Dielma Fastidiosa Gen. Nov., Sp. Nov
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis
International Journal of Molecular Sciences Review Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis David Johane Machate 1, Priscila Silva Figueiredo 2 , Gabriela Marcelino 2 , Rita de Cássia Avellaneda Guimarães 2,*, Priscila Aiko Hiane 2 , Danielle Bogo 2, Verônica Assalin Zorgetto Pinheiro 2, Lincoln Carlos Silva de Oliveira 3 and Arnildo Pott 1 1 Graduate Program in Biotechnology and Biodiversity in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] (D.J.M.); [email protected] (A.P.) 2 Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; pri.fi[email protected] (P.S.F.); [email protected] (G.M.); [email protected] (P.A.H.); [email protected] (D.B.); [email protected] (V.A.Z.P.) 3 Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-67-3345-7416 Received: 9 March 2020; Accepted: 27 March 2020; Published: 8 June 2020 Abstract: Long-term high-fat dietary intake plays a crucial role in the composition of gut microbiota in animal models and human subjects, which affect directly short-chain fatty acid (SCFA) production and host health. This review aims to highlight the interplay of fatty acid (FA) intake and gut microbiota composition and its interaction with hosts in health promotion and obesity prevention and its related metabolic dysbiosis. -
Bovine Host Genome Acts on Speci C Metabolism, Communication and Genetic Processes of Rumen Microbes Host-Genomically Linked To
Bovine host genome acts on specic metabolism, communication and genetic processes of rumen microbes host-genomically linked to methane emissions Marina Martínez-Álvaro SRUC https://orcid.org/0000-0003-2295-5839 Marc Auffret SRUC Carol-Anne Duthie SRUC Richard Dewhurst SRUC Matthew Cleveland Genus plc Mick Watson Roslin Institute https://orcid.org/0000-0003-4211-0358 Rainer Roehe ( [email protected] ) SRUC https://orcid.org/0000-0002-4880-3756 Article Keywords: bovine host genome, rumen, CH4 Posted Date: May 17th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-290150/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 Bovine host genome acts on specific metabolism, communication and 2 genetic processes of rumen microbes host-genomically linked to methane 3 emissions 4 Marina Martínez-Álvaro1, Marc D. Auffret1, Carol-Anne Duthie1, Richard J. Dewhurst1, 5 Matthew A. Cleveland2, Mick Watson3 and Rainer Roehe*1 6 1Scotland’s Rural College, Edinburgh, UK 7 2Genus plc, DeForest, WI, USA 8 3The Roslin Institute and the Royal (Dick) School of Veterinary Studies, University of 9 Edinburgh, UK 10 11 *Corresponding author. Email: [email protected] 12 13 14 Introductory paragraph 15 Whereas recent studies in different species showed that the host genome shapes the microbial 16 community profile, our new research strategy revealed substantial host genomic control of 17 comprehensive functional microbial processes in the rumen of bovines by utilising microbial 18 gene profiles from whole metagenomic sequencing. Of 1,107/225/1,141 rumen microbial 19 genera/metagenome assembled uncultured genomes (RUGs)/genes identified, 203/16/352 20 were significantly (P<2.02 x10-5) heritable (0.13 to 0.61), revealing substantial variation in 21 host genomic control. -
Perilla Frutescens Leaf Alters the Rumen Microbial Community of Lactating Dairy Cows
microorganisms Article Perilla frutescens Leaf Alters the Rumen Microbial Community of Lactating Dairy Cows Zhiqiang Sun, Zhu Yu and Bing Wang * College of Grass Science and Technology, China Agricultural University, Beijing 100193, China; [email protected] (Z.S.); [email protected] (Z.Y.) * Correspondence: [email protected] Received: 25 September 2019; Accepted: 12 November 2019; Published: 13 November 2019 Abstract: Perilla frutescens (L.) Britt., an annual herbaceous plant, has antibacterial, anti-inflammation, and antioxidant properties. To understand the effects of P. frutescens leaf on the ruminal microbial ecology of cattle, Illumina MiSeq 16S rRNA sequencing technology was used. Fourteen cows were used in a randomized complete block design trial. Two diets were fed to these cattle: a control diet (CON); and CON supplemented with 300 g/d P. frutescens leaf (PFL) per cow. Ruminal fluid was sampled at the end of the experiment for microbial DNA extraction. Overall, our findings revealed that supplementation with PFL could increase ruminal fluid pH value. The ruminal bacterial community of cattle was dominated by Bacteroidetes, Firmicutes, and Proteobacteria. The addition of PFL had a positive effect on Firmicutes, Actinobacteria, and Spirochaetes, but had no effect on Bacteroidetes and Proteobacteria compared with the CON. The supplementation with PFL significantly increased the abundance of Marvinbryantia, Acetitomaculum, Ruminococcus gauvreauii, Eubacterium coprostanoligenes, Selenomonas_1, Pseudoscardovia, norank_f__Muribaculaceae, and Sharpea, and decreased the abundance of Treponema_2 compared to CON. Eubacterium coprostanoligenes, and norank_f__Muribaculaceae were positively correlated with ruminal pH value. It was found that norank_f__Muribaculaceae and Acetitomaculum were positively correlated with milk yield, indicating that these different genera are PFL associated bacteria. -
Dysbiosis of Small Intestinal Microbiota in Liver Cirrhosis and Its
www.nature.com/scientificreports OPEN Dysbiosis of small intestinal microbiota in liver cirrhosis and its association with etiology Received: 31 May 2016 Yanfei Chen1, Feng Ji2, Jing Guo1, Ding Shi1, Daiqiong Fang1 & Lanjuan Li1 Accepted: 22 August 2016 Cirrhosis-associated duodenal dysbiosis is not yet clearly defined. In this research, duodenal Published: 30 September 2016 mucosal microbiota was analyzed in 30 cirrhotic patients and 28 healthy controls using 16S rRNA gene pyrosequencing methods. The principal coordinate analysis revealed that cirrhotic patients were colonized by remarkable different duodenal mucosal microbiota in comparison with controls. At the genus level, Veillonella, Megasphaera, Dialister, Atopobium, and Prevotella were found overrepresented in cirrhotic duodenum. And the duodenal microbiota of healthy controls was enriched with Neisseria, Haemophilus, and SR1 genera incertae sedis. On the other hand, based on predicted metagenomes analyzed, gene pathways related to nutrient absorption (e.g. sugar and amino acid metabolism) were highly abundant in cirrhosis duodenal microbiota, and functional modules involved in bacterial proliferation and colonization (e.g. bacterial motility proteins and secretion system) were overrepresented in controls. When considering the etiology of cirrhosis, two operational taxonomic units (OTUs), OTU-23 (Neisseria) and OTU-36 (Gemella), were found discriminative between hepatitis- B-virus related cirrhosis and primary biliary cirrhosis. The results suggest that the structure of duodenal mucosa microbiota in cirrhotic patients is dramatically different from healthy controls. The duodenum dysbiosis might be related to alterations of oral microbiota and changes in duodenal micro- environment. Gut microbiota and bacterial translocation (BT) play an important role in the pathogenesis of complications of cirrhosis1. -
( 12 ) United States Patent
US010435714B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 ,435 ,714 B2 Gill et al. (45 ) Date of Patent : * Oct. 8 , 2019 (54 ) NUCLEIC ACID -GUIDED NUCLEASES 8 ,569 ,041 32 10 / 2013 Church et al. 8 ,697 , 359 B1 4 / 2014 Zhang 8 , 906 ,616 B2 12 / 2014 Zhang et al. ( 71 ) Applicant: Inscripta , Inc. , Boulder, CO (US ) 9 , 458 ,439 B2 10 / 2016 Choulika et al . 9 ,512 ,446 B112 /2016 Joung et al. (72 ) Inventors : Ryan T . Gill, Denver , CO (US ) ; 9 ,752 , 132 B2 9 / 2017 Joung et al. Andrew Garst , Boulder , CO (US ) ; 9 , 790 , 490 B2 10 / 2017 Zhang et al. Tanya Elizabeth Warnecke Lipscomb, 9 ,926 ,546 B2 3 / 2018 Joung et al . 9 , 982 ,278 B2 5 /2018 Gill et al. Boulder, CO (US ) 9 , 982 ,279 B1 5 / 2018 Gill et al. 10 ,011 , 849 B1 7 / 2018 Gill et al . ( 73 ) Assignee : INSCRIPTA , INC ., Boulder, CO (US ) 10 ,017 , 760 B2 7 / 2018 Gill et al . 2008 /0287317 AL 11/ 2008 Boone ( * ) Notice : Subject to any disclaimer , the term of this 2009 /0176653 Al 7 / 2009 Kim et al. patent is extended or adjusted under 35 2010 /0034924 Al 2 / 2010 Fremaux et al . 2010 / 0305001 A1 12 /2010 Kern et al . U .S . C . 154 (b ) by 48 days . 2014 / 0068797 A1 3 / 2014 Doudna et al . 2014 / 0089681 A1 3 / 2014 Goto et al. This patent is subject to a terminal dis 2014 /0121118 A1 5 / 2014 Warner claimer . 2014 / 0199767 A1 7 /2014 Barrangou et al. -
Early-Life Gut Dysbiosis Linked to Juvenile Mortality in Ostriches Elin Videvall1,2* , Se Jin Song3,4, Hanna M
Videvall et al. Microbiome (2020) 8:147 https://doi.org/10.1186/s40168-020-00925-7 RESEARCH Open Access Early-life gut dysbiosis linked to juvenile mortality in ostriches Elin Videvall1,2* , Se Jin Song3,4, Hanna M. Bensch1, Maria Strandh1, Anel Engelbrecht5, Naomi Serfontein6, Olof Hellgren1, Adriaan Olivier7, Schalk Cloete5,8, Rob Knight3,4,9,10 and Charlie K. Cornwallis1 Abstract Background: Imbalances in the gut microbial community (dysbiosis) of vertebrates have been associated with several gastrointestinal and autoimmune diseases. However, it is unclear which taxa are associated with gut dysbiosis, and if particular gut regions or specific time periods during ontogeny are more susceptible. We also know very little of this process in non-model organisms, despite an increasing realization of the general importance of gut microbiota for health. Methods: Here, we examine the changes that occur in the microbiome during dysbiosis in different parts of the gastrointestinal tract in a long-lived bird with high juvenile mortality, the ostrich (Struthio camelus). We evaluated the 16S rRNA gene composition of the ileum, cecum, and colon of 68 individuals that died of suspected enterocolitis during the first 3 months of life (diseased individuals), and of 50 healthy individuals that were euthanized as age-matched controls. We combined these data with longitudinal environmental and fecal sampling to identify potential sources of pathogenic bacteria and to unravel at which stage of development dysbiosis- associated bacteria emerge. Results: Diseased individuals had drastically lower microbial alpha diversity and differed substantially in their microbial beta diversity from control individuals in all three regions of the gastrointestinal tract. -
A Microbiologist's View on Improving Nutrient Utilization in Ruminants
A Microbiologist’s View on Improving Nutrient Utilization in Ruminants T. G. Nagaraja1 College of Veterinary Medicine, Kansas State University, Introduction Ruminants, particularly cattle, sheep, and goats, are important production animals for food to humans worldwide. Their importance comes from their unique ability to convert, because of foregut microbial fermentation, fiber-based feeds with or without grains, into high quality, protein-rich products like milk and meat. The rumen, the first compartment of the complex stomach, is inhabited by a multitude of microbes that work in concert to breakdown feeds to produce energy (volatile fatty acids; VFA), protein (microbial cells) and other nutrients like vitamins (microbial cells) to the host. The production of VFA, mainly from carbohydrates. is central to the ruminal fermentation because the process provides energy (ATP) for microbial growth, which serves as the major source of protein to the host, but also provides the animal with the precursors necessary to generate energy (mainly acetate), glucose (mainly propionate), and lipid (mainly acetate and butyrate). The fermentation of nitrogenous compounds is also an integral process because it provides the molecules necessary to build microbial cell protein. In addition to the importance of the rumen microbial function to the host nutrition and food production, rumen microbes and their enzymes are also of considerable interest to the biofuels and biotechnology industries (Hess et al., 2011). Despite the tremendous importance, rumen remains an under investigated, hence, under-characterized, microbial ecosystem. At one time, rumen was the most extensively investigated anaerobic ecosystem. In the past 10 to 12 years, human gut microbial studies have far outpaced rumen microbiology studies. -
Mai Muun Muntant Un an to the Man Uniti
MAIMUUN MUNTANTUS009855303B2 UN AN TO THEMAN UNITI (12 ) United States Patent ( 10 ) Patent No. : US 9 , 855 ,303 B2 McKenzie et al. (45 ) Date of Patent: * Jan . 2 , 2018 ( 54 ) COMPOSITIONS AND METHODS (58 ) Field of Classification Search ??? . A61K 35 / 742 (71 ) Applicant : SERES THERAPEUTICS , INC . , See application file for complete search history . Cambridge, MA (US ) (72 ) Inventors : Gregory McKenzie , Arlington , MA ( 56 ) References Cited (US ) ; Mary - Jane Lombardo McKenzie , Arlington , MA (US ) ; David U . S . PATENT DOCUMENTS N . Cook , Brooklyn , NY (US ) ; Marin 3 ,009 , 864 A 11 / 1961 Gordon - Aldterton et al. Vulic , Boston , MA (US ) ; Geoffrey von 3 ,228 , 838 A 1 / 1966 Rinfret Maltzahn , Boston , MA (US ) ; Brian 3 ,608 ,030 A 9 / 1971 Tint Goodman , Boston , MA (US ) ; John 4 ,077 , 227 A 3 / 1978 Larson Grant Aunins , Doylestown , PA (US ) ; 4 , 205 , 132 A 5 / 1980 Sandine Matthew R . Henn , Somerville , MA 4 ,655 ,047 A 4 / 1987 Temple (US ) ; David Arthur Berry , Brookline , 4 ,689 , 226 A 8 / 1987 Nurmi MA (US ) ; Jonathan Winkler , Boston , 4 ,839 , 281 A 6 / 1989 Gorbach et al . 5 , 196 , 205 A 3 / 1993 Borody MA (US ) 5 , 425 , 951 A 6 / 1995 Goodrich 5 ,436 ,002 A 7 / 1995 Payne ( 73 ) Assignee : Seres Therapeutics , Inc ., Cambridge , 5 ,443 ,826 A 8 / 1995 Borody MA (US ) 5 , 599 , 795 A 2 / 1997 McCann 5 ,648 ,206 A 7 / 1997 Goodrich ( * ) Notice : Subject to any disclaimer , the term of this 5 , 951 , 977 A 9 / 1999 Nisbet et al. patent is extended or adjusted under 35 5 , 965 , 128 A 10 / 1999 Doyle et al . -
Insights Into the Role of Erysipelotrichaceae in the Human Host
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector OPINION published: 20 November 2015 doi: 10.3389/fcimb.2015.00084 Insights into the Role of Erysipelotrichaceae in the Human Host Nadeem O. Kaakoush * School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia Keywords: Erysipelotrichaceae, gastrointestinal, microbiota, metabolic disorders, inflammatory bowel diseases, colorectal cancer Understanding the human gut microbiota has garnered interest from researchers and clinicians to pharmaceutical companies looking at novel mechanisms to manipulate the microbiota for the benefit of the host. Studies on the gut microbiota can be loosely characterized into three areas that include investigating the microbiota’s role in the physiology of the healthy gut, in the establishment of gastrointestinal disease, and in extra-intestinal manifestations. With deep sequencing technologies now in routine use in the research environment, novel members of the gut microbiota are coming to light, and our understanding of this complex ecosystem and its relationship to the host is slowly improving. IMPORTANCE OF ERYSIPELOTRICHACEAE IN HUMANS Edited by: Reports documenting a potential role for the bacterial family Erysipelotrichaceae, which belongs D. Scott Merrell, to the Firmicutes phylum, in host physiology and/or disease are on the rise. However, more often Uniformed Services University of the than not, these organisms are mentioned in passing, despite the fact that members of this bacterial Health Sciences, USA family appear to be highly immunogenic and can potentially flourish post-treatment with broad Reviewed by: spectrum antibiotics (Zhao et al., 2013; Palm et al., 2014; Dinh et al., 2015). -
Effects of Starter Feeds of Different Physical Forms on Rumen Fermentation and Microbial Composition for Pre-Weaning and Post-We
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.03.235580; this version posted August 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Effects of Starter Feeds of Different Physical Forms on Rumen Fermentation and 2 Microbial Composition for Pre-weaning and Post-weaning Lambs 3 4 Yong Li,* Yanli Guo,# Chengxin Zhang, Xiaofang Cai, Peng Liu, Cailian Li 5 6 College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 7 730070, P.R. China 8 9 10 11 12 13 14 15 16 17 18 19 #Address correspondence to Yanli Guo, [email protected]. 20 *Present address: Yong Li, Zhoukou Vocational and Technical College, Zhoukou, P. R. 21 China. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.03.235580; this version posted August 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 22 ABSTRACT 23 This study aimed to evaluate the effects of starter feeds of different physical forms 24 on rumen fermentation and microbial composition for lambs. Twenty-four eight-day-old 25 male Hu lambs (5.04 ± 0.75 kg body weight) were fed either milk replacer (MR) and 26 pelleted starter feed (PS), or MR and textured starter feed (TS) in pre-weaning (day 8 to 27 35) and post-weaning (day 36 to 42) lambs. -
Improved Diagnostics and Further Investigation of Condemnations and Outbreaks Associated with Erysipelothrix Spp Joseph Samuel Bender Iowa State University
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2010 Improved diagnostics and further investigation of condemnations and outbreaks associated with Erysipelothrix spp Joseph Samuel Bender Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Veterinary Microbiology and Immunobiology Commons Recommended Citation Bender, Joseph Samuel, "Improved diagnostics and further investigation of condemnations and outbreaks associated with Erysipelothrix spp" (2010). Graduate Theses and Dissertations. 11370. https://lib.dr.iastate.edu/etd/11370 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Improved diagnostics and further investigation of condemnations and outbreaks associated with Erysipelothrix spp by Joseph Samuel Bender A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Veterinary Preventive Medicine Program of Study Committee: Tanja Opriessnig, Major Professor Kent J. Schwartz Leo L. Timms Iowa State University Ames, Iowa 2010 Copyright © Joseph Samuel Bender, 2010. All rights reserved. ii TABLE OF CONTENTS CHAPTER 1. GENERAL INTRODUCTION Thesis Organization 1 Statement of Problem and Research Summary 1 Reference List 3 CHAPTER 2. LITERATURE REVIEW Introduction 4 Morphology, Growth, and Biological Characteristics 5 Epidemiology 6 Prevalence and Condemnations 7 Pathogenesis and Clinical Signs of Disease 9 Virulence Factors 11 Diagnosis 14 Characterization 19 Prevention and Biologics Development 21 Reference List 23 CHAPTER 3. -
Erysipelothrix Rhusiopathiae in Laying Hens
Erysipelothrix rhusiopathiae in Laying Hens Helena Eriksson Faculty of Veterinary Medicine and Animal Science Department of Clinical Sciences Uppsala Doctoral Thesis Swedish University of Agricultural Sciences Uppsala 2013 Acta Universitatis agriculturae Sueciae 2013:26 Cover: “Ruvande”. Sculpture by Hermine Keller. (photo: H. Keller) ISSN 1652-6880 ISBN (Printed copy) 978-91-576-7790-7 ISBN (Electronic copy) 978-91-576-7791-4 © 2013 Helena Eriksson, Uppsala Print: SLU Service/Repro, Uppsala 2013 Erysipelothrix rhusiopathiae in Laying Hens Abstract The bacterium Erysipelothrix rhusiopathiae can infect a wide range of mammals (including humans) and birds. Disease outbreaks (erysipelas) have been considered unusual in chickens internationally, but outbreaks with high mortality and egg production losses have been diagnosed in Swedish laying hen flocks every year since 1998. Different aspects of E. rhusiopathiae infection in chickens were examined in this thesis with the aim of preventing future outbreaks. These aspects included determining occurrence of the bacterium in different housing systems for laying hens and the potential of the poultry red mite (Dermanyssus gallinae) to carry it, characterization of isolates of the bacterium from different hosts using pulsed-field gel electrophoresis (PFGE), serotyping, antimicrobial susceptibility testing and 16S rRNA gene sequencing, and determining the incidence of E. rhusiopathiae in the environment on affected organic laying hen farms by the use of selective culture and PCR. The results showed an association between erysipelas outbreaks and housing system. Flocks in free-range systems appeared to be at a higher risk than flocks in indoor litter- based systems, while flocks in cages appeared to be at the lowest risk.