What Is Driving Declines of Montane Endemic Amphibians? New Insights from Mount Bamboutos, Cameroon

Total Page:16

File Type:pdf, Size:1020Kb

What Is Driving Declines of Montane Endemic Amphibians? New Insights from Mount Bamboutos, Cameroon What is driving declines of montane endemic amphibians? New insights from Mount Bamboutos, Cameroon A. M. TCHASSEM F., T. M. DOHERTY-B ONE,M.M.KAMENI N. W. P. TAPONDJOU N.,J.L.TAMESSE and L . N . G ONWOUO Abstract Amphibians on African mountains are threatened Preserving a network of connected forest patches is there- by habitat loss and fragmentation, pollution, disease and fore critical to save the endemic amphibians of Mount climate change. In particular, there have been recent reports Bamboutos. of declines of montane endemic frogs in Cameroon. Mount Keywords Africa, amphibians, anurans, Cameroon, caeci- Bamboutos, although home to numerous species of endemic lians, endemic species, forest degradation, mountains amphibians, has no official protection and its amphibian populations have so far not been studied quantitatively. Supplementary material for this article is available at We surveyed frog assemblages on this mountain along a https://doi.org/./S gradient of forest modification over a -year period. Through visual encounter surveys stratified across forest and farm- land, we found that threatened montane amphibian species Introduction are closely associated with forested areas, particularly the Critically Endangered Leptodactylodon axillaris and mphibians are threatened globally, with over one-third Endangered Leptodactylodon perreti, Astylosternus ranoides Aof all known species at risk of extinction and half show- and Cardioglossa oreas. Using the updated inventory of ing population declines (Stuart et al., ; IUCN, ). amphibians, which includes species with broader ranges Threats include habitat alteration, loss and fragmenta- across Africa, we found % of amphibian species on tion, pollution, overexploitation, disease, invasive species, Mount Bamboutos to be threatened. We did not record climate change and combinations of these factors (Beebee several species present in historical records, which suggests & Griffiths, ). Habitat loss, degradation and fragmen- they may have disappeared from this mountain, includ- tation, such as through conversion to and intensification ing Cardioglossa pulchra, Phrynobatrachus steindachneri, of agriculture (Stuart et al., ), can leave amphibians Phrynobatrachus werneri, Sclerophrys villiersi, Werneria vulnerable to predation and desiccation and thus are im- bambutensis and Wolterstorffina mirei. The pattern of portant drivers of amphibian declines (Cushman, ). change detected in the amphibian community is consistent Conversion to agriculture is also often accompanied by use with declines on other mountains in the country, with a of agrochemicals and other pollutants that have the potential loss of Phrynobatrachus, Werneria and Cardioglossa spp., to negatively affect amphibians (Mann et al., ). but persistence of Astylosternus, Arthroleptis and Leptodact- Responses of African amphibians to habitat change y-lodon. The observed relationships of land-use patterns are poorly understood because of a paucity of studies and amphibian diversity suggest that ongoing land-use across the continent, especially in forested areas (Lawson & changes could extirpate the remaining montane endem- Klemens, ; Gardner et al., a;Brito,). However, ic frog species, particularly L. axillaris and L. perreti. some studies have been carried out across the continent, showing that amphibian diversity and abundance differ between primary forest, selectively logged forests and A. M. TCHASSEM F.* (Corresponding author), M. M. KAMENI N.* and L. N. forestry plantations in Côte d’Ivoire, Madagascar and Ghana GONWOUO* Laboratory of Zoology, Faculty of Sciences, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon (Ernst et al., ; Hillers et al., ; Ofori-Boateng et al., E-mail [email protected] ; Riemann et al., ), and between natural wooded T. M. DOHERTY-BONE Conservation Research & Action for Amphibians of savannah and areas converted for agriculture in East Cameroon, Royal Zoological Society of Scotland, Edinburgh, UK Africa (Gardner et al., b). Some African amphibian W. P. TAPONDJOU N.* Department of Ecology and Evolutionary Biology, species are threatened because their sole habitat is subject to University of Kansas, Lawrence, USA development, such as Nimbaphrynoides occidentalis, which J. L. TAMESSE Department of Biological Science, Higher Teacher Training College, Yaoundé, Cameroon is under threat from mining activities (Sandberger-Loua et al., ). The impact of agrochemicals and other pollu- *Also at: Cameron Herpetology—Conservation Biology Foundation, Yaoundé, Cameroon tants, another major threat besides habitat loss, has been Received June . Revision requested August . rarely studied in Africa (Schiesari et al., ), with some Accepted November . First published online December . exceptions in Nigeria (Akani et al., ). This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, Downloadeddistribution, from https://www.cambridge.org/core and reproduction in any medium,. IP address: provided 170.106.35.234 the original work, on is 01 properly Oct 2021 cited. at 20:24:09, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/termsOryx, 2021, 55(1), 23–33 © 2019. https://doi.org/10.1017/S0030605318001448 Fauna & Flora International doi:10.1017/S0030605318001448 24 A. M. Tchassem F. et al. A significant number of African amphibians endemic and Oku (Gountié Dedzo et al., ). The climate of to individual mountains or mountain ranges are threat- Mount Bamboutos is characterized by dry (November– ened with extinction because of their small range sizes March) and wet (April–October) seasons. Mean annual (Poynton et al., ; Largen & Spawls, ). For example, rainfall is , mm and mean temperature is . °C at an % of Cameroonian amphibians categorized as Vulner- altitude of , m (Kengni et al., ). The natural vege- able, Endangered or Critically Endangered on the IUCN tation is montane forest and grassland, much of which has Red List are restricted to highland areas (IUCN, ). been replaced by crop fields, Eucalyptus plantations or pas- Threats to Afromontane endemic amphibians have rarely ture. Human communities living on the mountain include been quantified, although such studies are required urgently Fulani (sometimes referred to as Mbororo) and Mbouda as these regions are undergoing both rapid development and peoples. climate change (Beniston et al., ; Burgess et al., ). In addition to the threats posed by habitat loss and pollution, less understood factors such as pathogens are correlated Methods with the recently reported declines of amphibians in Cameroonian mountain ranges (Hirschfeld et al., ). Field surveys Research into the status of and threats to African montane amphibians is therefore urgently needed. To obtain an updated assessment of the amphibian species The amphibian fauna of Cameroon is relatively well- composition, status and habitat requirements on Mount studied (Perret, ; Amiet, ), and species have Bamboutos, we conducted field surveys every months dur- been assessed as threatened with extinction (.%; IUCN, ing March –May , with a total of surveys across ). Many of these occur in the country’s highlands, and all seasons. Surveys were stratified between forest, grassland the majority are montane endemics (Gartshore, ; Bergl and cultivated areas. We designated six discrete plots per et al., ). Detailed inventories have been compiled and land-use type, with a minimum distance of m between updated for several Cameroonian mountains in the past them, which we revisited during each survey period. We decades (Amiet, , ; Herrmann et al., , ; chose sample sites at an altitude of ,–, m, to Doherty-Bone & Gvoždík, ), but not for the more focus on land-use effects and minimize variation caused severely deforested mountains in the Bamenda High- by altitude. Because the landscape on Mount Bamboutos lands, particularly Mount Bamboutos. This mountain is fragmented, we could not locate plots of a homogenous hosts several threatened amphibian species endemic to the land-use type that were large enough to allow for a m Cameroon Volcanic Line, most notably the Critically buffer from the plot boundary to eliminate possible edge Endangered egg frog Leptodactylodon axillaris. The species effects (sensu Gardner et al., a). We thus interpreted is possibly endemic to this particular mountain (Amiet, survey data with caution, notably treating single occurrences ); although specimens suspected to be L. axillaris have of a species as potential vagrants (Barlow et al., ). At been found on nearby Mount Oku, their identity has yet each survey we recorded number of surveyors, search to be confirmed (Doherty-Bone & Gvoždík, ). Other time, elevation, species and number of individuals of each rare species recorded from this mountain include the species observed. Endangered Werneria bambutensis and Wolterstorffina We conducted day and night-time surveys in the desig- mirei (Perret, ; Gartshore, ). Despite harbouring nated sample sites using visual and acoustic encounter amphibian species of conservation concern, Mount Bam- surveys. This involved searching of microhabitats, such as boutos is not officially protected (Bergl et al., ). The lifting rocks and logs, peeling bark from trees, moving objectives of our study were to () update the amphibian in- fallen debris and inspecting tree stems during the day ventory of this mountain, () assess the trend of remaining (.–.)
Recommended publications
  • Amphibians in Zootaxa: 20 Years Documenting the Global Diversity of Frogs, Salamanders, and Caecilians
    Zootaxa 4979 (1): 057–069 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Review ZOOTAXA Copyright © 2021 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4979.1.9 http://zoobank.org/urn:lsid:zoobank.org:pub:972DCE44-4345-42E8-A3BC-9B8FD7F61E88 Amphibians in Zootaxa: 20 years documenting the global diversity of frogs, salamanders, and caecilians MAURICIO RIVERA-CORREA1*+, DIEGO BALDO2*+, FLORENCIA VERA CANDIOTI3, VICTOR GOYANNES DILL ORRICO4, DAVID C. BLACKBURN5, SANTIAGO CASTROVIEJO-FISHER6, KIN ONN CHAN7, PRISCILLA GAMBALE8, DAVID J. GOWER9, EVAN S.H. QUAH10, JODI J. L. ROWLEY11, EVAN TWOMEY12 & MIGUEL VENCES13 1Grupo Herpetológico de Antioquia - GHA and Semillero de Investigación en Biodiversidad - BIO, Universidad de Antioquia, Antioquia, Colombia [email protected]; https://orcid.org/0000-0001-5033-5480 2Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Misiones, Argentina [email protected]; https://orcid.org/0000-0003-2382-0872 3Unidad Ejecutora Lillo, Consejo Nacional de Investigaciones Científicas y Técnicas - Fundación Miguel Lillo, 4000 San Miguel de Tucumán, Argentina [email protected]; http://orcid.org/0000-0002-6133-9951 4Laboratório de Herpetologia Tropical, Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Rodovia Jorge Amado Km 16 45662-900 Ilhéus, Bahia, Brasil [email protected]; https://orcid.org/0000-0002-4560-4006 5Florida Museum of Natural History, University of Florida, 1659 Museum Road, Gainesville, Florida, 32611, USA [email protected]; https://orcid.org/0000-0002-1810-9886 6Laboratório de Sistemática de Vertebrados, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av.
    [Show full text]
  • BOA2.1 Caecilian Biology and Natural History.Key
    The Biology of Amphibians @ Agnes Scott College Mark Mandica Executive Director The Amphibian Foundation [email protected] 678 379 TOAD (8623) 2.1: Introduction to Caecilians Microcaecilia dermatophaga Synapomorphies of Lissamphibia There are more than 20 synapomorphies (shared characters) uniting the group Lissamphibia Synapomorphies of Lissamphibia Integumen is Glandular Synapomorphies of Lissamphibia Glandular Skin, with 2 main types of glands. Mucous Glands Aid in cutaneous respiration, reproduction, thermoregulation and defense. Granular Glands Secrete toxic and/or noxious compounds and aid in defense Synapomorphies of Lissamphibia Pedicellate Teeth crown (dentine, with enamel covering) gum line suture (fibrous connective tissue, where tooth can break off) basal element (dentine) Synapomorphies of Lissamphibia Sacral Vertebrae Sacral Vertebrae Connects pelvic girdle to The spine. Amphibians have no more than one sacral vertebrae (caecilians have none) Synapomorphies of Lissamphibia Amphicoelus Vertebrae Synapomorphies of Lissamphibia Opercular apparatus Unique to amphibians and Operculum part of the sound conducting mechanism Synapomorphies of Lissamphibia Fat Bodies Surrounding Gonads Fat Bodies Insulate gonads Evolution of Amphibians † † † † Actinopterygian Coelacanth, Tetrapodomorpha †Amniota *Gerobatrachus (Ray-fin Fishes) Lungfish (stem-tetrapods) (Reptiles, Mammals)Lepospondyls † (’frogomander’) Eocaecilia GymnophionaKaraurus Caudata Triadobatrachus Anura (including Apoda Urodela Prosalirus †) Salientia Batrachia Lissamphibia
    [Show full text]
  • Amphibian Diversity in Shimba Hills National Reserve, Kenya: a Comprehensive List of Specimens and Species
    Journal of East African Natural History 106(1): 19–46 (2017) AMPHIBIAN DIVERSITY IN SHIMBA HILLS NATIONAL RESERVE, KENYA: A COMPREHENSIVE LIST OF SPECIMENS AND SPECIES Beryl A. Bwong Biogeography Research Group, Department of Environmental Sciences University of Basel, 4056 Basel , Switzerland & Herpetology Section, Zoology Department, National Museums of Kenya P.O Box 40658, 00100 Nairobi, Kenya [email protected] Joash O. Nyamache, Patrick K. Malonza, Domnick V. Wasonga, Jacob M. Ngwava Herpetology Section, Zoology Department, National Museums of Kenya P.O Box 40658, 00100 Nairobi, Kenya [email protected]; [email protected]; [email protected], [email protected] Christopher D. Barratt, Peter Nagel Biogeography Research Group, Department of Environmental Sciences University of Basel, 4056 Basel , Switzerland [email protected]; [email protected] Simon P. Loader Biogeography Research Group, Department of Environmental Sciences University of Basel, 4056 Basel , Switzerland & Life Sciences, The Natural History Museum, London SW7 5BD, UK [email protected] ABSTRACT We present the first annotated amphibian checklist of Shimba Hills National Reserve (SHNR). The list comprises of 30 currently known amphibians (28 anurans and two caecilians), which includes 11 families and 15 genera. In addition, individual records per species, distribution in the reserve and brief remarks about the species are presented. The checklist is based on information from museum collections, field guides, unpublished reports and newly collected field data. We are able to confirm the presence of two Eastern Afromontane species in the SHNR: Scolecomorphus cf. vittatus and Callulina cf. kreffti. The latter has not been recorded since the original collection of a single specimen over 50 years ago.
    [Show full text]
  • Disease of Aquatic Organisms 102:187
    Vol. 102: 187–194, 2013 DISEASES OF AQUATIC ORGANISMS Published February 28 doi: 10.3354/dao02557 Dis Aquat Org OPENPEN ACCESSCCESS Batrachochytrium dendrobatidis in amphibians of Cameroon, including first records for caecilians T. M. Doherty-Bone1,2,9,*, N. L. Gonwouo3, M. Hirschfeld4, T. Ohst4, C. Weldon5, M. Perkins2, M. T. Kouete3, R. K. Browne6, S. P. Loader1,7, D. J. Gower1, M. W. Wilkinson1, M. O. Rödel4, J. Penner4, M. F. Barej4, A. Schmitz8, J. Plötner4, A. A. Cunningham2 1Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK 2Institute of Zoology, Zoological Society of London, Regents Park, London NW1 4RY, UK 3Project CamHerp, BP 1616, Yaoundé, Cameroon 4Museum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity, Berlin 10115, Germany 5Unit for Environmental Research: Zoology, North-West University, Potchefstroom 2520, South Africa 6Royal Zoological Society of Antwerp, Koningin Astridplein 26, 2018 Antwerp, Belgium 7University of Basel, Department of Environmental Sciences, Basel 4056, Switzerland 8Department of Herpetology & Ichthyology, Muséum d’histoire naturelle, Geneva 1208, Switzerland 9Present address: School of Geography, University of Leeds, West Yorkshire, LS2 9JT, UK ABSTRACT: Amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has been hypothe- sised to be an indigenous parasite of African amphibians. In Cameroon, however, previous sur- veys in one region (in the northwest) failed to detect this pathogen, despite the earliest African Bd having been recorded from a frog in eastern Cameroon, plus one recent record in the far south- east. To reconcile these contrasting results, we present survey data from 12 localities across 6 regions of Cameroon from anurans (n = 1052) and caecilians (n = 85) of ca.
    [Show full text]
  • Amphibians and Reptiles of a Proposed Iron Ore Mining Concession in Southern Cameroon
    Herpetology Notes, volume 14: 1051-1065 (2021) (published online on 09 August 2021) Amphibians and reptiles of a proposed iron ore mining concession in southern Cameroon Nono L. Gonwouo1,*, Arnaud M.F. Tchassem1, Thomas M. Doherty-Bone2,3, and Mark-Oliver Rödel4 Abstract. We present a checklist of amphibian and reptile species that occur in the Ntem Iron ore mining concession in southern Cameroon, compiled as part of a broader biodiversity impact survey during a two-week herpetofaunal survey. Visual and acoustic encounter surveys were carried out during day and night, covering the entire area of mining exploration. We document the presence of 38 amphibian and 28 reptile species. The most notable observation was a 150-km southward range extension of Didynamipus sjostedti. Other species of conservation concern include Conraua goliath, Leptodactylodon albiventris, L. ventrimarmoratus, Osteolaemus tetraspis, Varanus niloticus, and Kinixys erosa. These and numerous other forest-dwelling species indicate the intact nature of herpetofauna forest assemblages at the study sites. Efforts to conserve the herpetofauna at these sites should focus on protecting and monitoring the intact forest corridors linking the concession to a neighbouring forest reserve, as well as plans for restoration once extraction is completed. Keywords. Species richness, habitat, fragmentation, management, rainforest Introduction influenced by microclimate, such as temperature and humidity, as well as by the presence of microhabitats (e.g., Anthropogenic habitat change is a major factor driving forest leaf litter; Wake, 1991; Blaustein et al., 1994; Ernst species and population declines (Stuart et al., 2004; et al., 2006), making them vulnerable to forest alteration Reading et al., 2010; Böhm et al., 2013; Pimm et al., and clearance (Ernst and Rödel, 2005; Ernst et al., 2006; 2014), and it has been identified as a primary threat to Barrett and Guyer, 2008).
    [Show full text]
  • Miocene Plio-Pleistocene Oligocene Eocene Paleocene Cretaceous
    Phrynomantis microps Hemisus sudanensis Hemisus marmoratus Balebreviceps hillmani Breviceps mossambicus Breviceps adspersus Breviceps montanus Breviceps fuscus Breviceps gibbosus Breviceps macrops Breviceps namaquensis Breviceps branchi Spelaeophryne methneri Probreviceps loveridgei Probreviceps uluguruensis Probreviceps durirostris Probreviceps sp. Nguru Probreviceps sp. Rubeho Probreviceps sp. Kigogo Probreviceps sp. Udzungwa Probreviceps rungwensis Probreviceps macrodactylus Callulina shengena Callulina laphami Callulina dawida Callulina kanga Callulina sp lowland Callulina sp Rubeho Callulina hanseni Callulina meteora Callulina stanleyi Callulina kisiwamsitu Callulina kreffti Nyctibates corrugatus Scotobleps gabonicus Astylosternus laticephalus Astylosternus occidentalis Trichobatrachus robustus Astylosternus diadematus Astylosternus schioetzi Astylosternus batesi Leptodactylodon mertensi Leptodactylodon erythrogaster Leptodactylodon perreti Leptodactylodon axillaris Leptodactylodon polyacanthus Leptodactylodon bicolor Leptodactylodon bueanus Leptodactylodon ornatus Leptodactylodon boulengeri Leptodactylodon ventrimarmoratus Leptodactylodon ovatus Leptopelis parkeri Leptopelis macrotis Leptopelis millsoni Leptopelis rufus Leptopelis argenteus Leptopelis yaldeni Leptopelis vannutellii Leptopelis susanae Leptopelis gramineus Leptopelis kivuensis Leptopelis ocellatus Leptopelis spiritusnoctis Leptopelis viridis Leptopelis aubryi Leptopelis natalensis Leptopelis palmatus Leptopelis calcaratus Leptopelis brevirostris Leptopelis notatus
    [Show full text]
  • Towards Evidence-Based Husbandry for Caecilian Amphibians: Substrate Preference in Geotrypetes Seraphini (Amphibia: Gymnophiona: Dermophiidae)
    RESEARCH ARTICLE The Herpetological Bulletin 129, 2014: 15-18 Towards evidence-based husbandry for caecilian amphibians: Substrate preference in Geotrypetes seraphini (Amphibia: Gymnophiona: Dermophiidae) BENJAMIN TAPLEY1*, ZOE BRYANT1, SEBASTIAN GRANT1, GRANT KOTHER1, YEDRA FEL- TRER1, NIC MASTERS1, TAINA STRIKE1, IRI GILL1, MARK WILKINSON2 & DAVID J GOWER2 1Zoological Society of London, Regents Park, London NW1 4RY 2Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD *Corresponding author email: [email protected] ABSTRACT - Maintaining caecilians in captivity provides opportunities to study life-history, behaviour and reproductive biology and to investigate and to develop treatment protocols for amphibian chytridiomycosis. Few species of caecilians are maintained in captivity and little has been published on their husbandry. We present data on substrate preference in a group of eight Central African Geotrypetes seraphini (Duméril, 1859). Two substrates were trialled; coir and Megazorb (a waste product from the paper making industry). G. seraphini showed a strong preference for the Megazorb. We anticipate this finding will improve the captive management of this and perhaps also other species of fossorial caecilians, and stimulate evidence-based husbandry practices. INTRODUCTION (Gower & Wilkinson, 2005) and little has been published on the captive husbandry of terrestrial caecilians (Wake, 1994; O’ Reilly, 1996). A basic parameter in terrestrial The paucity of information on caecilian ecology and caecilian husbandry is substrate, but data on tolerances and general neglect of their conservation needs should be of preferences in the wild or in captivity are mostly lacking. concern in light of global amphibian declines (Alford & Terrestrial caecilians are reported from a wide range of Richards 1999; Stuart et al., 2004; Gower & Wilkinson, soil pH (Gundappa et al., 1981; Wake, 1994; Kupfer et 2005).
    [Show full text]
  • Arthroleptis) and Long-fingered Frogs (Cardioglossa) Estimated from Mitochondrial Data
    Molecular Phylogenetics and Evolution 49 (2008) 806–826 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Biogeography and evolution of body size and life history of African frogs: Phylogeny of squeakers (Arthroleptis) and long-fingered frogs (Cardioglossa) estimated from mitochondrial data David C. Blackburn 1 Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA article info abstract Article history: The evolutionary history of living African amphibians remains poorly understood. This study estimates Received 7 March 2008 the phylogeny within the frog genera Arthroleptis and Cardioglossa using approximately 2400 bases of Revised 11 August 2008 mtDNA sequence data (12S, tRNA-Valine, and 16S genes) from half of the described species. Analyses Accepted 14 August 2008 are conducted using parsimony, maximum likelihood, and Bayesian methods. The effect of alignment Available online 30 August 2008 on phylogeny estimation is explored by separately analyzing alignments generated with different gap costs and a consensus alignment. The consensus alignment results in species paraphyly, low nodal sup- Keywords: port, and incongruence with the results based on other alignments, which produced largely similar Ancestral state reconstruction results. Most nodes in the phylogeny are highly supported, yet several topologies are inconsistent with Arthroleptidae Character evolution previous hypotheses. The monophyly of Cardioglossa and of miniature species previously assigned to Cryptic species Schoutedenella was further examined using Templeton and Shimodaira–Hasegawa tests. Cardioglossa Direct development monophyly is rejected and C. aureoli is transferred to Arthroleptis. These tests do not reject Schoutedenella Miniaturization monophyly, but this hypothesis receives no support from non-parametric bootstrapping or Bayesian pos- Schoutedenella terior probabilities.
    [Show full text]
  • The Genus Astylosternus in the Upper Guinea Rainforests, West Africa, with the Description of a New Species (Amphibia: Anura: Arthroleptidae)
    Zootaxa 3245: 1–29 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) The genus Astylosternus in the Upper Guinea rainforests, West Africa, with the description of a new species (Amphibia: Anura: Arthroleptidae) MARK-OLIVER RÖDEL1, MICHAEL F. BAREJ1, ANNIKA HILLERS1,2, ADAM D. LEACHÉ3, N’GORAN G. KOUAMÉ4, CALEB OFORI-BOATENG5, N. EMMANUEL ASSEMIAN4, BLAYDA TOHÉ6, JOHANNES PENNER1, MAREIKE HIRSCHFELD1, JOSEPH DOUMBIA7, LEGRAND NONO GONWOUO8, JOACHIM NOPPER9, CHRISTIAN BREDE10, RAUL DIAZ11, MATTHEW K. FUJITA3, MARLON GIL12, GABRIEL H. SEGNIAGBETO13, RAFFAEL ERNST14 & LAURA SANDBERGER1 1Museum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Herpetol- ogy, Invalidenstr. 43, 10115 Berlin, Germany. E-mail: [email protected]. 2Across the River Project, Royal Society for the Protection of Birds, 164 Dama Road, Kenema, Sierra Leone. ³Department of Biology & Burke Museum, University of Washington, Seattle, WA 98195, USA. 4University of Abobo-Adjamé, URES-Daloa, Department of Biology and Animal Physiology, Daloa, BP 150, Côte d´Ivoire. 5Department of Wildlife and Range Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. 6Université d´Abobo-Adjamé, Laboratoire d’Environnement et Biologie Aquatique, UFR-SGE, 02 BP 801, Abidjan 02, Côte d´Ivoire. 7ONG Sylvatrop Guinée, BP 4720 Conakry, Guinée. 8University of Yaoundé I, Faculty of Science, Laboratory of Zoology, P.O. Box 812, Yaoundé, Cameroon. 9Ecology & Conservation, Biocenter Grindel, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany. 10Medizinische Klinik und Poliklinik II, Zentrum für Experimentelle Molekulare Medizin, ZEMM - Zinklesweg 10, 97078 Würzburg, Germany.
    [Show full text]
  • 3Systematics and Diversity of Extant Amphibians
    Systematics and Diversity of 3 Extant Amphibians he three extant lissamphibian lineages (hereafter amples of classic systematics papers. We present widely referred to by the more common term amphibians) used common names of groups in addition to scientifi c Tare descendants of a common ancestor that lived names, noting also that herpetologists colloquially refer during (or soon after) the Late Carboniferous. Since the to most clades by their scientifi c name (e.g., ranids, am- three lineages diverged, each has evolved unique fea- bystomatids, typhlonectids). tures that defi ne the group; however, salamanders, frogs, A total of 7,303 species of amphibians are recognized and caecelians also share many traits that are evidence and new species—primarily tropical frogs and salaman- of their common ancestry. Two of the most defi nitive of ders—continue to be described. Frogs are far more di- these traits are: verse than salamanders and caecelians combined; more than 6,400 (~88%) of extant amphibian species are frogs, 1. Nearly all amphibians have complex life histories. almost 25% of which have been described in the past Most species undergo metamorphosis from an 15 years. Salamanders comprise more than 660 species, aquatic larva to a terrestrial adult, and even spe- and there are 200 species of caecilians. Amphibian diver- cies that lay terrestrial eggs require moist nest sity is not evenly distributed within families. For example, sites to prevent desiccation. Thus, regardless of more than 65% of extant salamanders are in the family the habitat of the adult, all species of amphibians Plethodontidae, and more than 50% of all frogs are in just are fundamentally tied to water.
    [Show full text]
  • Feeding in Amphibians: Evolutionary Transformations and Phenotypic Diversity As Drivers of Feeding System Diversity
    Chapter 12 Feeding in Amphibians: Evolutionary Transformations and Phenotypic Diversity as Drivers of Feeding System Diversity Anthony Herrel, James C. O’Reilly, Anne-Claire Fabre, Carla Bardua, Aurélien Lowie, Renaud Boistel and Stanislav N. Gorb Abstract Amphibians are different from most other tetrapods because they have a biphasic life cycle, with larval forms showing a dramatically different cranial anatomy and feeding strategy compared to adults. Amphibians with their exceptional diversity in habitats, lifestyles and reproductive modes are also excellent models for studying the evolutionary divergence in feeding systems. In the present chapter, we review the literature on amphibian feeding anatomy and function published since 2000. We also present some novel unpublished data on caecilian feeding biome- chanics. This review shows that over the past two decades important new insights in our understanding of amphibian feeding anatomy and function have been made possible, thanks to a better understanding of the phylogenetic relationships between taxa, analyses of development and the use of biomechanical modelling. In terms of functional analyses, important advances involve the temperature-dependent nature of tongue projection mechanisms and the plasticity exhibited by animals when switch- A. Herrel (B) Département Adaptations du Vivant, Muséum national d’Histoire naturelle, UMR 7179 C.N.R.S/M.N.H.N, 55 rue Buffon, 75005, Paris Cedex 05, France e-mail: [email protected] J. C. O’Reilly Department of Biomedical Sciences, Ohio University, Cleveland Campus, Cleveland, Ohio 334C, USA A.-C. Fabre · C. Bardua Life Sciences Department, The Natural History Museum, Cromwell Road, London SW7 5BD, UK A. Lowie Department of Biology Evolutionary, Morphology of Vertebrates, Ghent University, K.L.
    [Show full text]
  • FROGLOG Newsletter of the IUCN /SSC Amphibian Specialist Group (ASG)
    Pyxicephalus adspersus byTim Halliday ISSN 1026-0269 FROGLOG Newsletter of the IUCN /SSC Amphibian Specialist Group (ASG) February 2007, Number 79 to cause mass mortality. Kevin but is under continuous threat from Amphibian Declines in Africa Smith reported studies of stream a variety of factors, including water By Tim Halliday frogs in the Drakensburg extraction and climate change. The 8th meeting of the where mortality does occur, at Because its tadpoles take more Herpetological Association of higher altitudes, in Strongylopus than a year to reach metamorpho- Africa (HAA) was held in hymenopus, but the impact of this sis, it is very dependent on Potchefstroom, South Africa from on populations is not yet clear. perennial streams. John Measey 24 to 27 November, 2006. The He also reported that chytrid- described his work on the meeting, sponsored by the DAPTF, infected tadpoles of Heleophryne landscape genetics of the Kenyan was organised by Louis du Preez. natalensis develop distinctive frog Schoutedenella xenodacty- It provided a very interesting markings around their mouthparts; loides which, surprisingly, suggests overview of work on amphibians no mass mortality in this species that this tiny frog can disperse long currently going on in southern has been observed. distances across unsuitable dry Africa, including a number of The African bullfrog savannah. projects funded by the DAPTF. Pyxicephalus adspersus is Ernst Baard reported on recent In a workshop on amphibian threatened by accelerating habitat changes in legislation and policy in declines, Les Minter reviewed the loss in many parts of its range; South Africa with regard to status of southern African while many breeding sites are protected, threatened, alien and amphibians; 20 endemic species protected, less attention has been invasive species, and was are endangered, and habitat paid to its terrestrial habitat.
    [Show full text]