CORDIERITE-GARNET GNEISS and ASSOCIATED MICRO- CLINE-RICH PEGMATITE at STURBRIDGE, I,{ASSA- CHUSETTS and UNION, CONNECTICUTI Fnor B.Cnrbn, [

Total Page:16

File Type:pdf, Size:1020Kb

CORDIERITE-GARNET GNEISS and ASSOCIATED MICRO- CLINE-RICH PEGMATITE at STURBRIDGE, I,{ASSA- CHUSETTS and UNION, CONNECTICUTI Fnor B.Cnrbn, [ THE AMERICAN MINERALOGIST, VOL 47, IVLY AUGUST, 1962 CORDIERITE-GARNET GNEISS AND ASSOCIATED MICRO- CLINE-RICH PEGMATITE AT STURBRIDGE, I,{ASSA- CHUSETTS AND UNION, CONNECTICUTI Fnor B.cnrBn, [/. S. GeologicalSurttey, Washington,D. C. Aesrnacr Gneiss of argillaceous composition at Sturbridge, Massachusetts, and at Union, Connecticut, 10 miles to the south, consists of the assemblagebiotite-cordierite-garnet- magnetite-microcline-quartz-plagioclase-sillimanite. The conclusion is made that this assemblagedoes not violate the phase rule. The cordierite contains 32 mole per cent of Fe- end member, the biotite is aluminous and its ratio MgO: (MgOf I'eO) is 0.54, and the gar- net is alm6e5 pyr26.agro2.espe1.2.Lenses of microcline-quartz pegmatite are intimately as- sociated with the gneissl some are concordant, others cut acrossthe foliation and banding of the gneiss. The pegmatites also contain small amounts of biotite, cordierite, garnet, graphite, plagioclase, and sillimanite; each mineral is similar in optical properties to the corresponding one in the gneiss. It is suggestedthat muscovite was a former constituent of the gneiss at a lower grade of metamorphism, and that it decomposedwith increasing metamorphism, and reacted with quartz to form siliimanite in situ and at lerst part of the microcline of the gneiss and pegmatites These rocks are compared with similar rocks of Fennoscandia and Canada. INtnouucrroN Cordierite-garnet-sillimanitegneisses that contain microcline-quartz pegmatiteare found in Sturbridge,Massachusetts, and Union, Connecti- cut. The locality (Fig. 1) at Sturbridgeis on the south sideof the \{assa- chusettsTurnpike at the overpassof the New Boston Road; this is about 1 mile west of the interchangeof Route 15 with the Turnpike. The other locality is about 1] miieseast of the villageof Union, on the north side of Bigeiow Hollow Road, Connecticut Route 198, about 100 feet west of Bigelow Pond. Thesegneisses are part of the widespreadBrimfield Schist (Emerson,l9l7 , p. 68-72;and Rodgersand others,1959, p. 46 and map). The two localitiesare about 10 milesapart. DrscuprroN ol RocKS The gneissat Sturbridgeis gray, medium- to coarse-grained,and shows a rough compositional banding of mafic and quartzo-feldspathic units from a few millimeters to a few inches in thickness.Irregular folia of intergrown biotite and sillimanite with scattered anhedral garnet and cordieriteare set in a matrix of massiveaggregates of plagioclase,q\artz, microcline,and minor amountsof biotite. Nluscoviteis absent. l,{agnetite, graphite, and pyrite are present in small amounts. Proportions of the minerals vary considerablyfrom one part of the gneissto another. 1 Publication authorized by the Director, U. S. Geological Survey. 907 I'-RED BARKNR T.,ASSACIIUSEITS OONNECTICIII +NoRrIrI ffi Frc. 1. Map showing locations of cordierite-garnet-sillimanite gneiss in Sturbridge, Massachusetts, at A, and in Union, Connecticut, at B. An analysisof typical gneiss,free of pegmatite,from Sturbridge was madeby chemistsof the U. S. GeologicalSurvey usingthe rapid methods of Shapiroand Brannock (1956): Sio:.. 53.1 N.rO. 1.7 Tioz |.2 KzO 3.5 Alzor. 24.1 HzO 7.+ FzO: 1 4 P:Os 0.06 IreO 8.4 MnO 0.10 Mgo 3.7 co: .. o.o5 CaO. 15 Total IOO 2 The compositionof the gneissis comparableto that of a shale,except for its low content of HzO and its high ratio of FeO: FezOr.The low content of H2O probably is due to dehydration during metamorphism.The original sedimentmay have containedenough ferrous clay to accountfor the 8.4 per cent of FeO, but it is more probable that original Fe2O3,in hydrous iron oxides,was partially reducedto FeO during metamorphism'perhaps by carbonaceousmaterial. The gneissat Union is similar to that at Sturbridge, except that the folia of biotite and sillimanite form only 10 to 20 per cent of the rock; cordierite and garnet ar'e much more abundant; and both garnet and cordieriteoccur in the quartzo-feldspathicportions. There is a gradation CORDI DRI T E-GA RN ET G1I/E1.'S lrarn l'rc.2. Mafic band in gneiss from llnion, connecticut. Biotite, bio; cordierite, cdt; garnet, gar; microcline, mic; myrmekite, myr; plagioclase,pl; qtartz, qtzl and sillimanite, sil. from scatteredgrains and clustersof microclineto small, lenticular and blob-likepegmatites that appearto have replacedthe gneiss.An example of the latter is shownin Fig. 4. rn thin section the folia of biotite and sillimanite in the gneissat union wrap around equant, anhedral garnets and irregular grains of cordierite. small amounts of plagioclaseand quartz are interstitial to these folia; microclinerarely occursinside them, but commonly embays their mar- gins.A typical view is given in Fig.2. The quartzo-feldspathicaggregates are granular mosaics of andesine, qtartz, microcline microperthite, and biotite, with occasional cordierite, garnet, and sillimanite. Rims of myrmekite lie betweenplagioclase and microcline;they are similarto ones in migmatite pictured by Schreyer (1958, Taf. 10, Abb.2). The volu- metric ratio of myrmekite to the adjacent microclineis about 1: 10. The amount of microcline varies greatly from place to place, even as seenin thin section.The relative amounts of microcline and plagioclasecom- monly vary inversely;the feldsparin one thin sectionmay be almost al1 plagioclase,whereas that in a section cut from adiacent rock mav be FRED BARKER : i', . r ..,.r, r. ::'::'.... .' ..rrr.InnFt.l,,,.:,,-.' Frc. 3. Small aggregateof microcline in cordierite-rich gneiss,union connecticut' The grain of myrmekite in right center has only a core remaining of the original grain of andesine.Biotite, bio; cordierite, cdt;garnet, gar;microcline, mic;myrmekite, myr;plagio- clase,pl; quartz, qtz, sillimanite, sil; magnetite, mt; and zircon, zr ' Plane light' nearly ali microcline.Some grains of microclineinterfinger into grains of biotite as thin sheetsparallel to the cleavageof the latter. Grains of garnet and cordierite that are embayed by microcline are seenin thin section,as in Fig. 3. Thin shellsof sillimanite are presentbetween much of the microclineand embayedgarnet. DnscnrprroN oF MTNERALS Analysesof biotite,cordierite,and garnetfrom the gneissat Sturbridge are given in Table 1. The formula of the biotite, calculatedon a basisof 24 anions,is: CORDIERITE.GARNET GTZYSS 911 Tegr,r 1. ANu,vsns ol BrorrrB. Connremrr. lm GanNrr rnou Brornr- Conornmm-GenNnr-Me.cNnrrrn-Pllcrocr,asr-Quantz- Srrr,rMANrrE GNrrss, Srunnnrocn, MassecRusners Biotitel Cordierite2 Garnet2 SiOz 37.3 48.2 39.L TiOz t\ 0.00 0.03 AlzOs r7.3 32.9 22.2 FezO: 0.7r 0.00 0.00 l'eO 15.5 7.4 30.8 Mso 10.3 8.78 6.58 CaO 0.42 0.05 1.04 NurO 0.19 n.d. n.d. KzO 9.6 n.d. n.d. HzO3 J.l 1.66 n.d. F 0.54 n.d. n.d. MnO (0.otq)n 0.06 0.56 Sums 99.3 99.05 1 Analysis by B. L. Ingram. 2 Analysis by C. A. Kinser. 3 Determined by Penfield method. a Determination by semiquantitative spectrographic analysis. 6 Oxygen equivalent for fluorine subtracted from total. n.d.: not determined, That of cordierite,on a basisof 18 atoms of oxygen,is: Mgr.soFeo64A14 00Si4 sgOrs' 0.57HzO Schreyerand Yoder (1960,p. 94) have suggestedthat HrO may be pres- ent in molecularform in intersticesin the cordieritestructure, and so the formula of cordierite is given with H2O as water of hydration. The for- mula of the garnet on a basisof 24 atomsof oxygenis: Fea eMgr s:Cae 17Mn6 67Ala 67Si6e7o2a The molar ratios MgO: (MgOf FeO) of theseminerals are: biotite, 0.54; cordierite,0.68;and garnet,0.28.Formula of the garnetin termsof end numbersis: alm6e bpyr26 agro2 espet 2 The 0 and 7 indices of refraction in sodium light of biotite at both Sturbridgeand Union are about 1.640.The biotite is pleochroicfrom pale yellowish brown to red-brown.Indices of the cordieritefrom Sturbridge arei ot:1.541,0:1.547, and 7: 1.553,all *0.002; thoseof Union cordi- erite are similar exceptthat a : 1.542.For garnetat Sturbridge n : t.795, + 0.004,and that from Union is L792. 912 FRED BARKER The distortion index of the cordierite,as definedby Miyashiro (1957, p. 44-45), is 0.25+0.02. Garnet was *-rayed by R. O. Fournierl the aver- agesof four determinations(hhl: 12.2.0, lI'5'2, 12'6'0, and 10'9'3) from Sturbridgegarnet and of five determinaLions(hkl: 12'2'0, ll'5'2, t2' 6' O,12' 6' 2,and 10.9' 3) of Union garnetwere each o: 11.49 + 0.05A. n{ost grainsof microclineshow grid twinning, but somedo not. About half of the grains of this mineral are microperthitic with fine filaments or irregular patchesof sodic plagioclase.The volume of plagioclasein the perthite rangesfrom a trace to about 20 per cent. Microcline from a large crystal in pegmatite at Sturbridge was homogenizedby heating at 900'C. for 60 hours and then r-rayed. The (201) method with KBrOs as an internal standard was used (Orville, 1958, p. 208) and indicated a compositionof 82 weight per cent of KAISiaOe. The plagioclaseis sodic andesine. Gradationally zoned grains are not uncommon;these have rims of calcicandesine or sodiclabradorite. l,{rralronpruc PEGMATTTES Lensesof pegmatitefrom a fraction of an inch to about 10feet in thick- nesslie scatteredin the gneiss.The lensescommonly lie parallel to the foiiation of the gneiss,which locally wraps around them. A few lenses, however,transect the foliation. Blobs or blotchesof pegmatite of very irregular shape,from an inch to about 10 feet in maximum dimension, are alsofound in the gneiss.These latter pegmatitesmostly transect the foliation of the gneisswithout displacingit, and many of them decrease in grain size toward the margins and fade into the quartzo-feldspathic aggregatesof the gneiss.Typical examplesare shown in Fig. 4. These blobs are interpreted to have replacedthe gneiss.Both forms of pegma- tite consistof about 80 to 95 per cent by volume of microcline,with the remainder qvartz, biotite, and accessoryminerals.
Recommended publications
  • Phase Equilibria and Thermodynamic Properties of Minerals in the Beo
    American Mineralogist, Volwne 71, pages 277-300, 1986 Phaseequilibria and thermodynamic properties of mineralsin the BeO-AlrO3-SiO2-H2O(BASH) system,with petrologicapplications Mlnx D. B.qnroN Department of Earth and SpaceSciences, University of California, Los Angeles,Los Angeles,California 90024 Ansrru,cr The phase relations and thermodynamic properties of behoite (Be(OH)r), bertrandite (BeoSirOr(OH)J, beryl (BerAlrSiuO,r),bromellite (BeO), chrysoberyl (BeAl,Oo), euclase (BeAlSiOo(OH)),and phenakite (BerSiOo)have been quantitatively evaluatedfrom a com- bination of new phase-equilibrium, solubility, calorimetric, and volumetric measurements and with data from the literature. The resulting thermodynamic model is consistentwith natural low-variance assemblagesand can be used to interpret many beryllium-mineral occurTences. Reversedhigh-pressure solid-media experimentslocated the positions of four reactions: BerAlrSiuO,,: BeAlrOo * BerSiOo+ 5SiO, (dry) 20BeAlSiOo(OH): 3BerAlrsi6or8+ TBeAlrOo+ 2BerSiOn+ l0HrO 4BeAlSiOo(OH)+ 2SiOr: BerAlrSiuO,,+ BeAlrOo+ 2H2O BerAlrSiuO,,+ 2AlrSiOs : 3BeAlrOa + 8SiO, (water saturated). Aqueous silica concentrationswere determined by reversedexperiments at I kbar for the following sevenreactions: 2BeO + H4SiO4: BerSiOo+ 2H2O 4BeO + 2HoSiOo: BeoSirO'(OH),+ 3HrO BeAlrOo* BerSiOo+ 5H4Sio4: Be3AlrSiuOr8+ loHro 3BeAlrOo+ 8H4SiO4: BerAlrSiuOrs+ 2AlrSiO5+ l6HrO 3BerSiOo+ 2AlrSiO5+ 7H4SiO4: 2BerAlrSiuOr8+ l4H2o aBeAlsioloH) + Bersio4 + 7H4sio4:2BerAlrsiuors + 14Hro 2BeAlrOo+ BerSiOo+ 3H4SiOo: 4BeAlSiOr(OH)+ 4HrO.
    [Show full text]
  • Cordierite-Bearing Gneisses in the West-Central Adirondack Highlands
    Trip A-6 CORDIERITE-BEARING GNEISSES IN THE WEST -CENTRAL ADIRONDACK HIGHLANDS Frank P. Florence Science Division, Jefferson Community College, Watertown, NY, USA 13601 [email protected] Robert S. Darling Department of Geology, SUNY College at Cortland, Cortland, NY, USA 13045 Phillip R. Whitney New York State Geological Survey (ret.), New York State Museum, Albany, NY, USA 12230 Gregory W. Lester Department of Geological Sciences and Geological Engineering, Queen's University, Kingston, Ontario, CANADA K7L 3N6 INTRODUCTION Cordierite-bearing gneiss is uncommon in the Adirondack Highlands. To date, it is has been described from three locations, one near the village ofInlet (Seal, 1986; Whitney et aI, 2002) and two along the Moose River further to the west (Darling et aI, 2004). All of these cordierite occurrences are located in the west-central Adirondacks, a region characterized by somewhat lower metamorphic pressures as compared to the rest of the Adirondack Highlands (Florence et aI, 1995; Darling et aI, 2004). In the Fulton Chain of Lakes area of the west-central Adirondack Highlands, a heterogeneous unit of metasedimentary rocks, including cordierite-bearing gneisses, forms the core of a major NE to ENE trending synform. Cordierite appears in an assortment of mineral assemblages, including one containing the uncommon borosilicate, prismatine, the boron-rich end-member ofkornerupine (Grew et ai., 1996). The assemblage cordierite + orthopyroxene is also present, the first recognized occurrence of this mineral pair in the Adirondack Highlands (Darling et aI, 2004). This field trip includes stops at four outcrops containing cordierite in mineral assemblages that are characteristic of granulite facies metamorphism in aluminous rocks.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • 52. Iron-Rich Cordierite Structurally Close to Indialite by Miyoji SAMBONSUGI Geological Institute, Faculty of Arts And. Science
    190 [Vol. 33, 52. Iron-rich Cordierite Structurally Close to Indialite By Miyoji SAMBONSUGI GeologicalInstitute, Faculty of Arts and. Sciences,Fukushima University (Comm.by S. TsuBOI,M.J.A., April 1.2, 1957) Introduction In the course of his geological investigation of the Abukuma plateau, northeast Japan, the writer's attention was drawn to numerous pegmatites intruding the granitic and gneissic rocks which form the foundation of this district. In 1950 the writer found a peculiar mineral from one of the above-mentioned pegmatites, at Sugama. From its appearance the mineral was first identified as scapolite by the writer (Sambonsugi, 1953), but after further observations it has become clear that the mineral belongs to an iron-rich variety of cordierite, and that it is structurally close to indialite, hexagonal polymorph of cordierite, first found by Miyashiro and Iiyama (1954) from the fused sediment in the Bakaro coalfield, India. Miyashir0 et al. (1955) suspected that a structural gradation may exist between the hexagonal lattice of in- dialite and the orthorhombic lattice of cordierite, viz, that there may be some varieties of cordierite structurally close to indialite, though all then known show marked structural difference from indialite. The mineral found by the writer from the Sugama pegmatite is the first example of cordierite structurally close to indialite. It is the purpose of this paper to describe the mode of occurrence, the optical properties, and the chemical composition of the mineral. Recent- ly, the optical properties and the unit cell dimensions of the mineral were studied by T. Iiyama (1956). X-ray and thermal studies of the mineral were carried out by Miyashiro (1957).
    [Show full text]
  • Transition from Staurolite to Sillimanite Zone, Rangeley Quadrangle, Maine
    CHARLES V. GUIDOTTI Department of Geology and Geophysics, University of Wisconsin, Madison, Wisconsin 53706 Transition from Staurolite to Sillimanite Zone, Rangeley Quadrangle, Maine ABSTRACT GENERAL GEOLOGICAL SETTING Ordovician and Silurian to Devonian pelitic schist, conglomerate, quartzite, calc-silicate Study of pelitic schists in the Rangeley Figure 1 shows the location of the area granulite, and biotite schist. Post-tectonic, area, Maine, by means of petrographic, and a generalized geologic map of the shallow-dipping, adamellite sheets intrude x-ray, and electron-microprobe techniques southwestern third of the Rangeley quad- the metamorphosed strata. As illustrated in enables definition of the isogradic reaction rangle based upon Moench (1966, 1969, Figure 1, the isograds have a clear spacial relating the staurolite and lower sillimanite 1970a, 1970b, 1971). The rocks in this area relation to the distribution of the adamel- zones. The reaction is a discontinuous one consist of tightly folded, northeast-trending lites; but in a few cases, the adamellite and can be shown on an AFM projection as the tie line change from staurolite + chlorite to sillimanite 4- biotite. This topology change, in conjunction with the min- eralogical data provides the equation: Staur + Mg-Chte + Na-Musc + (Gam?) Sill + Bio + K-richer Muse + Ab + Qtz + H20. This reaction should result in a sharp isograd in the field but in fact is found to be spread out over a zone which is called the transition zone. It is proposed that this zene results from buffering of fH20 by means of the equation above. Buffering of fH.,o by continuous reactions also appears to be taking place in the lower sillimanite zone.
    [Show full text]
  • Tectono-Metamorphic Impact of a Subduction-Transform Transition and Implications for Interpretation of Orogenic Belts
    International Geology Review, Vol. 38, 1996, p. 979-994. Copyright © 1996 by V. H. Winston & Son, Inc. All rights reserved. Tectono-Metamorphic Impact of a Subduction-Transform Transition and Implications for Interpretation of Orogenic Belts JOHN WAKABAYASHI 1329 Sheridan Lane, Hayward, California 94544 Abstract Subduction-transform tectonic transitions were common in the geologic past, yet their impact on the evolution of orogenic belts is seldom considered. Evaluation of the tectonic transition in the Coast Ranges of California is used as an example to predict some characteristics of exhumed regions that experienced similar histories worldwide. Elevated thermal gradients accompanied the transition from subduction to transform tec­ tonics in coastal California. Along the axis of the Coast Ranges, peak pressure-temperature (P/T) conditions of 700 to 1000° C at a pressure of ~7 kbar, corresponding to granulite-facies metamorphism, and cooling to 500° C, or amphibolite facies, within 15 million years, are indicated by thermal gradients estimated from the depth to the base of crustal seismicity. Greenschist-facies conditions may occur at depths of 10 km or less. These P/T estimates are consistent with the petrology of crustal xenoliths and thermal models. Preservation of earlier subduction-related metamorphism is possible at depth in the Coast Ranges. Such rocks may record a greenschist or higher-grade overprint over blueschist assemblages, and late growth of metamorphic minerals may reflect dextral shear along the plate margin, with development of orogen-parallel stretching lineations. Thermal overprints of early-formed high-P (HP), low-T (LT) assemblages, in association with orogen-parallel stretching lineations, occur in many orogenic belts of the world, and have been attributed to subduction followed by collision.
    [Show full text]
  • Geologic Map of the Southern Ivrea-Verbano Zone, Northwestern Italy
    •usGsscience for a changing world Geologic Map of the Southern Ivrea-Verbano Zone, Northwestern Italy By James E. Quick,1 Silvano Sinigoi,2 Arthur W. Snoke,3 Thomas J. Kalakay,3 Adriano Mayer,2 and Gabriella Peressini2·4 Pamphlet to accompany Geologic Investigations Series Map I- 2776 1U. S. Geological Survey, Reston, VA 20192- 0002. 2Uni versita di Trieste, via Weiss 8, 341 27 Trieste, ltalia. 3Uni versity of Wyoming, Larami e, WY 8207 1- 3006. 4Max-Planck-lnstitut ft.ir Chemi e, J.J. Becherweg 27, 55 128 Mainz, Germany. 2003 U.S. Department of the Interi or U.S. Geological Survey COVER: View of the Ponte della Gula, an ancient bridge spanning the Torrente Mastellone approximately 2 kilometers north of the village of Varallo. Diorite of Valsesia crops out beneath the bridge. Photograph by ADstudia, Silvana Ferraris, photographer, Pizza Calderini, 3-13019 Varallo Sesia ([email protected]) INTRODUCTION REGIONAL SETTING The intrusion of mantle-derived magma into the deep conti­ The Ivrea-Verbano Zone (fig. 1) is a tectonically bounded sliver nental crust, a process commonly referred to as magmatic of plutonic and high-temperature, high-pressure metamorphic underplating, is thought to be important in shaping crustal com­ rocks in the southern Alps of northwestern Italy (Mehnert, position and structure. However, most evidence for this process 1975; Fountain, 1976). To the northwest, it is faulted against is indirect. High P-wave velocities and seismic-reflection profiles the basement of the Austro-Alpine Domain by the lnsubric Line, reveal that much of the deep continental crust is dense and a major suture zone that separates the European and Apulian strongly layered, consistent with the presence of layered mafic plates (Schmid and others, 1987; Nicolas and others, 1990).
    [Show full text]
  • Control of Material Transport and Reaction Mechanisms by Metastable Mineral Assemblages: an Example Involving Kyanite, Sillimanite, Muscovite and Quartz
    Fluid-Mineral Interactions: A Tribute to H. P. Eugster © The Geochemical Society, Special Publication No.2, 1990 Editors: R. J. Spencer and I-Ming Chou Control of material transport and reaction mechanisms by metastable mineral assemblages: An example involving kyanite, sillimanite, muscovite and quartz C. T. FOSTER,JR. Geology Department, University ofIowa, Iowa City, Iowa 52242, U.S.A. Abstract-Metastable mineral assemblages strongly influence reaction mechanisms and material transport when a new mineral grows in a metamorphic rock. The effects exerted by the metastable assemblages on the reactions that take place when sillimanite grows in a kyanite-bearing rock are examined using metastable elements of activity diagrams and irreversible thermodynamic principles. The results show that a commonly inferred reaction mechanism, where muscovite assists in the growth of sillimanite at the expense of kyanite, is a consequence of material transport constraints imposed by a metastable mineral assemblage in the matrix that separates growing sillimanite from dissolving kyanite. INTRODucnON pressures and temperatures represented by points I, II, and III (Fig. la) is shown in Fig. lb. ONEOFTHEPRIMARYcontrols on mineral textures Sillimanite nuclei first form in sites in the rock that develop during metamorphism is the distri- with the lowest activation energy for nucleation of bution of minerals in a rock at the time when a sillimanite. Under many metamorphic conditions, new mineral nucleates. The distribution of the new the low energy sites for sillimanite nucleation in mineral is strongly influenced by the abundance pelites appear to be in micas, because this is where and location of other minerals with favorable nu- sillimanite is commonly first observed with in- cleation sites for it.
    [Show full text]
  • Cordierite-Anthophyllite Rocks at Rat Lake, Manitoba
    ., , .,. '-'-' . MANlTiBA DEPARTMENJ Of MINES. RESOURCES & ENVIRONMENTAl MANIiGEMENT MINERAL BES(lJRCES DIvtSION OPEN FIIB REPORl' 76/1 OORDlERI'l'FI-ANTHOPHIWTE ROCKS AT RAT LAKE, MlNI'l'OBA; A METAMORPHOSED ALTERATION ZONE By D. A. Baldwin 19'16 Electronic Capture, 2011 The PDF file from which this document was printed was generated by scanning an original copy of the publication. Because the capture method used was 'Searchable Image (Exact)', it was not possible to proofread the resulting file to remove errors resulting from the capture process. Users should therefore verify critical information in an original copy of the publication. .. :., ,.' . .... .- .• I Tt'! OF CC!fl!fl'S .. ' i. -, Page Ifttraduct10n 1 ," Glael'll QeoloIJ 3 · ~ · " "'ell.e. ot unJcnom aft1DitJ (3, 4) 4 .' Coderite-AnthopbJlllte Roc1c1 6 ~I beU'.I.DI l'Ockl 6 .. " Quarts tree l'Ockl 6 ChIld..tl7 ot the Rat take Cordier1tWnthophJllite " BoGIe. 11 Oripn ot the Cord1.r1te-Antho~1l1tl Rocke 15 0I0phJ11ft81 IW'VI),' 18 '. :,(~, Airbome INPUT IVVi,Y 18 ..16 IUl'VI)' 20 OoIIalulonl IDCi Recoanendatianl 21 Iet.rtnael 2, Appendix "A" 25 Appendix "I" 27 \ , I .. ·. ~ . : . ~ . ·-. - 1-· IN'lRODUCTION -==ar=====:==s COrdierite-anthophyllite rocks containing disseminated sulphides of il'Onand copper, and traces of molybdn1te outcrop on the south shore of a small bay at Rat take, Manitoba (Location "5", Fig. 1). These rocks are siDdlar to those that occur in association with massive sulphide ore bodies at the Sherridon MLne, Manitoba, and the Coronation Mine, Saskatchewan. '!'he outcrops are found in an amphibolitic unit within cordierite­ s1 1limarrlte-anthophyll1te-biotite gneisses of ''unknown affinity" (Schledewitz, 1972).
    [Show full text]
  • Subduction and Continental Collision in the Lufilian Arc
    Subduction and continental collision in the Lufilian Arc-Zambesi Belt orogen: A petrological, geochemical, and geochronological study of eclogites and whiteschists (Zambia) Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Timm John Kiel 2001 Vorwort 1 Introduction and Summary 3 CHAPTER ONE 6 Evidence for a Neoproterozoic ocean in south central Africa from MORB-type geochemical signatures and P-T estimates of Zambian eclogites 1.1 Abstract 6 1.2 Introduction 7 1.3 Geological overview 7 1.4 Petrography and mineral chemistry 9 1.5 Thermobarometry and P-T evolution 9 1.6 Geochemistry 12 1.7 Geochronology 14 1.8 Conclusions 15 CHAPTER TWO 16 Partial eclogitisation of gabbroic rocks in a late Precambrian subduction zone (Zambia): prograde metamorphism triggered by fluid infiltration 2.1 Abstract 16 2.2 Introduction 17 2.3 Geological setting 18 2.4 Petrology 20 2.4.1 Petrography 20 2.4.2 Mineral chemistry and growth history 24 2.4.3 P-T conditions and phase relations 29 2.5 Processes occurring during eclogitisation 31 2.5.1 Dissolution and precipitation mechanism 32 2.5.2 Formation of pseudomorphs 33 2.5.3 Vein formation 34 2.6 Fluid source 35 2.7 Discussion and conclusions 36 CHAPTER THREE 37 Timing and P-T evolution of whiteschist metamorphism in the Lufilian Arc-Zambesi Belt orogen (Zambia): implications to the Gondwana assembly 3.1 Abstract 37 3.2 Introduction 38 3.3 Regional geology 39 3.4 Sample localities 41 3.5 Petrography and mineral
    [Show full text]
  • List of Abbreviations
    List of Abbreviations Ab albite Cbz chabazite Fa fayalite Acm acmite Cc chalcocite Fac ferroactinolite Act actinolite Ccl chrysocolla Fcp ferrocarpholite Adr andradite Ccn cancrinite Fed ferroedenite Agt aegirine-augite Ccp chalcopyrite Flt fluorite Ak akermanite Cel celadonite Fo forsterite Alm almandine Cen clinoenstatite Fpa ferropargasite Aln allanite Cfs clinoferrosilite Fs ferrosilite ( ortho) Als aluminosilicate Chl chlorite Fst fassite Am amphibole Chn chondrodite Fts ferrotscher- An anorthite Chr chromite makite And andalusite Chu clinohumite Gbs gibbsite Anh anhydrite Cld chloritoid Ged gedrite Ank ankerite Cls celestite Gh gehlenite Anl analcite Cp carpholite Gln glaucophane Ann annite Cpx Ca clinopyroxene Glt glauconite Ant anatase Crd cordierite Gn galena Ap apatite ern carnegieite Gp gypsum Apo apophyllite Crn corundum Gr graphite Apy arsenopyrite Crs cristroballite Grs grossular Arf arfvedsonite Cs coesite Grt garnet Arg aragonite Cst cassiterite Gru grunerite Atg antigorite Ctl chrysotile Gt goethite Ath anthophyllite Cum cummingtonite Hbl hornblende Aug augite Cv covellite He hercynite Ax axinite Czo clinozoisite Hd hedenbergite Bhm boehmite Dg diginite Hem hematite Bn bornite Di diopside Hl halite Brc brucite Dia diamond Hs hastingsite Brk brookite Dol dolomite Hu humite Brl beryl Drv dravite Hul heulandite Brt barite Dsp diaspore Hyn haiiyne Bst bustamite Eck eckermannite Ill illite Bt biotite Ed edenite Ilm ilmenite Cal calcite Elb elbaite Jd jadeite Cam Ca clinoamphi- En enstatite ( ortho) Jh johannsenite bole Ep epidote
    [Show full text]
  • Cordierite and Its Retrograde Breakdown Products As
    Jörn C. Ogiermann Cordierite and its retrograde breakdown products as monitors of fluid-rock interaction during retrograde path metamorphism: case studies in the Schwarzwald and the Bayerische Wald (Variscan belt, Germany) Dissertation 2002, Heidelberg Dissertation submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences presented by Diplom-Geol.: Jörn Christian Ogiermann born in: Offenbach/Main Oral examination: 13. December, 2002 Cordierite and its retrograde breakdown products as monitors of fluid-rock interaction during retrograde path metamorphism: case studies in the Schwarzwald and the Bayerische Wald (Variscan belt, Germany) Referees: Prof. Dr. Angelika Kalt Prof. Dr. Rainer Altherr Abstract Ogiermann, J.C. Abstract Retrograde breakdown products of cordierite are commonly termed pinite, but their modes, compositions and formation conditions are only poorly known. The author carried out a systematic study on pinitised cordierite from Variscan high-temperature metamorphic pelites of the Schwarzwald and the Bayerische Wald using electron microprobe (EM), transmission electron microscope (TEM), scanning electron microscope (SEM), x-ray diffraction (XRD), petrographic microscope and Fourier Transformation Infrared Spectroscopy (FTIR) investigations. On the basis of composition, phase assemblage, textural position and grain size four pinite types (border, mat, fissure, isotropic type) were distinguished that formed by distinct allochemical processes under different pressure-temperature conditions at different times. They probably represent general features of cordierite breakdown. Border-type (b-type) pinite consists of muscovite and biotite, formed at 350 - 550 °C from a K+-bearing fluid, most likely derived from the breakdown of K-feldspar to muscovite and quartz.
    [Show full text]