Perilla Frutescens Leaf Alters the Rumen Microbial Community of Lactating Dairy Cows
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Acetogen Communities in the Gut of Herbivores and Their Potential Role in Syngas Fermentation
fermentation Article Acetogen Communities in the Gut of Herbivores and Their Potential Role in Syngas Fermentation Chunlei Yang Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; [email protected] Received: 2 May 2018; Accepted: 4 June 2018; Published: 7 June 2018 Abstract: To better understand the effects of host selection on gut acetogens and their potential role in syngas fermentation, the composition and hydrogenotrophic features of acetogen populations in cow and sheep rumens, rabbit ceca, and horse feces were studied. The acetogens detected in horses and rabbits were more phylogenetically diverse than those in cows and sheep, suggesting that the host species plays an important role in shaping gut acetogen populations. Acetogen enrichments from these animals presented good capacities to use hydrogen, with acetate as the major end product. Minor propionate, butyrate, and isovalerate were also produced. During 48 h of incubation, acetogen enrichments from horse consumed 4.75 moles of H2 to every 1 mole of acetate—significantly lower than rabbits, cows, and sheep (5.17, 5.53, and 5.23 moles, respectively) (p < 0.05)—and produced significantly more butyrate (p < 0.05). Enrichments from cows and sheep produced significantly higher amounts of propionate when compared to rabbits or horses (p < 0.05); enrichments from sheep produced the highest amounts of isovalerate (p < 0.05). These short chain fatty acids are important precursors for the synthesis of biofuel products, suggesting that gut contents of herbivores may be promising sources for harvesting functional acetogens for biofuel production. -
Robust Taxonomic Classification of Uncharted Microbial Sequences and Bins with CAT and BAT
bioRxiv preprint doi: https://doi.org/10.1101/530188; this version posted January 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Robust taxonomic classification of uncharted microbial sequences and bins with CAT and BAT F.A. Bastiaan von Meijenfeldt1,†, Ksenia Arkhipova1,†, Diego D. Cambuy1, Felipe H. Coutinho2,3, Bas E. Dutilh1,2,* 1 Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, The Netherlands. 2 Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, The Netherlands. 3 Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. * To whom correspondence should be addressed. Tel: +31 30 253 4212; Email: [email protected]. † These authors contributed equally to this work. Present Address: [Felipe H. Couthinho], Evolutionary Genomics Group, Departamento de Produccíon y Microbiología, Universidad Miguel Hernández, Campus San Juan, San Juan, Alicante 03550, Spain. ABSTRACT Current-day metagenomics increasingly requires taxonomic classification of long DNA sequences and metagenome-assembled genomes (MAGs) of unknown microorganisms. We show that the standard best-hit approach often leads to classifications that are too specific. We present tools to classify high- quality metagenomic contigs (Contig Annotation Tool, CAT) and MAGs (Bin Annotation Tool, BAT) and thoroughly benchmark them with simulated metagenomic sequences that are classified against a reference database where related sequences are increasingly removed, thereby simulating increasingly unknown queries. We find that the query sequences are correctly classified at low taxonomic ranks if closely related organisms are present in the reference database, while classifications are made higher in the taxonomy when closely related organisms are absent, thus avoiding spurious classification specificity. -
Bovine Host Genome Acts on Speci C Metabolism, Communication and Genetic Processes of Rumen Microbes Host-Genomically Linked To
Bovine host genome acts on specic metabolism, communication and genetic processes of rumen microbes host-genomically linked to methane emissions Marina Martínez-Álvaro SRUC https://orcid.org/0000-0003-2295-5839 Marc Auffret SRUC Carol-Anne Duthie SRUC Richard Dewhurst SRUC Matthew Cleveland Genus plc Mick Watson Roslin Institute https://orcid.org/0000-0003-4211-0358 Rainer Roehe ( [email protected] ) SRUC https://orcid.org/0000-0002-4880-3756 Article Keywords: bovine host genome, rumen, CH4 Posted Date: May 17th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-290150/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 Bovine host genome acts on specific metabolism, communication and 2 genetic processes of rumen microbes host-genomically linked to methane 3 emissions 4 Marina Martínez-Álvaro1, Marc D. Auffret1, Carol-Anne Duthie1, Richard J. Dewhurst1, 5 Matthew A. Cleveland2, Mick Watson3 and Rainer Roehe*1 6 1Scotland’s Rural College, Edinburgh, UK 7 2Genus plc, DeForest, WI, USA 8 3The Roslin Institute and the Royal (Dick) School of Veterinary Studies, University of 9 Edinburgh, UK 10 11 *Corresponding author. Email: [email protected] 12 13 14 Introductory paragraph 15 Whereas recent studies in different species showed that the host genome shapes the microbial 16 community profile, our new research strategy revealed substantial host genomic control of 17 comprehensive functional microbial processes in the rumen of bovines by utilising microbial 18 gene profiles from whole metagenomic sequencing. Of 1,107/225/1,141 rumen microbial 19 genera/metagenome assembled uncultured genomes (RUGs)/genes identified, 203/16/352 20 were significantly (P<2.02 x10-5) heritable (0.13 to 0.61), revealing substantial variation in 21 host genomic control. -
Serpula Hyodysenteriae Comb
INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1991, p. 50-58 Vol. 41, No. 1 0020-7713/91/0 10050-09$02.00/0 Copyright 0 1991, International Union of Microbiological Societies Reclassification of Treponema hyodysenteriae and Treponema innocens in a New Genus, Serpula gen. nov., as Serpula hyodysenteriae comb. nov. and Serpula innocens comb. nov. T. B. STANTON,l* N. S. JENSEN,l T. A. CASEY,l L. A. TORDOFF,2 F. E. DEWHIRST,2 AND B. J. PASTER2 Physiopathology Research Unit, National Animal Disease Center, Agricultural Research Service, U.S.Department of Agriculture, Ames, Iowa 50010,l and Forsyth Dental Center, Boston, Massachusetts 021152 The intestinal anaerobic spirochetes Treponema hyodysenteriae B7ST (T = type strain), B204, B169, and A-1, Treponema innocens B256T and 4/71, Treponema succinifaciens 6091T, and Treponema bryantii RUS-lT were compared by performing DNA-DNA reassociation experiments, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of cell proteins, restriction endonuclease analysis of bNA, and 16s rRNA sequence analysis. DNA-DNA relative reassociation experiments in which the S1 nuclease method was used showed that T. hyodysenteriae B78T and B204 had 93% sequence homology with each other and approximately 40% sequence homology with T. innocens B256T and 4/71. Both T. hyodysenteriae B7ST and T. innocens B256T exhibited negligible levels of DNA homology (55%)with T. succinifaciens 6091T. The results of comparisons of protein electrophoretic profiles corroborated the DNA-DNA reassociation results. We found high levels of similarity (296%) in electrophoretic profiles among T. hyodysenteriae strains, moderate levels of similarity (43 to 49%) between T. hyodysenteriae and T. innocens, and no detectable similarity between the profiles of either T. -
Longitudinal Characterization of the Gut Bacterial and Fungal Communities in Yaks
Journal of Fungi Article Longitudinal Characterization of the Gut Bacterial and Fungal Communities in Yaks Yaping Wang 1,2,3, Yuhang Fu 3, Yuanyuan He 3, Muhammad Fakhar-e-Alam Kulyar 3 , Mudassar Iqbal 3,4, Kun Li 1,2,* and Jiaguo Liu 1,2,* 1 Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; [email protected] 2 MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China 3 College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; [email protected] (Y.F.); [email protected] (Y.H.); [email protected] (M.F.-e.-A.K.); [email protected] (M.I.) 4 Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan * Correspondence: [email protected] (K.L.); [email protected] (J.L.) Abstract: Development phases are important in maturing immune systems, intestinal functions, and metabolism for the construction, structure, and diversity of microbiome in the intestine during the entire life. Characterizing the gut microbiota colonization and succession based on age-dependent effects might be crucial if a microbiota-based therapeutic or disease prevention strategy is adopted. The purpose of this study was to reveal the dynamic distribution of intestinal bacterial and fungal communities across all development stages in yaks. Dynamic changes (a substantial difference) in the structure and composition ratio of the microbial community were observed in yaks that Citation: Wang, Y.; Fu, Y.; He, Y.; matched the natural aging process from juvenile to natural aging. -
( 12 ) United States Patent
US010435714B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 ,435 ,714 B2 Gill et al. (45 ) Date of Patent : * Oct. 8 , 2019 (54 ) NUCLEIC ACID -GUIDED NUCLEASES 8 ,569 ,041 32 10 / 2013 Church et al. 8 ,697 , 359 B1 4 / 2014 Zhang 8 , 906 ,616 B2 12 / 2014 Zhang et al. ( 71 ) Applicant: Inscripta , Inc. , Boulder, CO (US ) 9 , 458 ,439 B2 10 / 2016 Choulika et al . 9 ,512 ,446 B112 /2016 Joung et al. (72 ) Inventors : Ryan T . Gill, Denver , CO (US ) ; 9 ,752 , 132 B2 9 / 2017 Joung et al. Andrew Garst , Boulder , CO (US ) ; 9 , 790 , 490 B2 10 / 2017 Zhang et al. Tanya Elizabeth Warnecke Lipscomb, 9 ,926 ,546 B2 3 / 2018 Joung et al . 9 , 982 ,278 B2 5 /2018 Gill et al. Boulder, CO (US ) 9 , 982 ,279 B1 5 / 2018 Gill et al. 10 ,011 , 849 B1 7 / 2018 Gill et al . ( 73 ) Assignee : INSCRIPTA , INC ., Boulder, CO (US ) 10 ,017 , 760 B2 7 / 2018 Gill et al . 2008 /0287317 AL 11/ 2008 Boone ( * ) Notice : Subject to any disclaimer , the term of this 2009 /0176653 Al 7 / 2009 Kim et al. patent is extended or adjusted under 35 2010 /0034924 Al 2 / 2010 Fremaux et al . 2010 / 0305001 A1 12 /2010 Kern et al . U .S . C . 154 (b ) by 48 days . 2014 / 0068797 A1 3 / 2014 Doudna et al . 2014 / 0089681 A1 3 / 2014 Goto et al. This patent is subject to a terminal dis 2014 /0121118 A1 5 / 2014 Warner claimer . 2014 / 0199767 A1 7 /2014 Barrangou et al. -
A Microbiologist's View on Improving Nutrient Utilization in Ruminants
A Microbiologist’s View on Improving Nutrient Utilization in Ruminants T. G. Nagaraja1 College of Veterinary Medicine, Kansas State University, Introduction Ruminants, particularly cattle, sheep, and goats, are important production animals for food to humans worldwide. Their importance comes from their unique ability to convert, because of foregut microbial fermentation, fiber-based feeds with or without grains, into high quality, protein-rich products like milk and meat. The rumen, the first compartment of the complex stomach, is inhabited by a multitude of microbes that work in concert to breakdown feeds to produce energy (volatile fatty acids; VFA), protein (microbial cells) and other nutrients like vitamins (microbial cells) to the host. The production of VFA, mainly from carbohydrates. is central to the ruminal fermentation because the process provides energy (ATP) for microbial growth, which serves as the major source of protein to the host, but also provides the animal with the precursors necessary to generate energy (mainly acetate), glucose (mainly propionate), and lipid (mainly acetate and butyrate). The fermentation of nitrogenous compounds is also an integral process because it provides the molecules necessary to build microbial cell protein. In addition to the importance of the rumen microbial function to the host nutrition and food production, rumen microbes and their enzymes are also of considerable interest to the biofuels and biotechnology industries (Hess et al., 2011). Despite the tremendous importance, rumen remains an under investigated, hence, under-characterized, microbial ecosystem. At one time, rumen was the most extensively investigated anaerobic ecosystem. In the past 10 to 12 years, human gut microbial studies have far outpaced rumen microbiology studies. -
The Interaction Between Mitochondrial Oxidative Stress and Gut Microbiota in the Cardiometabolic Consequences in Diet-Induced Obese Rats
antioxidants Article The Interaction between Mitochondrial Oxidative Stress and Gut Microbiota in the Cardiometabolic Consequences in Diet-Induced Obese Rats Adriana Ortega-Hernández 1,2, Ernesto Martínez-Martínez 2,3, Ruben Gómez-Gordo 1,2, Natalia López-Andrés 4, Amaya Fernández-Celis 4, Beatriz Gutiérrrez-Miranda 5, María Luisa Nieto 2,5 , Teresa Alarcón 6, Claudio Alba 7, Dulcenombre Gómez-Garre 1,2,* and Victoria Cachofeiro 2,3,* 1 Vascular Biology and Microbiota Laboratory, Hospital Clínico San Carlos-Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040-Madrid, Spain; [email protected] (A.O.-H.); [email protected] (R.G.-G.) 2 Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029-Madrid, Spain; [email protected] (E.M.-M.); [email protected] (M.L.N.) 3 Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain 4 Cardiovascular Translational Research, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; [email protected] (N.L.-A.); [email protected] (A.F.-C.) 5 Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain; [email protected] 6 Servicio de Microbiología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa, Departamento de Medicina Preventiva, Salud Pública y Microbiología, -
Characterization of Antibiotic Resistance Genes in the Species of the Rumen Microbiota
ARTICLE https://doi.org/10.1038/s41467-019-13118-0 OPEN Characterization of antibiotic resistance genes in the species of the rumen microbiota Yasmin Neves Vieira Sabino1, Mateus Ferreira Santana1, Linda Boniface Oyama2, Fernanda Godoy Santos2, Ana Júlia Silva Moreira1, Sharon Ann Huws2* & Hilário Cuquetto Mantovani 1* Infections caused by multidrug resistant bacteria represent a therapeutic challenge both in clinical settings and in livestock production, but the prevalence of antibiotic resistance genes 1234567890():,; among the species of bacteria that colonize the gastrointestinal tract of ruminants is not well characterized. Here, we investigate the resistome of 435 ruminal microbial genomes in silico and confirm representative phenotypes in vitro. We find a high abundance of genes encoding tetracycline resistance and evidence that the tet(W) gene is under positive selective pres- sure. Our findings reveal that tet(W) is located in a novel integrative and conjugative element in several ruminal bacterial genomes. Analyses of rumen microbial metatranscriptomes confirm the expression of the most abundant antibiotic resistance genes. Our data provide insight into antibiotic resistange gene profiles of the main species of ruminal bacteria and reveal the potential role of mobile genetic elements in shaping the resistome of the rumen microbiome, with implications for human and animal health. 1 Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil. 2 Institute for Global Food Security, School of Biological -
Effects of Starter Feeds of Different Physical Forms on Rumen Fermentation and Microbial Composition for Pre-Weaning and Post-We
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.03.235580; this version posted August 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Effects of Starter Feeds of Different Physical Forms on Rumen Fermentation and 2 Microbial Composition for Pre-weaning and Post-weaning Lambs 3 4 Yong Li,* Yanli Guo,# Chengxin Zhang, Xiaofang Cai, Peng Liu, Cailian Li 5 6 College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 7 730070, P.R. China 8 9 10 11 12 13 14 15 16 17 18 19 #Address correspondence to Yanli Guo, [email protected]. 20 *Present address: Yong Li, Zhoukou Vocational and Technical College, Zhoukou, P. R. 21 China. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.03.235580; this version posted August 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 22 ABSTRACT 23 This study aimed to evaluate the effects of starter feeds of different physical forms 24 on rumen fermentation and microbial composition for lambs. Twenty-four eight-day-old 25 male Hu lambs (5.04 ± 0.75 kg body weight) were fed either milk replacer (MR) and 26 pelleted starter feed (PS), or MR and textured starter feed (TS) in pre-weaning (day 8 to 27 35) and post-weaning (day 36 to 42) lambs. -
A Comparative Analysis of the Moose Rumen Microbiota and the Pursuit of Improving Fibrolytic Systems
University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2015 A Comparative Analysis Of The oM ose Rumen Microbiota And The Pursuit Of Improving Fibrolytic Systems. Suzanne Ishaq Pellegrini University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Animal Sciences Commons, Microbiology Commons, and the Molecular Biology Commons Recommended Citation Pellegrini, Suzanne Ishaq, "A Comparative Analysis Of The oosM e Rumen Microbiota And The urP suit Of Improving Fibrolytic Systems." (2015). Graduate College Dissertations and Theses. 365. https://scholarworks.uvm.edu/graddis/365 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. A COMPARATIVE ANALYSIS OF THE MOOSE RUMEN MICROBIOTA AND THE PURSUIT OF IMPROVING FIBROLYTIC SYSTEMS. A Dissertation Presented by Suzanne Ishaq Pellegrini to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy Specializing in Animal, Nutrition and Food Science May, 2015 Defense Date: March 19, 2015 Dissertation Examination Committee: André-Denis G. Wright, Ph.D., Advisor Indra N. Sarkar, Ph.D., MLIS, Chairperson John W. Barlow, Ph.D., D.V.M. Douglas I. Johnson, Ph.D. Stephanie D. McKay, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT The goal of the work presented herein was to further our understanding of the rumen microbiota and microbiome of wild moose, and to use that understanding to improve other processes. -
Acetogenesis and the Wood–Ljungdahl Pathway of CO2 Fixation
Biochimica et Biophysica Acta 1784 (2008) 1873–1898 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbapap Review Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation Stephen W. Ragsdale ⁎, Elizabeth Pierce Department of Biological Chemistry, MSRB III, 5301, 1150 W. Medical Center Drive, University of Michigan, Ann Arbor, MI 48109-0606, USA article info abstract Article history: Conceptually, the simplest way to synthesize an organic molecule is to construct it one carbon at a time. The Received 2 July 2008 Wood–Ljungdahl pathway of CO2 fixation involves this type of stepwise process. The biochemical events that Received in revised form 12 August 2008 underlie the condensation of two one-carbon units to form the two-carbon compound, acetate, have Accepted 13 August 2008 intrigued chemists, biochemists, and microbiologists for many decades. We begin this review with a Available online 27 August 2008 description of the biology of acetogenesis. Then, we provide a short history of the important discoveries that fi Keywords: have led to the identi cation of the key components and steps of this usual mechanism of CO and CO2 fi fl Acetogenesis xation. In this historical perspective, we have included re ections that hopefully will sketch the landscape Nickel of the controversies, hypotheses, and opinions that led to the key experiments and discoveries. We then Iron–sulfur describe the properties of the genes and enzymes involved in the pathway and conclude with a section Cobalamin describing some major questions that remain unanswered. Methanogenesis © 2008 Elsevier B.V. All rights reserved.