Serpula Hyodysenteriae Comb

Total Page:16

File Type:pdf, Size:1020Kb

Serpula Hyodysenteriae Comb INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1991, p. 50-58 Vol. 41, No. 1 0020-7713/91/0 10050-09$02.00/0 Copyright 0 1991, International Union of Microbiological Societies Reclassification of Treponema hyodysenteriae and Treponema innocens in a New Genus, Serpula gen. nov., as Serpula hyodysenteriae comb. nov. and Serpula innocens comb. nov. T. B. STANTON,l* N. S. JENSEN,l T. A. CASEY,l L. A. TORDOFF,2 F. E. DEWHIRST,2 AND B. J. PASTER2 Physiopathology Research Unit, National Animal Disease Center, Agricultural Research Service, U.S.Department of Agriculture, Ames, Iowa 50010,l and Forsyth Dental Center, Boston, Massachusetts 021152 The intestinal anaerobic spirochetes Treponema hyodysenteriae B7ST (T = type strain), B204, B169, and A-1, Treponema innocens B256T and 4/71, Treponema succinifaciens 6091T, and Treponema bryantii RUS-lT were compared by performing DNA-DNA reassociation experiments, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of cell proteins, restriction endonuclease analysis of bNA, and 16s rRNA sequence analysis. DNA-DNA relative reassociation experiments in which the S1 nuclease method was used showed that T. hyodysenteriae B78T and B204 had 93% sequence homology with each other and approximately 40% sequence homology with T. innocens B256T and 4/71. Both T. hyodysenteriae B7ST and T. innocens B256T exhibited negligible levels of DNA homology (55%)with T. succinifaciens 6091T. The results of comparisons of protein electrophoretic profiles corroborated the DNA-DNA reassociation results. We found high levels of similarity (296%) in electrophoretic profiles among T. hyodysenteriae strains, moderate levels of similarity (43 to 49%) between T. hyodysenteriae and T. innocens, and no detectable similarity between the profiles of either T. hyodysenteriae or T. innocens and those of T. succinifaciens, T. bryantii, and Escherichiu coli. Restriction endonuclease analysis of DNA was not useful in assessing genetic relationships since there was heterogeneity even between strains of T. hyodysenteriae. Partial 16s rRNA sequences of the intestinal spirochetes were determined by using a modified Sanger method and were compared in order to evaluate the phylogenetic relationships among these and other spirochetes. The 16s rRNA sequences of T. hyodysenteriae B7ST, B204, and A-1 were nearly identical (99.8 to 99.9% base sequence similarity). T. innocens B256Tand 4/71 were closely related to the T. hyodysenteriae strains (99.4 and 99.0% similarity). Strains of T. hyodysenteriae and T. innocens exhibited low levels of 16s rRNA similarity (average, 76.5 %) with T. pallidum, Borrelia burgdorj'eri, and various other spirochetes. The results of our investigations indicate that T. hyodysenteriae and T. innocens are distinct but related species of spirochetes. T. hyodysenteriae and T. innocens are only distantly related to T.pallidum, the type species of the genus Treponema, and to other spirochetes. Consequently, we propose that the species T. hyodysenteriae and T. innocens be transferred to a new genus, Serpula, gen. nov. The bacterial agent of swine dysentery was established by T. innocens are genetically distinct from other known spiro- Taylor and Alexander in the United Kingdom (49) and by chetes, including other Treponema species. The guanine- Harris et al. in the United States (11). This organism has a plus-cytosine (G+C) content of DNA from either T. hyod- typical spirochete ultrastructure (protoplasmic cylinder, ysenteriae B204 or T. innocens B256T was estimated to be endoflagella, and outer sheath) and requires anaerobic con- 25.8 mol% (35). This value is significantly lower than the ditions for cultivation (9, 11, 22). Inasmuch as host-associ- value of 53 mol% reported for the DNA of Treponema ated, anaerobic spirochetes are classified as members of the pallidurn (34), the type species of the genus Treponema (42). genus Treponema (42), the agent of swine dysentery was T. hyodysenteriae B204 and A-1 and T. innocens B256T named Treponema hyodysenteriae (11). exhibited negligible levels of DNA sequence homology Initially, both pathogenic and nonpathogenic strains were (4%)with T. pallidum Nichols, Treponema phagedenis classified as T. hyodysenteriae (24). Colonies of nonpatho- biotype Reiter, or Treponema refringens biotype Noguchi genic strains were described as weakly beta-hemolytic, (35). 16s rRNA catalog comparisons have shown that T. whereas those of pathogenic strains were described as hyodysenteriae 94A007 (a subculture of strain B204) has strongly beta-hemolytic (24). More recently, Miao et al. (35) unique 16s rRNA regions that distinguish it from various found a level of relative reassociation of 28% between DNAs other spirochetes, including members of the genera Spiro- from pathogenic strains B204 and A-1 and DNAs from chaeta, Treponema, Leptospira, and Borrelia (38). T. hyod- nonpathogenic strains B256T (T = type strain) and 4/71. ysenteriae has been considered a distinct line of spirochete Strains B204 and A-1 exhibited 80% DNA sequence homol- evolution and, accordingly, a representative of a distinct ogy with each other, and the nonpathogenic strains exhibited spirochete genus (38). Neither the study of levels of DNA 90% sequence homology with each other. These results sequence homology between spirochetes (35) nor the 16s indicated that the pathogenic strains and the nonpathogenic rRNA cataloging study of spirochetes (38) included an strains are genetically distinct species. The nonpathogenic analysis of strain B78, the type strain of T. hyodysenteriae. organisms were reclassified as a new species, Treponema In addition, the 16s rRNA from T. innocens was not innocens, represented by type strain B256 (23). analyzed. There is substantial evidence that T. hyodysenteriae and In this study we used sodium dodecyl sulfate (SDS)- polyacrylamide gel electrophoresis (PAGE) of cell proteins, 16s rRNA sequence analysis, restriction endonuclease anal- * Corresponding author. ysis of DNA, and DNA-DNA reassociation experiments to 50 VOL.41, 1991 SERPULA GEN. NOV. 51 TABLE 1. Spirochete species used in this study G+C content Species Strain (rnol%) Characteristics Reference(s) Serpula hyodysenteriae" B7gT 26 Pathogen, swine intestine 23, 24 B 204 Pathogen, swine intestine 23, 24, 35 B169 Pathogen, swine intestine 23, 24 A- 1 Pathogen, swine intestine 23, 24 Serpula innocens B256T 26 Nonpathogen, swine intestine 23, 24, 35 4/7 1 Nonpathogen, swine intestine 23, 24 T. succinifaciens 6091T 36 Nonpathogen, swine intestine 6 T. bryantii RUS-lT 36 Nonpathogen, bovine rumen 46 a Serpula hyodysenteriue B7gT, B204, B169, and A-1 represent serotypes 1 through 4, respectively (2). compare strains of spirochetes, focusing on strains isolated resolving gel), using standard electrophoretic techniques from mammalian gastrointestinal tracts. On the basis of our (27). Proteins were stained with Coomassie blue R-250. results and the results of previous investigators, we propose Electrophoretic similarities between bacteria were evaluated a revision of the classification of T. hyodysenteriae and T. by visually examining photographs of gels and estimating the innocens and creation of a new genus, Serpula, containing percentages of protein bands with common alignments and the species Serpula hyodysentertae and Serpula innocens. relative staining intensities. Protein standards for molecular We also describe methods which can be used to distinguish weight determinations were purchased from Bio-Rad Labo- these species from each other and from other spirochetes. ratories, Richmond, Calif. Restriction endonuclease analysis. T. succinifaciens 6091T MATERIALS AND METHODS DNA was isolated as described above. Otherwise, bacterial DNAs were obtained by ultracentrifugation (Beckman type Bacterial strains. The spirochete strains used in this study Vti 65 rotor, 4 h, 404,000 x g) of cell lysates in a CsCl are shown in Table 1. In accordance with our proposal to solution as described by Hull et al. (14). DNAs were digested designate a new genus for T. hyodysenteriae and T. inno- with endonucleases BglII (Bethesda Research Laboratories, cens, the names Serpula hyodysenteriae and Serpula inno- Inc. , Gaithersburg, Md.), Hind111 (Bethesda Research Lab- cens are used in Table 1 and below. The conditions used for oratories), and Sau3A (Boehringer Mannheim, Indianapolis, culturing and maintaining bacteria and additional strain Ind.) by using incubation conditions recommended by the characteristics have been described elsewhere (6, 23, 24, 35, manufacturers. DNA fragments were separated in a 0.8% 46,47). Cells were harvested during the exponential phase of agarose gel by horizontal electrophoresis (40). growth. 16s rFWA isolation and sequencing. rRNAs were isolated DNA-DNA reassociation. The levels of DNA sequence and partially purified by using a modification of the proce- homology among the various spirochetes were estimated dure of Pace et al. (36), as previously described (37). The 16s from the results of DNA-DNA reassociation experiments. rRNA sequences of bacteria were determined by using an DNA was extracted from bacterial cells (2 to 3 g, wet weight) adaptation of the Sanger dideoxy chain termination tech- by using the techniques of Marmur (33), except that protein- nique (28). Primers complementary to conserved regions of ase K (total weight, 2 mg) was added after cell lysis by the 16s rRNA sequences were elongated by reverse tran- lysozyme-SDS and cell lysates were incubated for 3 to 4 h at scriptase. Eight primers were used to determine
Recommended publications
  • Perilla Frutescens Leaf Alters the Rumen Microbial Community of Lactating Dairy Cows
    microorganisms Article Perilla frutescens Leaf Alters the Rumen Microbial Community of Lactating Dairy Cows Zhiqiang Sun, Zhu Yu and Bing Wang * College of Grass Science and Technology, China Agricultural University, Beijing 100193, China; [email protected] (Z.S.); [email protected] (Z.Y.) * Correspondence: [email protected] Received: 25 September 2019; Accepted: 12 November 2019; Published: 13 November 2019 Abstract: Perilla frutescens (L.) Britt., an annual herbaceous plant, has antibacterial, anti-inflammation, and antioxidant properties. To understand the effects of P. frutescens leaf on the ruminal microbial ecology of cattle, Illumina MiSeq 16S rRNA sequencing technology was used. Fourteen cows were used in a randomized complete block design trial. Two diets were fed to these cattle: a control diet (CON); and CON supplemented with 300 g/d P. frutescens leaf (PFL) per cow. Ruminal fluid was sampled at the end of the experiment for microbial DNA extraction. Overall, our findings revealed that supplementation with PFL could increase ruminal fluid pH value. The ruminal bacterial community of cattle was dominated by Bacteroidetes, Firmicutes, and Proteobacteria. The addition of PFL had a positive effect on Firmicutes, Actinobacteria, and Spirochaetes, but had no effect on Bacteroidetes and Proteobacteria compared with the CON. The supplementation with PFL significantly increased the abundance of Marvinbryantia, Acetitomaculum, Ruminococcus gauvreauii, Eubacterium coprostanoligenes, Selenomonas_1, Pseudoscardovia, norank_f__Muribaculaceae, and Sharpea, and decreased the abundance of Treponema_2 compared to CON. Eubacterium coprostanoligenes, and norank_f__Muribaculaceae were positively correlated with ruminal pH value. It was found that norank_f__Muribaculaceae and Acetitomaculum were positively correlated with milk yield, indicating that these different genera are PFL associated bacteria.
    [Show full text]
  • Download (5Mb)
    A Thesis Submitted for the Degree of PhD at the University of Warwick Permanent WRAP URL: http://wrap.warwick.ac.uk/129030 Copyright and reuse: This thesis is made available online and is protected by original copyright. Please scroll down to view the document itself. Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page. For more information, please contact the WRAP Team at: [email protected] warwick.ac.uk/lib-publications Exploring the molecular mechanisms of antimicrobial resistance in Brachyspira hyodysenteriae using whole genome sequencing Ewart Jonathan Sheldon, BSc, MSc University of Warwick This thesis is submitted for the degree of Doctor of Philosophy May 2018 Declaration This thesis is submitted to the University of Warwick in support of my application for the degree of Doctor of Philosophy. It has been composed by myself and has not been submitted in any previous application for any degree The work presented (including data generated and data analysis) was carried out by the author except in the cases outlined below: 1. In chapter 3 twenty isolates were purified by Jon Rodgers at APHA Bury St Edmunds (js01, js21, js34, js35, js39, js41, js47, js51, js63, js64, js65, js68, js70, js78, js79, js83, js86, js89) The sequencing department at the APHA performed all sequencing conducted at the APHA, this involved one MiSeq metagenomic sequencing run and all NextSeq sequencing A Perl script written by Nicholas Dugget was used to automate the identification of SNPs by Snippy A python script designed by Richard Brown was used in chapter 3, 4 and 5 to automate processes Novel MLST sequence types were assigned by Tom La i Acknowledgements I would like to thank Warwick Medical School and the VMD for funding the work presented in this thesis.
    [Show full text]
  • Microbial Communities Mediating Algal Detritus Turnover Under Anaerobic Conditions
    Microbial communities mediating algal detritus turnover under anaerobic conditions Jessica M. Morrison1,*, Chelsea L. Murphy1,*, Kristina Baker1, Richard M. Zamor2, Steve J. Nikolai2, Shawn Wilder3, Mostafa S. Elshahed1 and Noha H. Youssef1 1 Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA 2 Grand River Dam Authority, Vinita, OK, USA 3 Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA * These authors contributed equally to this work. ABSTRACT Background. Algae encompass a wide array of photosynthetic organisms that are ubiquitously distributed in aquatic and terrestrial habitats. Algal species often bloom in aquatic ecosystems, providing a significant autochthonous carbon input to the deeper anoxic layers in stratified water bodies. In addition, various algal species have been touted as promising candidates for anaerobic biogas production from biomass. Surprisingly, in spite of its ecological and economic relevance, the microbial community involved in algal detritus turnover under anaerobic conditions remains largely unexplored. Results. Here, we characterized the microbial communities mediating the degradation of Chlorella vulgaris (Chlorophyta), Chara sp. strain IWP1 (Charophyceae), and kelp Ascophyllum nodosum (phylum Phaeophyceae), using sediments from an anaerobic spring (Zodlteone spring, OK; ZDT), sludge from a secondary digester in a local wastewater treatment plant (Stillwater, OK; WWT), and deeper anoxic layers from a seasonally stratified lake
    [Show full text]
  • Intestinal Spirochaetal Infections of Pigs: an Overview with an Australian Perspective
    MANIPULATING PIG PRODUCTION V 139 A REVIEW - INTESTINAL SPIROCHAETAL INFECTIONS OF PIGS: AN OVERVIEW WITH AN AUSTRALIAN PERSPECTIVE D.J. Hampson and D.J. Trott School of Veterinary Studies, Murdoch University, Murdoch, WA, 6150. Introduction Intestinal spirochaetes have become recognized over the last 25 years as an important group of enteric pathogens. These bacteria cause disease in a variety of animal species, especially pigs, poultry, dogs and human beings (Hampson and Stanton, 1996). In pigs, the bacteria cause two well-recognized conditions, swine dysentery (SD), and intestinal spirochaetosis (IS) (Taylor et al., 1980; Hampson, 1991). A third condition, referred to here as spirochaetal colitis (SC), is less clearly defined, but is associated with certain weakly beta-haemolytic spirochaetes other than those causing IS. Swine dysentery is one of the most significant production-limiting diseases of pigs and is a common problem throughout the world. The significance of IS and SC in reducing production is less clear; certainly, clinical manifestations of the conditions are much less severe than with SD. The prevalence of the diseases is not known, but the authors' observations suggest that IS occurs commonly in pigs in Australia and North America, whilst cases of IS and SC also have been reported in Europe (Taylor, 1992). General description of spirochaetes Spirochaetes are chemoheterotrophic bacteria, characterized by a unique cellular anatomy and a distinctive morphology. They are spiral-shaped, with their main structural component being a coiled protoplasmic cylinder consisting of cytoplasmic and nuclear regions, surrounded by a cytoplasmic membrane-cell wall complex. Periplasmic flagellae, that are wound around the helical protoplasmic cylinder, run from each end of the cell, and overlap near its middle.
    [Show full text]
  • Spirochaeta Africana Type Strain (Z- 7692(T)) from the Alkaline Lake Magadi in the East African Rift
    Lawrence Berkeley National Laboratory Recent Work Title Complete genome sequence of the halophilic bacterium Spirochaeta africana type strain (Z- 7692(T)) from the alkaline Lake Magadi in the East African Rift. Permalink https://escholarship.org/uc/item/3s47d567 Journal Standards in genomic sciences, 8(2) ISSN 1944-3277 Authors Liolos, Konstantinos Abt, Birte Scheuner, Carmen et al. Publication Date 2013 DOI 10.4056/sigs.3607108 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2013) 8:165-176 DOI:10.4056/sigs.3607108 Complete genome sequence of the halophilic bacterium Spirochaeta africana type strain (Z-7692T) from the alkaline Lake Magadi in the East African Rift Konstantinos Liolos1†, Birte Abt2†, Carmen Scheuner2, Hazuki Teshima3, Brittany Held3, Alla Lapidus1, Matt Nolan1, Susan Lucas1, Shweta Deshpande1, Jan-Fang Cheng1, Roxanne Tapia1,3, Lynne A. Goodwin1,3, Sam Pitluck1, Ioanna Pagani1, Natalia Ivanova1, Konstantinos Mavromatis1, Natalia Mikhailova1, Marcel Huntemann1, Amrita Pati1, Amy Chen4, Krishna Palaniappan4, Miriam Land1,5, Manfred Rohde6, Brian J. Tindall2, John C. Detter3, Markus Göker2, James Bristow1, Jonathan A. Eisen1,7, Victor Markowitz4, Philip Hugenholtz1,8, Tanja Woyke1, Hans-Peter Klenk2*, and Nikos C. Kyrpides1 1 DOE Joint Genome Institute, Walnut Creek, California, USA 2 Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany 3 Los Alamos National Laboratory, Bioscience Division, Los
    [Show full text]
  • A Phylogenomic and Molecular Signature Based
    ORIGINAL RESEARCH ARTICLE published: 30 July 2013 doi: 10.3389/fmicb.2013.00217 A phylogenomic and molecular signature based approach for characterization of the phylum Spirochaetes and its major clades: proposal for a taxonomic revision of the phylum Radhey S. Gupta*, Sharmeen Mahmood and Mobolaji Adeolu Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada Edited by: The Spirochaetes species cause many important diseases including syphilis and Lyme Hiromi Nishida, Toyama Prefectural disease. Except for their containing a distinctive endoflagella, no other molecular or University, Japan biochemical characteristics are presently known that are specific for either all Spirochaetes Reviewed by: or its different families. We report detailed comparative and phylogenomic analyses Viktoria Shcherbakova, Institute of Biochemistry and Physiology of of protein sequences from Spirochaetes genomes to understand their evolutionary Microorganisms, Russian Academy relationships and to identify molecular signatures for this group. These studies have of Sciences, Russia identified 38 conserved signature indels (CSIs) that are specific for either all members David L. Bernick, University of of the phylum Spirochaetes or its different main clades. Of these CSIs, a 3 aa insert in California, Santa Cruz, USA the FlgC protein is uniquely shared by all sequenced Spirochaetes providing a molecular *Correspondence: Radhey S. Gupta, Department of marker for this phylum. Seven, six, and five CSIs in different proteins are specific Biochemistry and Biomedical for members of the families Spirochaetaceae, Brachyspiraceae, and Leptospiraceae, Sciences, McMaster University, respectively. Of the 19 other identified CSIs, 3 are uniquely shared by members of the 1280 Main Street West, Hamilton, genera Sphaerochaeta, Spirochaeta,andTreponema, whereas 16 others are specific for ON L8N 3Z5, Canada e-mail: [email protected] the genus Borrelia.
    [Show full text]
  • Leptonema Illini Type Strain (3055(T))
    Lawrence Berkeley National Laboratory Recent Work Title Genome sequence of the phylogenetically isolated spirochete Leptonema illini type strain (3055(T)). Permalink https://escholarship.org/uc/item/9mv4c6tj Journal Standards in genomic sciences, 8(2) ISSN 1944-3277 Authors Huntemann, Marcel Stackebrandt, Erko Held, Brittany et al. Publication Date 2013 DOI 10.4056/sigs.3637201 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2013) 8:177-187 DOI:10.4056/sigs.3637201 Genome sequence of the phylogenetically isolated spirochete Leptonema illini type strain (3055T) Marcel Huntemann1, Erko Stackebrandt2, Brittany Held1,3, Matt Nolan1, Susan Lucas1, Nancy Hammon1, Shweta Deshpande1, Jan-Fang Cheng1, Roxanne Tapia1,3, Lynne A. Goodwin1,3, Sam Pitluck1, Konstantinos Liolios1, Ioanna Pagani1, Natalia Ivanova1, Konstantinos Mavromatis1, Natalia Mikhailova1, Amrita Pati1, Amy Chen4, Krishna Palaniappan4, Miriam Land1,5, Manfred Rohde6, Sabine Gronow2, Markus Göker2, John C. Detter3, James Bristow1, Jonathan A. Eisen1,7, Victor Markowitz4, Tanja Woyke1, Philip Hugenholtz1,8, Nikos C. Kyrpides1, Hans-Peter Klenk2*, and Alla Lapidus1 1 DOE Joint Genome Institute, Walnut Creek, California, USA 2 Leibniz-Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley,
    [Show full text]
  • Gut Microbiome Differences Between Wild and Captive Black Rhinoceros – Implications for Rhino Health Keylie M. Gibson1,2, Brya
    Gut microbiome differences between wild and captive black rhinoceros – implications for rhino health Keylie M. Gibson1,2, Bryan N. Nguyen1,2, Laura M. Neumann3, Michele Miller4, Peter Buss5, Savel Daniels6, Michelle Ahn1,2, Keith A. Crandall1,7*, & Budhan Pukazhenthi8* 1 Computational Biology Institute, The Milken Institute School of Public Health, George Washington University, Washington, DC, USA 2 Department of Biological Sciences, George Washington University, Washington, DC, USA 3 Department of Environmental and Occupational Health, The Milken Institute School of Public Health, The George Washington University, Washington, DC, USA 4 DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa. 5 South African National Parks, Veterinary Wildlife Services, Kruger National Park, Skukuza, South Africa 6 Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa 7 Department of Epidemiology and Biostatistics, The Milken Institute School of Public Health, George Washington University, Washington, DC, USA 8 Smithsonian’s National Zoo and Conservation Biology Institute, Front Royal, VA, USA * Co-Senior Authors Corresponding author: Budhan Pukazhenthi Smithsonian Conservation Biology Institute 1500 Remount Road, Front Royal, VA 22630 [email protected] Supplemental table legends Table S1a. Core rhino microbiome species in wild rhinos. Table S1b. Core rhino microbiome species in captive rhinos. Table S2. Differentially gene ontology terms between wild and captive rhino samples. Table S3. Differentially abundant pathways between wild and captive rhino samples. Table S1a. Core rhino microbiome species in wild rhinos.
    [Show full text]
  • Spirochaeta Africana Type Strain (Z-7692T)
    Standards in Genomic Sciences (2013) 8:165-176 DOI:10.4056/sigs.3607108 Complete genome sequence of the halophilic bacterium Spirochaeta africana type strain (Z-7692T) from the alkaline Lake Magadi in the East African Rift Konstantinos Liolos1†, Birte Abt2†, Carmen Scheuner2, Hazuki Teshima3, Brittany Held3, Alla Lapidus1, Matt Nolan1, Susan Lucas1, Shweta Deshpande1, Jan-Fang Cheng1, Roxanne Tapia1,3, Lynne A. Goodwin1,3, Sam Pitluck1, Ioanna Pagani1, Natalia Ivanova1, Konstantinos Mavromatis1, Natalia Mikhailova1, Marcel Huntemann1, Amrita Pati1, Amy Chen4, Krishna Palaniappan4, Miriam Land1,5, Manfred Rohde6, Brian J. Tindall2, John C. Detter3, Markus Göker2, James Bristow1, Jonathan A. Eisen1,7, Victor Markowitz4, Philip Hugenholtz1,8, Tanja Woyke1, Hans-Peter Klenk2*, and Nikos C. Kyrpides1 1 DOE Joint Genome Institute, Walnut Creek, California, USA 2 Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA 5 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 6 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany 7 University of California Davis Genome Center, Davis, California, USA 8 Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia * Corresponding author: Hans-Peter Klenk †Authors contributed equally Keywords: anaerobic, aerotolerant, mesophilic, halophilic, spiral-shaped, motile, periplasmic flagella, Gram-negative, chemoorganotrophic, Spirochaetaceae, GEBA. Spirochaeta africana Zhilina et al. 1996 is an anaerobic, aerotolerant, spiral-shaped bacte- rium that is motile via periplasmic flagella. The type strain of the species, Z-7692T, was iso- lated in 1993 or earlier from a bacterial bloom in the brine under the trona layer in a shallow lagoon of the alkaline equatorial Lake Magadi in Kenya.
    [Show full text]
  • An Exploration of Ecological Concepts in the Context of Antimicrobial Resistance and the Use
    An exploration of ecological concepts in the context of antimicrobial resistance and the use of phytochemical compounds within the ruminant gut microbiome by Natalie Cécile Knox A thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Animal Science University of Manitoba Copyright © 2013 by Natalie Cécile Knox ii ACKNOWLEDGMENTS I would like to express my sincere gratitude to the late Dr. Denis Krause for serving as my advisor and Dr. Rick Holley for serving as my co-advisor. To Dr. Krause, I will always be indebted to you for being a great mentor and teacher. You will be greatly missed. In addition, I would like to thank Dr. Holley for your kind advice and guidance throughout my program. Special thank you to Dr. Kim Ominski for your kind support and advice as you have, in my mind, acted as another co-advisor throughout my degree. Special thanks to my committee members Drs. Karin Wittenberg, George Zhanel, and Tim McAllister for their time and insightful contributions along the way. I would also like to thank Dr. Gary Crow for his sound statistical advice throughout my research. And thank you to the Canadian Dairy Commission for the financial support throughout my graduate degree. The animal trial would not have been possible without the help of Terri Garner, Janice Haines, Chad Malfait, Darcy Catellier and staff at the Glenlea Research Centre, many thanks to all of you. And of course a huge thank you to Jenelle Hamblin and Kristen Bouchard-Teasdale for their friendships and patience while teaching me what agriculture was all about.
    [Show full text]
  • Treponema Spp. in Porcine Skin Ulcers
    Treponema spp. in Porcine Skin Ulcers Clinical Aspects Frida Karlsson Faculty of Veterinary Medicine and Animal Science Department of Clinical Sciences Uppsala Doctoral Thesis Swedish University of Agricultural Sciences Uppsala 2014 Acta Universitatis agriculturae Sueciae 2014:35 Cover: The apocalypse is near, or Treponema pedis (red) in a sow shoulder ulcer. (photo: Tim K. Jensen) ISSN 1652-6880 ISBN (print version) 978-91-576-8018-1 ISBN (electronic version) 978-91-576-8019-8 © 2014 Frida Karlsson, Uppsala Print: SLU Service/Repro, Uppsala 2014 Treponema spp. in Porcine Skin Ulcers. Clinical Aspects. Abstract The hypothesis tested in this work is that bacteria of genus Treponema play a main role when shoulder ulcers and ear necrosis occur in an infectious or severe form, and perhaps also in other skin conditions in the pig. Samples were collected from pigs in 19 Swedish herds 2010-2011. The sampled skin lesions included 52 shoulder ulcers, 57 ear necroses, 4 facial necroses and 5 other skin ulcers. Occurrence of spirochetes was detected by phase contrast microscopy, Warthin-Starry silver staining, PCR and Fluorescent In Situ Hybridization (FISH). Treponemal diversity was investigated by sequencing of 16S-23S rRNA intergenic spacer region 2 (ISR2) and high-throughput sequencing (HTS) of a part of the 16S rRNA gene. Culturing and characterization of treponemes by biochemical analyses, testing of antimicrobial susceptibility and fingerprinting by random amplified polymorphic DNA (RAPD) were carried out. A challenge study was performed to test if Treponema pedis induced skin lesions. Serological response towards TPE0673, a T. pedis protein, was tested with ELISA. Spirochetes were found in all types of skin ulcers and in all herds.
    [Show full text]
  • Treponema Caldaria Comb. Nov
    Lawrence Berkeley National Laboratory Recent Work Title Genome sequence of the thermophilic fresh-water bacterium Spirochaeta caldaria type strain (H1(T)), reclassification of Spirochaeta caldaria, Spirochaeta stenostrepta, and Spirochaeta zuelzerae in the genus Treponema as Treponema caldaria comb. nov.,... Permalink https://escholarship.org/uc/item/3qr1w6qx Journal Standards in genomic sciences, 8(1) ISSN 1944-3277 Authors Abt, Birte Göker, Markus Scheuner, Carmen et al. Publication Date 2013-04-15 DOI 10.4056/sigs.3096473 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2013) 8:88-105 DOI:10.4056/sigs.3096473 Genome sequence of the thermophilic fresh-water bacterium Spirochaeta caldaria type strain (H1T), reclassification of Spirochaeta caldaria, Spirochaeta stenostrepta, and Spirochaeta zuelzerae in the genus Treponema as Treponema caldaria comb. nov., Treponema stenostrepta comb. nov., and Treponema zuelzerae comb. nov., and emendation of the genus Treponema Birte Abt1†, Markus Göker1†, Carmen Scheuner1, Cliff Han2,3, Megan Lu2,3, Monica Misra2,3, Alla Lapidus2, Matt Nolan2, Susan Lucas2, Nancy Hammon2, Shweta Deshpande2, Jan-Fang Cheng2, Roxanne Tapia2,3, Lynne A. Goodwin2,3, Sam Pitluck2, Konstantinos Liolios2, Ioanna Pagani2, Natalia Ivanova2, Konstantinos Mavromatis2, Natalia Mikhailova2, Marcel Huntemann2, Amrita Pati2, Amy Chen4, Krishna Palaniappan4, Miriam Land2,5, Loren Hauser2,5, Cynthia D. Jeffries2,5, Manfred Rohde6, Stefan Spring1, Sabine
    [Show full text]