Herpetological Study for Feronia, Boteka Oil Palm Plantation High Conservation Value Assessment

Total Page:16

File Type:pdf, Size:1020Kb

Herpetological Study for Feronia, Boteka Oil Palm Plantation High Conservation Value Assessment Herpetological Study for Feronia, Boteka Oil Palm Plantation High Conservation Value Assessment Project Number: CDC2950 Prepared for: Feronia PHC March 2015 _______________________________________________________________________________________ Digby Wells and Associates (South Africa) (Pty) Ltd (Subsidiary of Digby Wells & Associates (Pty) Ltd). Co. Reg. No. 2010/008577/07. Fern Isle, Section 10, 359 Pretoria Ave Randburg Private Bag X10046, Randburg, 2125, South Africa Tel: +27 11 789 9495, Fax: +27 11 789 9498, [email protected], www.digbywells.com _______________________________________________________________________________________ Directors: AR Wilke, DJ Otto, GB Beringer, LF Koeslag, AJ Reynolds (Chairman) (British)*, J Leaver*, GE Trusler (C.E.O) *Non-Executive _______________________________________________________________________________________ This document has been prepared by Digby Wells Environmental. Report Type: High Conservation Value Assessment Herpetological Study for Feronia, Boteka Oil Palm Project Name: Plantation Project Code: CDC2950 Name Responsibility Signature Date Caitlin O’Connor Report Writer March 2015 Phil Patton Pr.Sci.Nat. Report Review April 2015 Brett Coutts Report Reviewer May 2015 (Cand.Sci. Nat) This report is provided solely for the purposes set out in it and may not, in whole or in part, be used for any other purpose without Digby Wells Environmental prior written consent. Digby Wells Environmental i High Conservation Value Assessment Herpetological Study for Feronia, Boteka Oil Palm Plantation CDC2950 EXECUTIVE SUMMARY The Democratic Republic of Congo is one of the most important countries in Africa for biodiversity conservation. It has the highest number of species for almost all groups of organisms with the exception of plants in which it is second to South Africa. Reptiles and particularly amphibians have high species richness and endemism in the DRC, This is largely due to the varied and diverse habitat types which exist within the country. Information is scarce regarding possible endemics and geographic variations. Habitat loss is the most significant environmental driver threatening biodiversity. Extensive deforestation has not only resulted in the large-scale loss of forest cover, but has also caused the fragmentation of the existing remaining habitat into numerous isolated patches. The impacts of oil palm plantation agriculture on biodiversity have proven severe, leading to increased human–wildlife conflict, homogenization of structurally and species diverse ecosystems, and destruction of habitat for globally threatened species. Two hundred and eighty (280) species of reptiles are expected to occur within the DRC. The information supporting the species is not largely available and it is regarded to be poorly understood. A total of 224 species of amphibians, 6 families, 39 genera, are expected to occur within the DRC. Forty eight (48) of these amphibian species are endemic to the DRC. It appears that the majority of the amphibian species occur in the rainforest and almost all the endemics are confined to it. The Boteka Feronia Oil Palm Plantation lies in the Northern DRC, within the province of Equator. The area lies within the Central Congolian Lowland Forest. The vegetation consists of rainforest vegetation, which straddles the Congo River and its tributaries. This habitat type is regarded to be Vulnerable. Boteka Oil Palm Plantation is located on the Southern Bank of the Momboyo River, a tributary of the Ruki River. The project area covers approximately 13542 hectares. The findings of the study present the Boteka Concession to be moderate to high in species richness and habitat provision. Natural, Secondary forest (especially with streams), Swamp Forest and Riverine Forest Habitats are regarded to have the highest ecological sensitivity due to the moderate to high in species richness and habitat provision. These areas are all regarded to be important to conserve for herpetological species. Digby Wells Environmental ii High Conservation Value Assessment Herpetological Study for Feronia, Boteka Oil Palm Plantation CDC2950 TABLE OF CONTENTS 1 Introduction ........................................................................................................................... 1 2 Site ....................................................................................................................................... 2 2.1.1 Geography ......................................................................................................... 2 2.1.2 Climate ............................................................................................................... 5 3 Methodology ......................................................................................................................... 5 3.1 Baseline assessment ................................................................................................ 5 3.2 Field Survey .............................................................................................................. 5 4 Findings ................................................................................................................................ 7 4.1 Desktop .................................................................................................................... 7 4.1.1 Reptiles .............................................................................................................. 7 4.1.2 Amphibians ...................................................................................................... 10 4.2 Field Survey ............................................................................................................ 12 4.2.1 Reptile field survey findings .............................................................................. 12 4.2.2 Amphibians ...................................................................................................... 13 4.3 Habitat Types ......................................................................................................... 14 4.3.1 Natural Forest Habitat ...................................................................................... 14 4.3.2 Secondary forest habitat ................................................................................... 16 4.3.3 Swamp Forest Habitat ...................................................................................... 16 4.3.4 Riverine Forest and Open Water ...................................................................... 17 4.3.5 Plantation with termite mound habitat ............................................................... 19 4.3.6 Village .............................................................................................................. 20 5 Discussion .......................................................................................................................... 21 6 Conclusion .......................................................................................................................... 22 7 References ......................................................................................................................... 23 7.1 Field Guides ........................................................................................................... 24 Digby Wells Environmental iii High Conservation Value Assessment Herpetological Study for Feronia, Boteka Oil Palm Plantation CDC2950 LIST OF FIGURES Figure 1: Regional setting of Boteka Oil Palm Concession, Democratic Republic of Congo .. 3 Figure 2: Boteka Oil Palm Concession, Democratic Republic of Congo ................................ 4 Figure 3: Boteka Oil Palm Concession, Democratic Republic of Congo ................................ 6 Figure 4: A: Graceful Chameleon (Chameleo gracilis) is arboreal, but is also often observed on the ground, in villages and along paths (IUCN, 2015) B: Forest Hinge-back Tortoise (Kinixys erosa) inhabits the lowland evergreen forest, marshy areas, and forest galleries growing along rivers and streams, where it is locally threatened by clearance of forest for cultivation and hunting pressure (Luise L and Diagne T, 2015) ............................................. 8 Figure 5: Expected Reptile SSC, Boteka; A. and B: Critically Endangered Slender-snouted Crocodile (Mecistops cataphractus) which is likely to occur within the Boteka Concession (IUCN, 2015) ....................................................................................................................... 10 Figure 6: Endemic Species A: Christy's tree frog (Leptopelis christyi), B: Congo Banana Frog (Afrixalus equatorialis) (DD) C: (Leptopelis calcaratus) D: Marbled Running Frog (Kassina maculosa) ........................................................................................................................... 11 Figure 7: Reptile species identified during the field survey at Boteka Oil Palm Plantation, Feronia, DRC; A: Black-necked Tree Agama (Agama cyanogaster) B. Tropical House Gekko (Hemidactylus mabouia) C: Snake species ......................................................................... 13 Figure 8: Amphibian Species Identified During the Field Survey of the Boteka Concession.1. African common toad (Amietophrynus regularis), African Gutteral Toad (Amietophrynus gutturalis) ............................................................................................................................ 13 Figure 9: Natural Forest Habitat within Boteka Concession A: Closed canopy
Recommended publications
  • The Tadpoles of Eight West and Central African Leptopelis Species (Amphibia: Anura: Arthroleptidae)
    Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 9(2) [Special Section]: 56–84 (e111). The tadpoles of eight West and Central African Leptopelis species (Amphibia: Anura: Arthroleptidae) 1,*Michael F. Barej, 1Tilo Pfalzgraff,1 Mareike Hirschfeld, 2,3H. Christoph Liedtke, 1Johannes Penner, 4Nono L. Gonwouo, 1Matthias Dahmen, 1Franziska Grözinger, 5Andreas Schmitz, and 1Mark-Oliver Rödel 1Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115 Berlin, GERMANY 2Department of Environmental Science (Biogeography), University of Basel, Klingelbergstrasse 27, 4056 Basel, SWITZERLAND 3Ecology, Evolution and Developmental Group, Department of Wetland Ecology, Estación Biológica de Doñana (CSIC), 41092 Sevilla, SPAIN 4Cameroon Herpetology- Conservation Biology Foundation (CAMHERP-CBF), PO Box 8218, Yaoundé, CAMEROON 5Natural History Museum of Geneva, Department of Herpetology and Ichthyology, C.P. 6434, 1211 Geneva 6, SWITZERLAND Abstract.—The tadpoles of more than half of the African tree frog species, genus Leptopelis, are unknown. We provide morphological descriptions of tadpoles of eight species from Central and West Africa. We present the first descriptions for the tadpoles ofLeptopelis boulengeri and L. millsoni. In addition the tadpoles of L. aubryioides, L. calcaratus, L. modestus, L. rufus, L. spiritusnoctis, and L. viridis are herein reinvestigated and their descriptions complemented, e.g., with additional tooth row formulae or new measurements based on larger series of available tadpoles. Key words. Anuran larvae, external morphology, diversity, mitochondrial DNA, DNA barcoding, lentic waters, lotic waters Citation: Barej MF, Pfalzgraff T, Hirschfeld M, Liedtke HC, Penner J, Gonwouo NL, Dahmen M, Grözinger F, Schmitz A, Rödel M-0. 2015. The tadpoles of eight West and Central African Leptopelis species (Amphibia: Anura: Arthroleptidae).
    [Show full text]
  • Contributions to the Natural History and Distribution of Dasypeltis
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Herpetozoa Jahr/Year: 2017 Band/Volume: 30_1_2 Autor(en)/Author(s): Jimenez-Robles Octavio, Leon Raul, Soto Cardenas Manuel, Rebollo Baudilio, Martinez Gabriel Artikel/Article: Contributions to the natural history and distribution of Dasypeltis sahelensis TRAPE & MANÉ, 2006, in Morocco 80-86 All_Short_Notes_(Seiten 59-112):SHORT_NOTE.qxd 07.08.2017 19:05 Seite 22 80 SHORT NOTE HERPETOZOA 30 (1/2) Wien, 30. Juli 2017 SHORT NOTE Ministry of Enviroment), pp. 14, 214. BARAN , İ. & quences.- Molecular Ecology, Oxford; 14: 2433-2443. IlgAZ , Ç. & A vcI , A. & K uMluTAş , Y. & OlguN , K. ScHREIBER , E. (1912): Herpetologia Europaea. Eine (2012): Türkiye amfibi ve sürüngenleri [Amphibians systematische Bearbeitung der Amphibien und and reptiles of Turkey]. Ankara (TÜBİTAK Popüler Reptilien welche bisher in Europa aufgefunden sind. Bilim Kitapları), pp. 208. BARAN , İ. & Y IlMAZ , İ. & 2nd edition. Jena (gustav Fischer), pp. X, 960. KETE , R. & D uR Muş , H. (1992) : Batı ve orta Karadeniz SINDAcO , R. & J EREMčENKO , v. K. (2008): The reptiles Bölgesinin herpetofaunası.- Turkish Journal of Zoology, of the western Palearctic. 1. Annotated checklist and Ankara; 16: 275-288. BAşOğlu , M. & B ARAN , İ. distributional atlas of the turtles, crocodiles, amphis - (1977): Türkiye sürüngenleri. Kısım I. Kaplumbağa ve baenians and lizards of Europe, North Africa, Middle kertenkeleler.- Ege Üniversitesi Fen Fakültesi Kitaplar East and central Asia.latina (Edizioni Belvedere), pp. Serisi, İzmir; 76: vI, 272. BERgMANN , J. & N ORSTRöM , 579. SINDAcO , R. & v ENcHI , A. & c ARPANETO , g. M. M. (1990): Neues über Podarcis taurica (PAllAS , 1814) & B OlOgNA , M.
    [Show full text]
  • BOA2.1 Caecilian Biology and Natural History.Key
    The Biology of Amphibians @ Agnes Scott College Mark Mandica Executive Director The Amphibian Foundation [email protected] 678 379 TOAD (8623) 2.1: Introduction to Caecilians Microcaecilia dermatophaga Synapomorphies of Lissamphibia There are more than 20 synapomorphies (shared characters) uniting the group Lissamphibia Synapomorphies of Lissamphibia Integumen is Glandular Synapomorphies of Lissamphibia Glandular Skin, with 2 main types of glands. Mucous Glands Aid in cutaneous respiration, reproduction, thermoregulation and defense. Granular Glands Secrete toxic and/or noxious compounds and aid in defense Synapomorphies of Lissamphibia Pedicellate Teeth crown (dentine, with enamel covering) gum line suture (fibrous connective tissue, where tooth can break off) basal element (dentine) Synapomorphies of Lissamphibia Sacral Vertebrae Sacral Vertebrae Connects pelvic girdle to The spine. Amphibians have no more than one sacral vertebrae (caecilians have none) Synapomorphies of Lissamphibia Amphicoelus Vertebrae Synapomorphies of Lissamphibia Opercular apparatus Unique to amphibians and Operculum part of the sound conducting mechanism Synapomorphies of Lissamphibia Fat Bodies Surrounding Gonads Fat Bodies Insulate gonads Evolution of Amphibians † † † † Actinopterygian Coelacanth, Tetrapodomorpha †Amniota *Gerobatrachus (Ray-fin Fishes) Lungfish (stem-tetrapods) (Reptiles, Mammals)Lepospondyls † (’frogomander’) Eocaecilia GymnophionaKaraurus Caudata Triadobatrachus Anura (including Apoda Urodela Prosalirus †) Salientia Batrachia Lissamphibia
    [Show full text]
  • Bioseries12-Amphibians-Taita-English
    0c m 12 Symbol key 3456 habitat pond puddle river stream 78 underground day / night day 9101112131415161718 night altitude high low vegetation types shamba forest plantation prelim pages ENGLISH.indd ii 2009/10/22 02:03:47 PM SANBI Biodiversity Series Amphibians of the Taita Hills by G.J. Measey, P.K. Malonza and V. Muchai 2009 prelim pages ENGLISH.indd Sec1:i 2009/10/27 07:51:49 AM SANBI Biodiversity Series The South African National Biodiversity Institute (SANBI) was established on 1 September 2004 through the signing into force of the National Environmental Management: Biodiversity Act (NEMBA) No. 10 of 2004 by President Thabo Mbeki. The Act expands the mandate of the former National Botanical Institute to include responsibilities relating to the full diversity of South Africa’s fauna and ora, and builds on the internationally respected programmes in conservation, research, education and visitor services developed by the National Botanical Institute and its predecessors over the past century. The vision of SANBI: Biodiversity richness for all South Africans. SANBI’s mission is to champion the exploration, conservation, sustainable use, appreciation and enjoyment of South Africa’s exceptionally rich biodiversity for all people. SANBI Biodiversity Series publishes occasional reports on projects, technologies, workshops, symposia and other activities initiated by or executed in partnership with SANBI. Technical editor: Gerrit Germishuizen Design & layout: Elizma Fouché Cover design: Elizma Fouché How to cite this publication MEASEY, G.J., MALONZA, P.K. & MUCHAI, V. 2009. Amphibians of the Taita Hills / Am bia wa milima ya Taita. SANBI Biodiversity Series 12. South African National Biodiversity Institute, Pretoria.
    [Show full text]
  • What Is Driving Declines of Montane Endemic Amphibians? New Insights from Mount Bamboutos, Cameroon
    What is driving declines of montane endemic amphibians? New insights from Mount Bamboutos, Cameroon A. M. TCHASSEM F., T. M. DOHERTY-B ONE,M.M.KAMENI N. W. P. TAPONDJOU N.,J.L.TAMESSE and L . N . G ONWOUO Abstract Amphibians on African mountains are threatened Preserving a network of connected forest patches is there- by habitat loss and fragmentation, pollution, disease and fore critical to save the endemic amphibians of Mount climate change. In particular, there have been recent reports Bamboutos. of declines of montane endemic frogs in Cameroon. Mount Keywords Africa, amphibians, anurans, Cameroon, caeci- Bamboutos, although home to numerous species of endemic lians, endemic species, forest degradation, mountains amphibians, has no official protection and its amphibian populations have so far not been studied quantitatively. Supplementary material for this article is available at We surveyed frog assemblages on this mountain along a https://doi.org/./S gradient of forest modification over a -year period. Through visual encounter surveys stratified across forest and farm- land, we found that threatened montane amphibian species Introduction are closely associated with forested areas, particularly the Critically Endangered Leptodactylodon axillaris and mphibians are threatened globally, with over one-third Endangered Leptodactylodon perreti, Astylosternus ranoides Aof all known species at risk of extinction and half show- and Cardioglossa oreas. Using the updated inventory of ing population declines (Stuart et al., ; IUCN, ). amphibians, which includes species with broader ranges Threats include habitat alteration, loss and fragmenta- across Africa, we found % of amphibian species on tion, pollution, overexploitation, disease, invasive species, Mount Bamboutos to be threatened. We did not record climate change and combinations of these factors (Beebee several species present in historical records, which suggests & Griffiths, ).
    [Show full text]
  • Journal of the East Africa Natural History Society and National Museum
    JOURNAL OF THE EAST AFRICA NATURAL HISTORY SOCIETY AND NATIONAL MUSEUM 15 October, 1978 Vol. 31 No. 167 A CHECKLIST OF mE SNAKES OF KENYA Stephen Spawls 35 WQodland Rise, Muswell Hill, London NIO, England ABSTRACT Loveridge (1957) lists 161 species and subspecies of snake from East Mrica. Eighty-nine of these belonging to some 41 genera were recorded from Kenya. The new list contains some 106 forms of 46 genera. - Three full species have been deleted from Loveridge's original checklist. Typhlops b. blanfordii has been synonymised with Typhlops I. lineolatus, Typhlops kaimosae has been synonymised with Typhlops angolensis (Roux-Esteve 1974) and Co/uber citeroii has been synonymised with Meizodon semiornatus (Lanza 1963). Of the 20 forms added to the list, 12 are forms collected for the first time in Kenya but occurring outside its political boundaries and one, Atheris desaixi is a new species, the holotype and paratypes being collected within Kenya. There has also been a large number of changes amongst the 89 original species as a result of revisionary systematic studies. This accounts for the other additions to the list. INTRODUCTION The most recent checklist dealing with the snakes of Kenya is Loveridge (1957). Since that date there has been a significant number of developments in the Kenyan herpetological field. This paper intends to update the nomenclature in the part of the checklist that concerns the snakes of Kenya and to extend the list to include all the species now known to occur within the political boundaries of Kenya. It also provides the range of each species within Kenya with specific locality records .
    [Show full text]
  • Table 7: Species Changing IUCN Red List Status (2018-2019)
    IUCN Red List version 2019-3: Table 7 Last Updated: 10 December 2019 Table 7: Species changing IUCN Red List Status (2018-2019) Published listings of a species' status may change for a variety of reasons (genuine improvement or deterioration in status; new information being available that was not known at the time of the previous assessment; taxonomic changes; corrections to mistakes made in previous assessments, etc. To help Red List users interpret the changes between the Red List updates, a summary of species that have changed category between 2018 (IUCN Red List version 2018-2) and 2019 (IUCN Red List version 2019-3) and the reasons for these changes is provided in the table below. IUCN Red List Categories: EX - Extinct, EW - Extinct in the Wild, CR - Critically Endangered [CR(PE) - Critically Endangered (Possibly Extinct), CR(PEW) - Critically Endangered (Possibly Extinct in the Wild)], EN - Endangered, VU - Vulnerable, LR/cd - Lower Risk/conservation dependent, NT - Near Threatened (includes LR/nt - Lower Risk/near threatened), DD - Data Deficient, LC - Least Concern (includes LR/lc - Lower Risk, least concern). Reasons for change: G - Genuine status change (genuine improvement or deterioration in the species' status); N - Non-genuine status change (i.e., status changes due to new information, improved knowledge of the criteria, incorrect data used previously, taxonomic revision, etc.); E - Previous listing was an Error. IUCN Red List IUCN Red Reason for Red List Scientific name Common name (2018) List (2019) change version Category
    [Show full text]
  • Méta-Analyse Exploratoire Des Effets De Perturbations Anthropiques Sur
    Tropicultura 2295-8010 Volume 39 (2021) Numéro 1, 1709 Méta-analyse exploratoire des effets de perturbations anthropiques sur la diversité des amphibiens dans les stations de Kasugho, Butembo, Mambasa et Kisangani en République Démocratique du Congo Loving Musubaho Kako-Wanzalire, Léon Iyongo Waya Mongo, Marc Boketshu Ilonga, Joël Mbusa Mapoli, Jean-Louis Juakaly Mbumba, Sylvie Muhinda Neema, Guy-Crispin Gembu Tungaluna, Jean- Claude Mukinzi Itoka & Jan Bogaert Loving Musubaho Kako-Wanzalire : MSc, Enseignant, Département d’Écologie et Gestion des Ressources Animales, Faculté des Sciences, Université de Conservation de la Nature et de Développement à Kasugho/Goma (RD Congo) ; Doctorant, Unité Biodiversité et Paysage, Université de Liège, Gembloux Agro-Bio Tech, 2 Passage des Déportés, 5030, Gembloux (Belgique). Auteur correspondant : [email protected] Léon Iyongo Waya Mongo : PhD, Professeur Associé, Enseignant, Section des Eaux et Forêts, Institut Supérieur d’Études Agronomiques de Bengamisa/Kisangani, 202, RD Congo. Marc Boketshu Ilonga : Enseignant-Chercheur, Section d’Agronomie Générale, Institut Supérieur d’Etudes Agronomiques de Yatolema, 2324, Opala/RD Congo. Joël Mbusa Mapoli : Enseignant-Chercheur, Département d’Écologie et Gestion des Ressources Animales, Faculté des Sciences, Université de Conservation de la Nature et de Développement à Kasugho/Goma (RD Congo). Jean-Louis Juakaly Mbumba : PhD, Professeur, Enseignant, Département d’Écologie et Gestion des Ressources Animales, Faculté des Sciences, Université de Kisangani, 2012, Kisangani (RD Congo). Sylvie Muhinda Neema : Chercheuse, Département d’Ecologie et Gestion des Ressources Animales, Faculté des Sciences, Université de Conservation de la Nature et de Développement à Kasugho/Goma (RD Congo). Guy-Crispin Gembu Tungaluna : PhD, Professeur, Enseignant, Département d’Ecologie et Gestion des Ressources Animales, Faculté des Sciences, Université de Kisangani, 2012, Kisangani (RD Congo).
    [Show full text]
  • Folding Frog Afrixalus Paradorsalis (Anura: Hyperoliidae) of the Lower Guineo-Congolian Rain Forest
    DOI: 10.1111/jbi.13365 RESEARCH PAPER Sky, sea, and forest islands: Diversification in the African leaf-folding frog Afrixalus paradorsalis (Anura: Hyperoliidae) of the Lower Guineo-Congolian rain forest Kristin L. Charles1 | Rayna C. Bell2,3 | David C. Blackburn4 | Marius Burger5,6 | Matthew K. Fujita7 | Vaclav Gvozdık8,9 | Gregory F.M. Jongsma4 | Marcel Talla Kouete4 | Adam D. Leache10,11 | Daniel M. Portik7,12 1Department of Biology, University of Nevada, Reno, Nevada 2Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia 3Museum of Vertebrate Zoology, University of California, Berkeley, California 4Florida Museum of Natural History, University of Florida, Gainesville, Florida 5African Amphibian Conservation Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom,South Africa 6Flora Fauna & Man, Ecological Services Ltd., Tortola, British Virgin Island 7Department of Biology, The University of Texas at Arlington, Arlington, Texas 8Institute of Vertebrate Biology, Czech Academy of Sciences, Brno,Czech Republic 9Department of Zoology, National Museum, Prague, Czech Republic 10Department of Biology, University of Washington, Seattle, Washington 11Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington 12Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona Correspondence Daniel M. Portik, Department of Ecology Abstract and Evolutionary Biology, University of Aim: To investigate how putative barriers, forest refugia, and ecological gradients Arizona, Tucson, AZ. Email: [email protected] across the lower Guineo-Congolian rain forest shape genetic and phenotypic diver- gence in the leaf-folding frog Afrixalus paradorsalis, and examine the role of adjacent Funding information Division of Environmental Biology, Grant/ land bridge and sky-islands in diversification.
    [Show full text]
  • Chytrid Fungus in Frogs from an Equatorial African Montane Forest in Western Uganda
    Journal of Wildlife Diseases, 43(3), 2007, pp. 521–524 # Wildlife Disease Association 2007 Chytrid Fungus in Frogs from an Equatorial African Montane Forest in Western Uganda Tony L. Goldberg,1,2,3 Anne M. Readel,2 and Mary H. Lee11Department of Pathobiology, University of Illinois, 2001 South Lincoln Avenue, Urbana, Illinois 61802, USA; 2 Program in Ecology and Evolutionary Biology, University of Illinois, 235 NRSA, 607 East Peabody Drive, Champaign, Illinois 61820, USA; 3 Corresponding author (email: [email protected]) ABSTRACT: Batrachochytrium dendrobatidis, grassland, woodland, lakes and wetlands, the causative agent of chytridiomycosis, was colonizing forest, and plantations of exotic found in 24 of 109 (22%) frogs from Kibale trees (Chapman et al., 1997; Chapman National Park, western Uganda, in January and June 2006, representing the first account of the and Lambert, 2000). Mean daily minimum fungus in six species and in Uganda. The and maximum temperatures in Kibale presence of B. dendrobatidis in an equatorial were recorded as 14.9 C and 20.2 C, African montane forest raises conservation respectively, from 1990 to 2001, with concerns, considering the high amphibian mean annual rainfall during the same diversity and endemism characteristic of such areas and their ecological similarity to other period of 1749 mm, distributed across regions of the world experiencing anuran distinct, bimodal wet and dry seasons declines linked to chytridiomycosis. (Chapman et al., 1999, 2005). Kibale has Key words: Africa, amphibians, Anura, experienced marked climate change over Batrachochytrium dendrobatidis,Chytridio- the last approximately 30 yr, with increas- mycota, Uganda. ing annual rainfall, increasing maximum mean monthly temperatures, and decreas- Chytridiomycosis, an emerging infec- ing minimum mean monthly temperatures tious disease caused by the fungus Ba- trachochytrium dendrobatidis, is a major (Chapman et al., 2005).
    [Show full text]
  • Goliath Frogs Build Nests for Spawning – the Reason for Their Gigantism? Marvin Schäfera, Sedrick Junior Tsekanéb, F
    JOURNAL OF NATURAL HISTORY 2019, VOL. 53, NOS. 21–22, 1263–1276 https://doi.org/10.1080/00222933.2019.1642528 Goliath frogs build nests for spawning – the reason for their gigantism? Marvin Schäfera, Sedrick Junior Tsekanéb, F. Arnaud M. Tchassemb, Sanja Drakulića,b,c, Marina Kamenib, Nono L. Gonwouob and Mark-Oliver Rödel a,b,c aMuseum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany; bFaculty of Science, Laboratory of Zoology, University of Yaoundé I, Yaoundé, Cameroon; cFrogs & Friends, Berlin, Germany ABSTRACT ARTICLE HISTORY In contrast to its popularity, astonishingly few facts have become Received 16 April 2019 known about the biology of the Goliath Frog, Conraua goliath.We Accepted 7 July 2019 herein report the so far unknown construction of nests as spawning KEYWORDS sites by this species. On the Mpoula River, Littoral District, West Amphibia; Anura; Cameroon; Cameroon we identified 19 nests along a 400 m section. Nests Conraua goliath; Conrauidae; could be classified into three types. Type 1 constitutes rock pools parental care that were cleared by the frogs from detritus and leaf-litter; type 2 constitutes existing washouts at the riverbanks that were cleared from leaf-litter and/or expanded, and type 3 were depressions dug by the frogs into gravel riverbanks. The cleaning and digging activ- ities of the frogs included removal of small to larger items, ranging from sand and leaves to larger stones. In all nest types eggs and tadpoles of C. goliath were detected. All nest types were used for egg deposition several times, and could comprise up to three distinct cohorts of tadpoles.
    [Show full text]
  • Biodiversity in Sub-Saharan Africa and Its Islands Conservation, Management and Sustainable Use
    Biodiversity in Sub-Saharan Africa and its Islands Conservation, Management and Sustainable Use Occasional Papers of the IUCN Species Survival Commission No. 6 IUCN - The World Conservation Union IUCN Species Survival Commission Role of the SSC The Species Survival Commission (SSC) is IUCN's primary source of the 4. To provide advice, information, and expertise to the Secretariat of the scientific and technical information required for the maintenance of biologi- Convention on International Trade in Endangered Species of Wild Fauna cal diversity through the conservation of endangered and vulnerable species and Flora (CITES) and other international agreements affecting conser- of fauna and flora, whilst recommending and promoting measures for their vation of species or biological diversity. conservation, and for the management of other species of conservation con- cern. Its objective is to mobilize action to prevent the extinction of species, 5. To carry out specific tasks on behalf of the Union, including: sub-species and discrete populations of fauna and flora, thereby not only maintaining biological diversity but improving the status of endangered and • coordination of a programme of activities for the conservation of bio- vulnerable species. logical diversity within the framework of the IUCN Conservation Programme. Objectives of the SSC • promotion of the maintenance of biological diversity by monitoring 1. To participate in the further development, promotion and implementation the status of species and populations of conservation concern. of the World Conservation Strategy; to advise on the development of IUCN's Conservation Programme; to support the implementation of the • development and review of conservation action plans and priorities Programme' and to assist in the development, screening, and monitoring for species and their populations.
    [Show full text]