Huge Numbers by Tanja Rakovic

Total Page:16

File Type:pdf, Size:1020Kb

Huge Numbers by Tanja Rakovic Huge Numbers Tanja Rakovic Background/History Even though large numbers appear to be the same all over the world, different cultures have various ways of naming and condensing them. The Ancient Indians began to use extremely large numbers because they were related to their religious thoughts and practices. In ancient Vedic literature, there is an individual Sanskrit name for each of the powers of 10 up to 1,000,000,000,000. The Ancient Indians also introduced the notion of infinity many times. They noted that if one subtracts purna (Ancient Indian word for infinity, meaning fullness) from purna, then one is left with purna. This is consistent with modern mathematics today, where if you subtract infinity from infinity one is still left with infinity. Moreover, one of the largest numbers in the Ancient Indian system is called jyotiba = 1080000 infinities. Something that is noticeably different from their system compared to the US system is the Hindu units of time, calculated on a logarithmic scale, where 100= 1 second as we know it today, and one year is approximately in the middle of 107 and 108.A paramanu is in between 100 and 101, while an aayan is smaller than the \year" that we know of. This is important to note in order to understand the difference between traditional US and Ancient Indian units of time. Even though they used it mostly for astrological calculations and religious rituals, their system has evolved an impacted the whole world to this day. Theoretically, there is no largest finite number because there will always be a number closer to infinity that is bigger than the one before it. Nevertheless, we still work with large numbers that we are more familiar with. The most common way of naming these familiar large numbers in the English language is by using the words million, billion, trillion, quadrillion, quintillion, sextillion, septillion, and octillion. When a number is too large, then we write it using mathematical notation like symbols and equations. When people consider huge numbers, usually the number of digits which can be written in scientific notation is brought up. For example 10000= 1 × 104. This simple notation allows people to condense large numbers into "smaller numbers" that actually represent the same number. It is used extensively in chemistry for more precise measurements. A famous large number, the googol, is written as 10100 which has 101 digits. Basically, it is defined as the number one followed by one hundred zeros. This term was coined by Milton Sirotta, who was the nephew of the mathematician named Edward Kasner. He asked his nephew to think of a name for a large number, and after a short amount of time, Milton replied \googol." It is the number of grains of sand that could fit in the universe times ten billion. To get a sense of how big this number is, imagine flying a plane through this sand at full speed for trillions of years. One would never pass through all the sand because there is just so much of it. Moreover, if one were to take a grain of sand and examine it under a microscope, he/she would notice that there are actually 10 billion smaller grains that make up that one grain. If this were the case for every grain of sand then the total number of those smaller grains would be equal to a googol. The number googol is even larger than the amount of elementary particles in the universe, which is 1080. googol= 10100= 10 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 A googolplex is 1010100 , and this has about googol digits. More simply, it is 10 to the googol power. Googol is relatively small compared to another large number called Graham's number, because we as humans cannot concretely say how many digits it has due to the extremely large scale. It is hard to understand the number googolplex, but a hypothetical example can demonstrate its complexity. If the universe is filled with sand, then this only gets us a ten billionth of the way to googol. Therefore, if we fill the universe fill sand and write ten billion zeros on each grain of sand in the universe, then that is the only way one would be able to write googolplex. This is obviously extremely unrealistic, especially considering that in a human's lifetime, he/she would be able to write all those zeros on half a grain of sand. This is an extremely complex idea to consider. Another practical application would be if one filled the entire volume of the observable universe with dust particles that are about 1.5 micrometers in size, then the different number of combinations in which one could arrange and number the particles would be equal to a googolplex. Moreover, we cannot even try to print out a googolplex because according to Moore's Law, the power of computer processors doubles every one to two years. Therefore, it would only make sense to print out a googolplex 524 years later because any attempts before this would be overtaken by a faster processor. Because a googolplex is so large, it would take years to print out, and this effort would be futile at least for now. Even though a googolplex seems extremely large, there is an even larger number called the googolplexian. This 100 is the number with a one followed by a googolplex of zeros. It can be represented as 101010 . Not much is known about this number, but we do know that the googolplexianth is even bigger than the googolplexian. 10100 1010 1 The googolplexianth is written as 10 . Also a googolplexianth is equal to googolplexian . When thinking about these large numbers as a part of the universe, first the Planck length must be defined. It is the smallest measurement of length which is approximately equal to 1:6 × 10−35 m. A googol Plank lengths is roughly an inch. However, a googolplexianth of the universe is too small to even consider. Another important number is 1080. It is the common estimate for the number of atoms in the universe. To get to this number, one must multiply one trillion by one trillion five times and then once more by a hundred million. It is believed to be extreme underestimate because we do not know exactly how large the universe is. It is fascinating to think about huge numbers in more practical terms. We already know that there are many atoms in everyday objects like our phones, but to think of the amount of atoms in the entire universe seems unrealistic. The concept of infinity is usually thought to be the largest "number" because it is greater than any finite number. It is used within calculus and the concept of limits. However beginning in the 19th century, math- ematicians have also expanded beyond infinite numbers by studying transfinite numbers. These numbers are also greater than any finite number, but unlike infinite numbers, transfinite numbers are also larger than in- finity (this idea comes from set theory). It was Georg Cantor who proved that infinite numbers exists, and brought up the idea that numbers larger than these existed. Through the Diagonal Theorem he showed that the set of rational numbers can be put into one-to-one correspondence with natural numbers. Therefore, the rational numbers have the same cardinal number as the set of natural numbers. The "transfinite cardinal" of this set is called the smallest transfinite numbers. The largest of the transfinite numbers, if they exist, are the large cardinals. Large cardinals are bigger than the least a such that a = !a. The existence of these cardinals cannot be proved because much information needs to be assumed, such as the existence of large cardinals themselves. Greek and Latin Notation The Ancient Greeks used a system based on the myriad (a large number representing ten thousand during their time). Their largest number was a myriad myriad, equivalent to one hundred million. Archimedes created a system of naming large numbers up until 108×1016 . Essentially he was naming powers of a myriad myriad. This is the largest number because it "equals a myriad myriad to the myriad myriadth power, all taken to the myriad myriadth power." This is important because it reveals problems that Archimedes faced regarding notation. Some explanations for this are that he stopped at this number because he did not find any new 2 ordinal numbers larger than the myriad myriadth. His overall goal was to name large powers of 10 to give rough estimates for these numbers in a simple way. However, the numbers became too large, and therefore a new system had to be implemented. This is where Apollonius of Perga came in and invented a newer, easier system of naming large numbers. This included large numbers that were not powers of 10. Most of the numbers he named were based on the powers of a myriad. Later, the mathematician Diophantus used a similar technique to name large numbers. The more modern version of naming large numbers stemmed from the Romans. For example, they expressed the number 1,000,000 as decies centena milia which means ten hundred thousand. Then in the thirteenth century, the French introduced the word million which is used today. Currently, the US system of naming numbers differs slightly from the European system because the same words represent different numbers. For example, one billion in the US system is equal to 109, while in the European system it is equal to 1012.
Recommended publications
  • Large but Finite
    Department of Mathematics MathClub@WMU Michigan Epsilon Chapter of Pi Mu Epsilon Large but Finite Drake Olejniczak Department of Mathematics, WMU What is the biggest number you can imagine? Did you think of a million? a billion? a septillion? Perhaps you remembered back to the time you heard the term googol or its show-off of an older brother googolplex. Or maybe you thought of infinity. No. Surely, `infinity' is cheating. Large, finite numbers, truly monstrous numbers, arise in several areas of mathematics as well as in astronomy and computer science. For instance, Euclid defined perfect numbers as positive integers that are equal to the sum of their proper divisors. He is also credited with the discovery of the first four perfect numbers: 6, 28, 496, 8128. It may be surprising to hear that the ninth perfect number already has 37 digits, or that the thirteenth perfect number vastly exceeds the number of particles in the observable universe. However, the sequence of perfect numbers pales in comparison to some other sequences in terms of growth rate. In this talk, we will explore examples of large numbers such as Graham's number, Rayo's number, and the limits of the universe. As well, we will encounter some fast-growing sequences and functions such as the TREE sequence, the busy beaver function, and the Ackermann function. Through this, we will uncover a structure on which to compare these concepts and, hopefully, gain a sense of what it means for a number to be truly large. 4 p.m. Friday October 12 6625 Everett Tower, WMU Main Campus All are welcome! http://www.wmich.edu/mathclub/ Questions? Contact Patrick Bennett ([email protected]) .
    [Show full text]
  • Grade 7/8 Math Circles the Scale of Numbers Introduction
    Faculty of Mathematics Centre for Education in Waterloo, Ontario N2L 3G1 Mathematics and Computing Grade 7/8 Math Circles November 21/22/23, 2017 The Scale of Numbers Introduction Last week we quickly took a look at scientific notation, which is one way we can write down really big numbers. We can also use scientific notation to write very small numbers. 1 × 103 = 1; 000 1 × 102 = 100 1 × 101 = 10 1 × 100 = 1 1 × 10−1 = 0:1 1 × 10−2 = 0:01 1 × 10−3 = 0:001 As you can see above, every time the value of the exponent decreases, the number gets smaller by a factor of 10. This pattern continues even into negative exponent values! Another way of picturing negative exponents is as a division by a positive exponent. 1 10−6 = = 0:000001 106 In this lesson we will be looking at some famous, interesting, or important small numbers, and begin slowly working our way up to the biggest numbers ever used in mathematics! Obviously we can come up with any arbitrary number that is either extremely small or extremely large, but the purpose of this lesson is to only look at numbers with some kind of mathematical or scientific significance. 1 Extremely Small Numbers 1. Zero • Zero or `0' is the number that represents nothingness. It is the number with the smallest magnitude. • Zero only began being used as a number around the year 500. Before this, ancient mathematicians struggled with the concept of `nothing' being `something'. 2. Planck's Constant This is the smallest number that we will be looking at today other than zero.
    [Show full text]
  • Maths Secrets of Simpsons Revealed in New Book
    MONDAY 7 OCTOBER 2013 WWW.THEDAY.CO.UK Maths secrets of Simpsons revealed in new book The most successful TV show of all time is written by a team of brilliant ‘mathletes’, says writer Simon Singh, and full of obscure mathematical jokes. Can numbers really be all that funny? MATHEMATICS Nerd hero: The smartest girl in Springfield was created by a team of maths wizards. he world’s most popular cartoon a perfect number, a narcissistic number insist that their love of maths contrib- family has a secret: their lines are and a Mersenne Prime. utes directly to the more obvious humour written by a team of expert mathema- Another of these maths jokes – a black- that has made the show such a hit. Turn- Tticians – former ‘mathletes’ who are board showing 398712 + 436512 = 447212 ing intuitions about comedy into concrete as happy solving differential equa- – sent shivers down Simon Singh’s spine. jokes is like wrestling mathematical tions as crafting jokes. ‘I was so shocked,’ he writes, ‘I almost hunches into proofs and formulas. Comedy Now, science writer Simon Singh has snapped my slide rule.’ The numbers are and maths, says Cohen, are both explora- revealed The Simpsons’ secret math- a fake exception to a famous mathemati- tions into the unknown. ematical formula in a new book*. He cal rule known as Fermat’s Last Theorem. combed through hundreds of episodes One episode from 1990 features a Mathletes and trawled obscure internet forums to teacher making a maths joke to a class of Can maths really be funny? There are many discover that behind the show’s comic brilliant students in which Bart Simpson who will think comparing jokes to equa- exterior lies a hidden core of advanced has been accidentally included.
    [Show full text]
  • A Child Thinking About Infinity
    A Child Thinking About Infinity David Tall Mathematics Education Research Centre University of Warwick COVENTRY CV4 7AL Young children’s thinking about infinity can be fascinating stories of extrapolation and imagination. To capture the development of an individual’s thinking requires being in the right place at the right time. When my youngest son Nic (then aged seven) spoke to me for the first time about infinity, I was fortunate to be able to tape-record the conversation for later reflection on what was happening. It proved to be a fascinating document in which he first treated infinity as a very large number and used his intuitions to think about various arithmetic operations on infinity. He also happened to know about “minus numbers” from earlier experiences with temperatures in centigrade. It was thus possible to ask him not only about arithmetic with infinity, but also about “minus infinity”. The responses were thought-provoking and amazing in their coherent relationships to his other knowledge. My research in studying infinite concepts in older students showed me that their ideas were influenced by their prior experiences. Almost always the notion of “limit” in some dynamic sense was met before the notion of one to one correspondences between infinite sets. Thus notions of “variable size” had become part of their intuition that clashed with the notion of infinite cardinals. For instance, Tall (1980) reported a student who considered that the limit of n2/n! was zero because the top is a “smaller infinity” than the bottom. It suddenly occurred to me that perhaps I could introduce Nic to the concept of cardinal infinity to see what this did to his intuitions.
    [Show full text]
  • WRITING and READING NUMBERS in ENGLISH 1. Number in English 2
    WRITING AND READING NUMBERS IN ENGLISH 1. Number in English 2. Large Numbers 3. Decimals 4. Fractions 5. Power / Exponents 6. Dates 7. Important Numerical expressions 1. NUMBERS IN ENGLISH Cardinal numbers (one, two, three, etc.) are adjectives referring to quantity, and the ordinal numbers (first, second, third, etc.) refer to distribution. Number Cardinal Ordinal In numbers 1 one First 1st 2 two second 2nd 3 three third 3rd 4 four fourth 4th 5 five fifth 5th 6 six sixth 6th 7 seven seventh 7th 8 eight eighth 8th 9 nine ninth 9th 10 ten tenth 10th 11 eleven eleventh 11th 12 twelve twelfth 12th 13 thirteen thirteenth 13th 14 fourteen fourteenth 14th 15 fifteen fifteenth 15th 16 sixteen sixteenth 16th 17 seventeen seventeenth 17th 18 eighteen eighteenth 18th 19 nineteen nineteenth 19th 20 twenty twentieth 20th 21 twenty-one twenty-first 21st 22 twenty-two twenty-second 22nd 23 twenty-three twenty-third 23rd 1 24 twenty-four twenty-fourth 24th 25 twenty-five twenty-fifth 25th 26 twenty-six twenty-sixth 26th 27 twenty-seven twenty-seventh 27th 28 twenty-eight twenty-eighth 28th 29 twenty-nine twenty-ninth 29th 30 thirty thirtieth 30th st 31 thirty-one thirty-first 31 40 forty fortieth 40th 50 fifty fiftieth 50th 60 sixty sixtieth 60th th 70 seventy seventieth 70 th 80 eighty eightieth 80 90 ninety ninetieth 90th 100 one hundred hundredth 100th 500 five hundred five hundredth 500th 1,000 One/ a thousandth 1000th thousand one thousand one thousand five 1500th 1,500 five hundred, hundredth or fifteen hundred 100,000 one hundred hundred thousandth 100,000th thousand 1,000,000 one million millionth 1,000,000 ◊◊ Click on the links below to practice your numbers: http://www.manythings.org/wbg/numbers-jw.html https://www.englisch-hilfen.de/en/exercises/numbers/index.php 2 We don't normally write numbers with words, but it's possible to do this.
    [Show full text]
  • The Exponential Function
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 5-2006 The Exponential Function Shawn A. Mousel University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/mathmidexppap Part of the Science and Mathematics Education Commons Mousel, Shawn A., "The Exponential Function" (2006). MAT Exam Expository Papers. 26. https://digitalcommons.unl.edu/mathmidexppap/26 This Article is brought to you for free and open access by the Math in the Middle Institute Partnership at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in MAT Exam Expository Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. The Exponential Function Expository Paper Shawn A. Mousel In partial fulfillment of the requirements for the Masters of Arts in Teaching with a Specialization in the Teaching of Middle Level Mathematics in the Department of Mathematics. Jim Lewis, Advisor May 2006 Mousel – MAT Expository Paper - 1 One of the basic principles studied in mathematics is the observation of relationships between two connected quantities. A function is this connecting relationship, typically expressed in a formula that describes how one element from the domain is related to exactly one element located in the range (Lial & Miller, 1975). An exponential function is a function with the basic form f (x) = ax , where a (a fixed base that is a real, positive number) is greater than zero and not equal to 1. The exponential function is not to be confused with the polynomial functions, such as x 2. One way to recognize the difference between the two functions is by the name of the function.
    [Show full text]
  • Simple Statements, Large Numbers
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-2007 Simple Statements, Large Numbers Shana Streeks University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/mathmidexppap Part of the Science and Mathematics Education Commons Streeks, Shana, "Simple Statements, Large Numbers" (2007). MAT Exam Expository Papers. 41. https://digitalcommons.unl.edu/mathmidexppap/41 This Article is brought to you for free and open access by the Math in the Middle Institute Partnership at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in MAT Exam Expository Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Master of Arts in Teaching (MAT) Masters Exam Shana Streeks In partial fulfillment of the requirements for the Master of Arts in Teaching with a Specialization in the Teaching of Middle Level Mathematics in the Department of Mathematics. Gordon Woodward, Advisor July 2007 Simple Statements, Large Numbers Shana Streeks July 2007 Page 1 Streeks Simple Statements, Large Numbers Large numbers are numbers that are significantly larger than those ordinarily used in everyday life, as defined by Wikipedia (2007). Large numbers typically refer to large positive integers, or more generally, large positive real numbers, but may also be used in other contexts. Very large numbers often occur in fields such as mathematics, cosmology, and cryptography. Sometimes people refer to numbers as being “astronomically large”. However, it is easy to mathematically define numbers that are much larger than those even in astronomy. We are familiar with the large magnitudes, such as million or billion.
    [Show full text]
  • 1 Powers of Two
    A. V. GERBESSIOTIS CS332-102 Spring 2020 Jan 24, 2020 Computer Science: Fundamentals Page 1 Handout 3 1 Powers of two Definition 1.1 (Powers of 2). The expression 2n means the multiplication of n twos. Therefore, 22 = 2 · 2 is a 4, 28 = 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 is 256, and 210 = 1024. Moreover, 21 = 2 and 20 = 1. Several times one might write 2 ∗ ∗n or 2ˆn for 2n (ˆ is the hat/caret symbol usually co-located with the numeric-6 keyboard key). Prefix Name Multiplier d deca 101 = 10 h hecto 102 = 100 3 Power Value k kilo 10 = 1000 6 0 M mega 10 2 1 9 1 G giga 10 2 2 12 4 T tera 10 2 16 P peta 1015 8 2 256 E exa 1018 210 1024 d deci 10−1 216 65536 c centi 10−2 Prefix Name Multiplier 220 1048576 m milli 10−3 Ki kibi or kilobinary 210 − 230 1073741824 m micro 10 6 Mi mebi or megabinary 220 40 n nano 10−9 Gi gibi or gigabinary 230 2 1099511627776 −12 40 250 1125899906842624 p pico 10 Ti tebi or terabinary 2 f femto 10−15 Pi pebi or petabinary 250 Figure 1: Powers of two Figure 2: SI system prefixes Figure 3: SI binary prefixes Definition 1.2 (Properties of powers). • (Multiplication.) 2m · 2n = 2m 2n = 2m+n. (Dot · optional.) • (Division.) 2m=2n = 2m−n. (The symbol = is the slash symbol) • (Exponentiation.) (2m)n = 2m·n. Example 1.1 (Approximations for 210 and 220 and 230).
    [Show full text]
  • Big Numbers Tom Davis [email protected] September 21, 2011
    Big Numbers Tom Davis [email protected] http://www.geometer.org/mathcircles September 21, 2011 1 Introduction The problem is that we tend to live among the set of puny integers and generally ignore the vast infinitude of larger ones. How trite and limiting our view! — P.D. Schumer It seems that most children at some age get interested in large numbers. “What comes after a thousand? After a million? After a billion?”, et cetera, are common questions. Obviously there is no limit; whatever number you name, a larger one can be obtained simply by adding one. But what is interesting is just how large a number can be expressed in a fairly compact way. Using the standard arithmetic operations (addition, subtraction, multiplication, division and exponentia- tion), what is the largest number you can make using three copies of the digit “9”? It’s pretty clear we should just stick to exponents, and given that, here are some possibilities: 999, 999, 9 999, and 99 . 9 9 Already we need to be a little careful with the final one: 99 . Does this mean: (99)9 or 9(9 )? Since (99)9 = 981 this interpretation would gain us very little. If this were the standard definition, then why c not write ab as abc? Because of this, a tower of exponents is always interpreted as being evaluated from d d c c c (c ) right to left. In other words, ab = a(b ), ab = a(b ), et cetera. 9 With this definition of towers of exponents, it is clear that 99 is the best we can do.
    [Show full text]
  • The Notion Of" Unimaginable Numbers" in Computational Number Theory
    Beyond Knuth’s notation for “Unimaginable Numbers” within computational number theory Antonino Leonardis1 - Gianfranco d’Atri2 - Fabio Caldarola3 1 Department of Mathematics and Computer Science, University of Calabria Arcavacata di Rende, Italy e-mail: [email protected] 2 Department of Mathematics and Computer Science, University of Calabria Arcavacata di Rende, Italy 3 Department of Mathematics and Computer Science, University of Calabria Arcavacata di Rende, Italy e-mail: [email protected] Abstract Literature considers under the name unimaginable numbers any positive in- teger going beyond any physical application, with this being more of a vague description of what we are talking about rather than an actual mathemati- cal definition (it is indeed used in many sources without a proper definition). This simply means that research in this topic must always consider shortened representations, usually involving recursion, to even being able to describe such numbers. One of the most known methodologies to conceive such numbers is using hyper-operations, that is a sequence of binary functions defined recursively starting from the usual chain: addition - multiplication - exponentiation. arXiv:1901.05372v2 [cs.LO] 12 Mar 2019 The most important notations to represent such hyper-operations have been considered by Knuth, Goodstein, Ackermann and Conway as described in this work’s introduction. Within this work we will give an axiomatic setup for this topic, and then try to find on one hand other ways to represent unimaginable numbers, as well as on the other hand applications to computer science, where the algorith- mic nature of representations and the increased computation capabilities of 1 computers give the perfect field to develop further the topic, exploring some possibilities to effectively operate with such big numbers.
    [Show full text]
  • Hyperoperations and Nopt Structures
    Hyperoperations and Nopt Structures Alister Wilson Abstract (Beta version) The concept of formal power towers by analogy to formal power series is introduced. Bracketing patterns for combining hyperoperations are pictured. Nopt structures are introduced by reference to Nept structures. Briefly speaking, Nept structures are a notation that help picturing the seed(m)-Ackermann number sequence by reference to exponential function and multitudinous nestings thereof. A systematic structure is observed and described. Keywords: Large numbers, formal power towers, Nopt structures. 1 Contents i Acknowledgements 3 ii List of Figures and Tables 3 I Introduction 4 II Philosophical Considerations 5 III Bracketing patterns and hyperoperations 8 3.1 Some Examples 8 3.2 Top-down versus bottom-up 9 3.3 Bracketing patterns and binary operations 10 3.4 Bracketing patterns with exponentiation and tetration 12 3.5 Bracketing and 4 consecutive hyperoperations 15 3.6 A quick look at the start of the Grzegorczyk hierarchy 17 3.7 Reconsidering top-down and bottom-up 18 IV Nopt Structures 20 4.1 Introduction to Nept and Nopt structures 20 4.2 Defining Nopts from Nepts 21 4.3 Seed Values: “n” and “theta ) n” 24 4.4 A method for generating Nopt structures 25 4.5 Magnitude inequalities inside Nopt structures 32 V Applying Nopt Structures 33 5.1 The gi-sequence and g-subscript towers 33 5.2 Nopt structures and Conway chained arrows 35 VI Glossary 39 VII Further Reading and Weblinks 42 2 i Acknowledgements I’d like to express my gratitude to Wikipedia for supplying an enormous range of high quality mathematics articles.
    [Show full text]
  • Standards Chapter 10: Exponents and Scientific Notation Key Terms
    Chapter 10: Exponents and Scientific Notation Standards Common Core: 8.EE.1: Know and apply the properties of integer exponents to generate equivalent numerical Essential Questions Students will… expressions. How can you use exponents to Write expressions using write numbers? integer exponents. 8.EE.3: Use numbers expressed in the form of a single digit times an integer power of 10 to estimate How can you use inductive Evaluate expressions very large or very small quantities, and to express reasoning to observe patterns involving integer exponents. how many times as much one is than the other. and write general rules involving properties of Multiply powers with the 8.EE.4: Perform operations with numbers expressed exponents? same base. in scientific notation, including problems where both decimal and scientific notation are used. Use How can you divide two Find a power of a power. scientific notation and choose units of appropriate powers that have the same size for measurements of very large or very small base? Find a power of a product. quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been How can you evaluate a Divide powers with the same generated by technology. nonzero number with an base. exponent of zero? How can you evaluate a nonzero Simplify expressions number with a negative integer involving the quotient of Key Terms exponent? powers. A power is a product of repeated factors. How can you read numbers Evaluate expressions that are written in scientific involving numbers with zero The base of a power is the common factor.
    [Show full text]