystal Chemistry of Wulfenite (PbMoO4) and Wolframite (Fe,Mn)WO4 Author information – Darren A. Umbsaar Affiliation – University of Calgary Summary In this study, the crystal structure and chemistry of a selection of wulfenite (PbMoO4) and wolframite ((Fe,Mn)WO4) samples from various worldwide localities are examined. These 2+ minerals have the same general formula, ABO4, where A is a divalent metal cation (e.g. Mn , Fe2+, Pb2+, etc.) and B is a highly charged cation (W6+ or Mo6+). These minerals crystallize in two different space groups; (1) wulfenite crystallizes in the tetragonal scheelite-type structure (space group I41/a, formula units, Z, = 4), whereas (2) wolframite crystallizes in the monoclinic wolframite- type structure (space group P2/c, Z = 2). The space group symmetry and cell dimensions are largely dictated by the ionic radius of the A site cation. In general, when the A cation radius is >0.90Å the crystal will form the tetragonal scheelite-type structure, whereas an A cation radius <0.90Å will favor the monoclinic wolframite-type structure. X-ray diffraction analyses of these minerals have long been a challenge because they are composed of heavy atoms (Pb, Mo, and W) which dominate in scattering X-rays. This makes it challenging to precisely determine the atomic coordinates of oxygen, being a much lighter element with a weaker atomic scattering power. Therefore, in an effort to overcome the aforementioned obstacle, and to acquire accurate structural data for these minerals, this study uses synchrotron high resolution powder X-ray diffraction (HRPXRD). The natural wulfenite specimens analyzed so far in this study from various worldwide localities are very pure in composition, with all specimens being represented by the formula: Pb0.99- 5+ 6+ 6+ 6+ 1.00Mo0.99-1.00O4.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Types of Lattices
    Types of Lattices Types of Lattices Lattices are either: 1. Primitive (or Simple): one lattice point per unit cell. 2. Non-primitive, (or Multiple) e.g. double, triple, etc.: more than one lattice point per unit cell. Double r2 cell r1 r2 Triple r1 cell r2 r1 Primitive cell N + e 4 Ne = number of lattice points on cell edges (shared by 4 cells) •When repeated by successive translations e =edge reproduce periodic pattern. •Multiple cells are usually selected to make obvious the higher symmetry (usually rotational symmetry) that is possessed by the 1 lattice, which may not be immediately evident from primitive cell. Lattice Points- Review 2 Arrangement of Lattice Points 3 Arrangement of Lattice Points (continued) •These are known as the basis vectors, which we will come back to. •These are not translation vectors (R) since they have non- integer values. The complexity of the system depends upon the symmetry requirements (is it lost or maintained?) by applying the symmetry operations (rotation, reflection, inversion and translation). 4 The Five 2-D Bravais Lattices •From the previous definitions of the four 2-D and seven 3-D crystal systems, we know that there are four and seven primitive unit cells (with 1 lattice point/unit cell), respectively. •We can then ask: can we add additional lattice points to the primitive lattices (or nets), in such a way that we still have a lattice (net) belonging to the same crystal system (with symmetry requirements)? •First illustrate this for 2-D nets, where we know that the surroundings of each lattice point must be identical.
    [Show full text]
  • U.S. Department of the Interior U.S. Geological Survey Bibliography on the Occurrence, Properties, and Uses of Zeolites From
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY BIBLIOGRAPHY ON THE OCCURRENCE, PROPERTIES, AND USES OF ZEOLITES FROM SEDIMENTARY DEPOSITS, 1985-1992 by Richard A. Sheppard and Evenne W. Sheppard Open-File Report 93-570-A This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards (or with the North American Stratigraphic Code). Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Denver, Colorado 1993 CONTENTS Page Abstract .............................................................................................. 1 Introduction ......................................................................................... 1 Description of bibliography ....................................................................... 1 Zeolite bibliography ................................................................................ 3 BIBLIOGRAPHY ON THE OCCURRENCE, PROPERTIES, AND USES OF ZEOLITES FROM SEDIMENTARY DEPOSITS, 1985-1992 by Richard A. Sheppard and Evenne W. Sheppard ABSTRACT This bibliography is an alphabetical listing of about 2,000 publications and formal releases, including patents and selected abstracts, from the world literature on the occurrence, properties, and uses of zeolites from sedimentary deposits for the period 1985 to 1992. The bibliography is available as hard copy or on a 3.5-inch floppy diskette, which was prepared on a Macintosh LC computer using EndNote Plus software. Computer
    [Show full text]
  • Chapter 4, Bravais Lattice Primitive Vectors
    Chapter 4, Bravais Lattice A Bravais lattice is the collection of all (and only those) points in space reachable from the origin with position vectors: n , n , n integer (+, -, or 0) r r r r 1 2 3 R = n1a1 + n2 a2 + n3a3 a1, a2, and a3 not all in same plane The three primitive vectors, a1, a2, and a3, uniquely define a Bravais lattice. However, for one Bravais lattice, there are many choices for the primitive vectors. A Bravais lattice is infinite. It is identical (in every aspect) when viewed from any of its lattice points. This is not a Bravais lattice. Honeycomb: P and Q are equivalent. R is not. A Bravais lattice can be defined as either the collection of lattice points, or the primitive translation vectors which construct the lattice. POINT Q OBJECT: Remember that a Bravais lattice has only points. Points, being dimensionless and isotropic, have full spatial symmetry (invariant under any point symmetry operation). Primitive Vectors There are many choices for the primitive vectors of a Bravais lattice. One sure way to find a set of primitive vectors (as described in Problem 4 .8) is the following: (1) a1 is the vector to a nearest neighbor lattice point. (2) a2 is the vector to a lattice points closest to, but not on, the a1 axis. (3) a3 is the vector to a lattice point nearest, but not on, the a18a2 plane. How does one prove that this is a set of primitive vectors? Hint: there should be no lattice points inside, or on the faces (lll)fhlhd(lllid)fd(parallolegrams) of, the polyhedron (parallelepiped) formed by these three vectors.
    [Show full text]
  • Andalusite, 0.5 to 1 Meter ANDALUSITE Across, and This Grades Into a Zone of Andalusite Al2sio5 Crystals in the Slate (Snelgrove Et Al., 1944)
    echelon pegmatites passes into a vein of fine- grained (10 to 30 mm) andalusite, 0.5 to 1 meter ANDALUSITE across, and this grades into a zone of andalusite Al2SiO5 crystals in the slate (Snelgrove et al., 1944). 2. Champion mine: As euhedral crystals to 5 cm One of three polymorphs of Al2SiO5 (the other two are kyanite and sillimanite), andalusite is partially altered to muscovite in quartz. On the primarily a constituent of medium-grade 36th level drift, 45 meters east of Number 7 shaft metamorphic rocks derived from shales. Also, it station: A body of massive andalusite in quartzite occurs very much less commonly as a constituent with chalcopyrite and muscovite, adjacent to a of a few rare pegmatites, some quartz veins, and large quartz vein localized along contact between aluminous hydrothermal replacement deposits. It Negaunee Iron Formation and Goodrich Quartzite is often strongly altered to muscovite. Northern (Babcock, 1966a, b). 3. Republic mine: With co- Peninsula. existing sillimanite in rocks adjacent to fayalitic Negaunee Iron Formation (olivine) (Haase and Klein, 1978). Also in a vein with beryl 300 paces east and 75 north of the western ¼ post of section 17, T46N, R29W. FROM: Robinson, G.W., 2004 Mineralogy of Michigan by E.W. Heinrich updated and revised: published by A.E. Seaman Mineral Museum, Houghton, MI, 252p. Figure 35: Andalusite crystals to 3 cm, coated with muscovite in quartz, from the Champion mine, Champion, Marquette County. A. E. Seaman Mineral Museum specimen No. DM 14850, Jeffrey Scovil photograph. Iron County: SW ¼ SE ¼ section 20, T42N, R3W, Lake Mary quadrangle: Found as 1 cm poikiloblasts in the Michigamme Slate with garnet, staurolite, sillimanite, and sericite (Bayley, 1959).
    [Show full text]
  • Metamorphic and Metasomatic Kyanite-Bearing Mineral
    Metamorphic and Metasomatic Kyanite-Bearing Mineral Assemblages of Thassos Island (Rhodope, Greece) Alexandre Tarantola, Panagiotis Voudouris, Aurélien Eglinger, Christophe Scheffer, Kimberly Trebus, Marie Bitte, Benjamin Rondeau, Constantinos Mavrogonatos, Ian Graham, Marius Etienne, et al. To cite this version: Alexandre Tarantola, Panagiotis Voudouris, Aurélien Eglinger, Christophe Scheffer, Kimberly Tre- bus, et al.. Metamorphic and Metasomatic Kyanite-Bearing Mineral Assemblages of Thassos Island (Rhodope, Greece). Minerals, MDPI, 2019, 10.3390/min9040252. hal-02932247 HAL Id: hal-02932247 https://hal.archives-ouvertes.fr/hal-02932247 Submitted on 7 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. minerals Article Metamorphic and Metasomatic Kyanite-Bearing Mineral Assemblages of Thassos Island (Rhodope, Greece) Alexandre Tarantola 1,* , Panagiotis Voudouris 2 , Aurélien Eglinger 1, Christophe Scheffer 1,3, Kimberly Trebus 1, Marie Bitte 1, Benjamin Rondeau 4 , Constantinos Mavrogonatos 2 , Ian Graham 5, Marius Etienne 1 and Chantal Peiffert
    [Show full text]