Download (5Mb)

Total Page:16

File Type:pdf, Size:1020Kb

Download (5Mb) A Thesis Submitted for the Degree of PhD at the University of Warwick Permanent WRAP URL: http://wrap.warwick.ac.uk/129030 Copyright and reuse: This thesis is made available online and is protected by original copyright. Please scroll down to view the document itself. Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page. For more information, please contact the WRAP Team at: [email protected] warwick.ac.uk/lib-publications Exploring the molecular mechanisms of antimicrobial resistance in Brachyspira hyodysenteriae using whole genome sequencing Ewart Jonathan Sheldon, BSc, MSc University of Warwick This thesis is submitted for the degree of Doctor of Philosophy May 2018 Declaration This thesis is submitted to the University of Warwick in support of my application for the degree of Doctor of Philosophy. It has been composed by myself and has not been submitted in any previous application for any degree The work presented (including data generated and data analysis) was carried out by the author except in the cases outlined below: 1. In chapter 3 twenty isolates were purified by Jon Rodgers at APHA Bury St Edmunds (js01, js21, js34, js35, js39, js41, js47, js51, js63, js64, js65, js68, js70, js78, js79, js83, js86, js89) The sequencing department at the APHA performed all sequencing conducted at the APHA, this involved one MiSeq metagenomic sequencing run and all NextSeq sequencing A Perl script written by Nicholas Dugget was used to automate the identification of SNPs by Snippy A python script designed by Richard Brown was used in chapter 3, 4 and 5 to automate processes Novel MLST sequence types were assigned by Tom La i Acknowledgements I would like to thank Warwick Medical School and the VMD for funding the work presented in this thesis. I would also like to thank my supervisors Chrystala Constantinidou, Muna Anjum and Mark Pallen for their help and support throughout my PhD. I would also like to thank Emma Stubberfield and Roderick Card for their help and advice which helped me learn the art of growing Brachyspira hyodysenteriae. I would also like to thank Gemma Kay for advice and encouragement with sequencing and Nabil-Fareed Alikhan for advice with bioinformatics. There are many people I would also like to thank in BAC3 at the APHA and MIU for all their advice and support. Unfortunately, there is not space to thank everyone individually, but I really appreciate all your support. My Mum and Dad have my enormous gratitude for reading through multiple copies of my thesis, especially the early drafts. Finally, I would like to thank my girlfriend Claire for her patience and support through the long process of writing the thesis. ii Abstract Brachyspira hyodysenteriae is the causative agent of swine dysentery, a disease characterised by bloody diarrhoea. It is endemic to the UK, and if untreated it can cause severe economic cost to farmers. Currently, it is treated with antibiotics including the pleuromutilin antibiotics tiamulin and valnemulin. B. hyodysenteriae has become more resistant to the antibiotics used to treat infections , and increasing levels of pleuromutilin resistance has been observed in some countries. In this study, 84 clinical isolates, from 2004 to 2015, were sequenced on an Illumina MiSeq. From this, the population structure of B. hyodysenteriae in the UK was constructed. In addition, the phenotypic resistance of 47 sequenced isolates was obtained using a commercial broth dilution assay. The use of sequenced isolates enabled detection of a recently identified pleuromutilin resistance gene and enabled prediction of the resistance phenotype of all sequenced isolates. The use of whole- genome sequencing has increased our knowledge of B. hyodysenteriae in the UK, highlighting potential regional differences and has created a reference database of all B. hyodysenteriae isolates from 2004 to 2015. This will improve surveillance and increase the power of outbreak analysis. Direct sequencing from clinical samples could further strengthen outbreak analysis and surveillance. This would improve the speed of identification and could provide useful information. To explore swine dysentery, positive samples were sequenced on an Illumina MiSeq and B. hyodysenteriae reads were extracted. From this, it was possible to identify the closest sequenced strains. This study highlights the potential uses of whole genome sequencing to analyse B. hyodysenteriae. iii Table of Contents Declaration ........................................................................................................... i Acknowledgements ............................................................................................. ii Abstract.............................................................................................................. iii Table of Contents ................................................................................................ iv List of Tables ..................................................................................................... viii List of Figures ...................................................................................................... x List of Abbreviations .......................................................................................... xii Chapter 1. Introduction ........................................................................................ 1 1.1. The domestic pig and pig farming ............................................................. 1 1.1.1. Historical overview .................................................................................... 1 1.1.2. World production and trade ....................................................................... 1 1.1.3. Role in UK agricultural economy ................................................................. 2 1.1.4. Current challenges in pig farming ............................................................... 3 1.1.5. The pig gut microbiota ............................................................................... 3 1.1.6. Infectious diseases of pigs ................................................................................. 3 1.2. Swine dysentery ............................................................................................ 4 1.2.1. Epidemiology and clinical features .................................................................... 4 1.2.2. Microbiology .................................................................................................... 5 1.2.3. Pathogenesis .................................................................................................... 6 1.2.4. Immune response ............................................................................................. 8 1.2.5. Diagnosis .......................................................................................................... 8 1.2.6. Infection control ............................................................................................. 13 1.2.7. Treatment ...................................................................................................... 14 1.3. The Challenge of antimicrobial resistance .................................................... 14 1.3.1. Antimicrobial use and resistance in human medicine ....................................... 17 1.3.2. Antimicrobial use and resistance in veterinary and agricultural practice ........... 17 1.3.3. Antimicrobial resistance in B. hyodysenteriae .................................................. 18 1.4. New opportunities: whole-genome sequencing ........................................... 21 1.4.1. Sequencing technologies ................................................................................. 21 1.4.2. Bacterial genome biology, evolution and epidemiology ................................... 22 1.4.3. Metagenomics ................................................................................................ 24 1.4.3.1. Applications in microbial ecology .................................................................................. 26 1.4.3.2. Applications in pathogen discovery and detection........................................................ 26 1.5. New opportunities: alternatives to antibiotics ............................................. 27 iv 1.5.1. Diet ................................................................................................................ 27 1.5.2. Bacteriotherapy .............................................................................................. 29 1.5.3. Phage therapy ................................................................................................ 29 1.6. Aims and Objectives of this Study ................................................................ 29 2. Material and Methods ................................................................................... 31 2.1 Samples ....................................................................................................... 31 2.2 Media .......................................................................................................... 31 2.2.1 Bacterial Media ............................................................................................... 32 2.2.2 Bacterial Growth Conditions ............................................................................ 32 2.3 Isolation of DNA ..........................................................................................
Recommended publications
  • Serpula Hyodysenteriae Comb
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1991, p. 50-58 Vol. 41, No. 1 0020-7713/91/0 10050-09$02.00/0 Copyright 0 1991, International Union of Microbiological Societies Reclassification of Treponema hyodysenteriae and Treponema innocens in a New Genus, Serpula gen. nov., as Serpula hyodysenteriae comb. nov. and Serpula innocens comb. nov. T. B. STANTON,l* N. S. JENSEN,l T. A. CASEY,l L. A. TORDOFF,2 F. E. DEWHIRST,2 AND B. J. PASTER2 Physiopathology Research Unit, National Animal Disease Center, Agricultural Research Service, U.S.Department of Agriculture, Ames, Iowa 50010,l and Forsyth Dental Center, Boston, Massachusetts 021152 The intestinal anaerobic spirochetes Treponema hyodysenteriae B7ST (T = type strain), B204, B169, and A-1, Treponema innocens B256T and 4/71, Treponema succinifaciens 6091T, and Treponema bryantii RUS-lT were compared by performing DNA-DNA reassociation experiments, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of cell proteins, restriction endonuclease analysis of bNA, and 16s rRNA sequence analysis. DNA-DNA relative reassociation experiments in which the S1 nuclease method was used showed that T. hyodysenteriae B78T and B204 had 93% sequence homology with each other and approximately 40% sequence homology with T. innocens B256T and 4/71. Both T. hyodysenteriae B7ST and T. innocens B256T exhibited negligible levels of DNA homology (55%)with T. succinifaciens 6091T. The results of comparisons of protein electrophoretic profiles corroborated the DNA-DNA reassociation results. We found high levels of similarity (296%) in electrophoretic profiles among T. hyodysenteriae strains, moderate levels of similarity (43 to 49%) between T. hyodysenteriae and T. innocens, and no detectable similarity between the profiles of either T.
    [Show full text]
  • Intestinal Spirochaetal Infections of Pigs: an Overview with an Australian Perspective
    MANIPULATING PIG PRODUCTION V 139 A REVIEW - INTESTINAL SPIROCHAETAL INFECTIONS OF PIGS: AN OVERVIEW WITH AN AUSTRALIAN PERSPECTIVE D.J. Hampson and D.J. Trott School of Veterinary Studies, Murdoch University, Murdoch, WA, 6150. Introduction Intestinal spirochaetes have become recognized over the last 25 years as an important group of enteric pathogens. These bacteria cause disease in a variety of animal species, especially pigs, poultry, dogs and human beings (Hampson and Stanton, 1996). In pigs, the bacteria cause two well-recognized conditions, swine dysentery (SD), and intestinal spirochaetosis (IS) (Taylor et al., 1980; Hampson, 1991). A third condition, referred to here as spirochaetal colitis (SC), is less clearly defined, but is associated with certain weakly beta-haemolytic spirochaetes other than those causing IS. Swine dysentery is one of the most significant production-limiting diseases of pigs and is a common problem throughout the world. The significance of IS and SC in reducing production is less clear; certainly, clinical manifestations of the conditions are much less severe than with SD. The prevalence of the diseases is not known, but the authors' observations suggest that IS occurs commonly in pigs in Australia and North America, whilst cases of IS and SC also have been reported in Europe (Taylor, 1992). General description of spirochaetes Spirochaetes are chemoheterotrophic bacteria, characterized by a unique cellular anatomy and a distinctive morphology. They are spiral-shaped, with their main structural component being a coiled protoplasmic cylinder consisting of cytoplasmic and nuclear regions, surrounded by a cytoplasmic membrane-cell wall complex. Periplasmic flagellae, that are wound around the helical protoplasmic cylinder, run from each end of the cell, and overlap near its middle.
    [Show full text]
  • Spirochaeta Africana Type Strain (Z- 7692(T)) from the Alkaline Lake Magadi in the East African Rift
    Lawrence Berkeley National Laboratory Recent Work Title Complete genome sequence of the halophilic bacterium Spirochaeta africana type strain (Z- 7692(T)) from the alkaline Lake Magadi in the East African Rift. Permalink https://escholarship.org/uc/item/3s47d567 Journal Standards in genomic sciences, 8(2) ISSN 1944-3277 Authors Liolos, Konstantinos Abt, Birte Scheuner, Carmen et al. Publication Date 2013 DOI 10.4056/sigs.3607108 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2013) 8:165-176 DOI:10.4056/sigs.3607108 Complete genome sequence of the halophilic bacterium Spirochaeta africana type strain (Z-7692T) from the alkaline Lake Magadi in the East African Rift Konstantinos Liolos1†, Birte Abt2†, Carmen Scheuner2, Hazuki Teshima3, Brittany Held3, Alla Lapidus1, Matt Nolan1, Susan Lucas1, Shweta Deshpande1, Jan-Fang Cheng1, Roxanne Tapia1,3, Lynne A. Goodwin1,3, Sam Pitluck1, Ioanna Pagani1, Natalia Ivanova1, Konstantinos Mavromatis1, Natalia Mikhailova1, Marcel Huntemann1, Amrita Pati1, Amy Chen4, Krishna Palaniappan4, Miriam Land1,5, Manfred Rohde6, Brian J. Tindall2, John C. Detter3, Markus Göker2, James Bristow1, Jonathan A. Eisen1,7, Victor Markowitz4, Philip Hugenholtz1,8, Tanja Woyke1, Hans-Peter Klenk2*, and Nikos C. Kyrpides1 1 DOE Joint Genome Institute, Walnut Creek, California, USA 2 Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany 3 Los Alamos National Laboratory, Bioscience Division, Los
    [Show full text]
  • A Phylogenomic and Molecular Signature Based
    ORIGINAL RESEARCH ARTICLE published: 30 July 2013 doi: 10.3389/fmicb.2013.00217 A phylogenomic and molecular signature based approach for characterization of the phylum Spirochaetes and its major clades: proposal for a taxonomic revision of the phylum Radhey S. Gupta*, Sharmeen Mahmood and Mobolaji Adeolu Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada Edited by: The Spirochaetes species cause many important diseases including syphilis and Lyme Hiromi Nishida, Toyama Prefectural disease. Except for their containing a distinctive endoflagella, no other molecular or University, Japan biochemical characteristics are presently known that are specific for either all Spirochaetes Reviewed by: or its different families. We report detailed comparative and phylogenomic analyses Viktoria Shcherbakova, Institute of Biochemistry and Physiology of of protein sequences from Spirochaetes genomes to understand their evolutionary Microorganisms, Russian Academy relationships and to identify molecular signatures for this group. These studies have of Sciences, Russia identified 38 conserved signature indels (CSIs) that are specific for either all members David L. Bernick, University of of the phylum Spirochaetes or its different main clades. Of these CSIs, a 3 aa insert in California, Santa Cruz, USA the FlgC protein is uniquely shared by all sequenced Spirochaetes providing a molecular *Correspondence: Radhey S. Gupta, Department of marker for this phylum. Seven, six, and five CSIs in different proteins are specific Biochemistry and Biomedical for members of the families Spirochaetaceae, Brachyspiraceae, and Leptospiraceae, Sciences, McMaster University, respectively. Of the 19 other identified CSIs, 3 are uniquely shared by members of the 1280 Main Street West, Hamilton, genera Sphaerochaeta, Spirochaeta,andTreponema, whereas 16 others are specific for ON L8N 3Z5, Canada e-mail: [email protected] the genus Borrelia.
    [Show full text]
  • Leptonema Illini Type Strain (3055(T))
    Lawrence Berkeley National Laboratory Recent Work Title Genome sequence of the phylogenetically isolated spirochete Leptonema illini type strain (3055(T)). Permalink https://escholarship.org/uc/item/9mv4c6tj Journal Standards in genomic sciences, 8(2) ISSN 1944-3277 Authors Huntemann, Marcel Stackebrandt, Erko Held, Brittany et al. Publication Date 2013 DOI 10.4056/sigs.3637201 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2013) 8:177-187 DOI:10.4056/sigs.3637201 Genome sequence of the phylogenetically isolated spirochete Leptonema illini type strain (3055T) Marcel Huntemann1, Erko Stackebrandt2, Brittany Held1,3, Matt Nolan1, Susan Lucas1, Nancy Hammon1, Shweta Deshpande1, Jan-Fang Cheng1, Roxanne Tapia1,3, Lynne A. Goodwin1,3, Sam Pitluck1, Konstantinos Liolios1, Ioanna Pagani1, Natalia Ivanova1, Konstantinos Mavromatis1, Natalia Mikhailova1, Amrita Pati1, Amy Chen4, Krishna Palaniappan4, Miriam Land1,5, Manfred Rohde6, Sabine Gronow2, Markus Göker2, John C. Detter3, James Bristow1, Jonathan A. Eisen1,7, Victor Markowitz4, Tanja Woyke1, Philip Hugenholtz1,8, Nikos C. Kyrpides1, Hans-Peter Klenk2*, and Alla Lapidus1 1 DOE Joint Genome Institute, Walnut Creek, California, USA 2 Leibniz-Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley,
    [Show full text]
  • Spirochaeta Africana Type Strain (Z-7692T)
    Standards in Genomic Sciences (2013) 8:165-176 DOI:10.4056/sigs.3607108 Complete genome sequence of the halophilic bacterium Spirochaeta africana type strain (Z-7692T) from the alkaline Lake Magadi in the East African Rift Konstantinos Liolos1†, Birte Abt2†, Carmen Scheuner2, Hazuki Teshima3, Brittany Held3, Alla Lapidus1, Matt Nolan1, Susan Lucas1, Shweta Deshpande1, Jan-Fang Cheng1, Roxanne Tapia1,3, Lynne A. Goodwin1,3, Sam Pitluck1, Ioanna Pagani1, Natalia Ivanova1, Konstantinos Mavromatis1, Natalia Mikhailova1, Marcel Huntemann1, Amrita Pati1, Amy Chen4, Krishna Palaniappan4, Miriam Land1,5, Manfred Rohde6, Brian J. Tindall2, John C. Detter3, Markus Göker2, James Bristow1, Jonathan A. Eisen1,7, Victor Markowitz4, Philip Hugenholtz1,8, Tanja Woyke1, Hans-Peter Klenk2*, and Nikos C. Kyrpides1 1 DOE Joint Genome Institute, Walnut Creek, California, USA 2 Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA 5 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 6 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany 7 University of California Davis Genome Center, Davis, California, USA 8 Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia * Corresponding author: Hans-Peter Klenk †Authors contributed equally Keywords: anaerobic, aerotolerant, mesophilic, halophilic, spiral-shaped, motile, periplasmic flagella, Gram-negative, chemoorganotrophic, Spirochaetaceae, GEBA. Spirochaeta africana Zhilina et al. 1996 is an anaerobic, aerotolerant, spiral-shaped bacte- rium that is motile via periplasmic flagella. The type strain of the species, Z-7692T, was iso- lated in 1993 or earlier from a bacterial bloom in the brine under the trona layer in a shallow lagoon of the alkaline equatorial Lake Magadi in Kenya.
    [Show full text]
  • Treponema Spp. in Porcine Skin Ulcers
    Treponema spp. in Porcine Skin Ulcers Clinical Aspects Frida Karlsson Faculty of Veterinary Medicine and Animal Science Department of Clinical Sciences Uppsala Doctoral Thesis Swedish University of Agricultural Sciences Uppsala 2014 Acta Universitatis agriculturae Sueciae 2014:35 Cover: The apocalypse is near, or Treponema pedis (red) in a sow shoulder ulcer. (photo: Tim K. Jensen) ISSN 1652-6880 ISBN (print version) 978-91-576-8018-1 ISBN (electronic version) 978-91-576-8019-8 © 2014 Frida Karlsson, Uppsala Print: SLU Service/Repro, Uppsala 2014 Treponema spp. in Porcine Skin Ulcers. Clinical Aspects. Abstract The hypothesis tested in this work is that bacteria of genus Treponema play a main role when shoulder ulcers and ear necrosis occur in an infectious or severe form, and perhaps also in other skin conditions in the pig. Samples were collected from pigs in 19 Swedish herds 2010-2011. The sampled skin lesions included 52 shoulder ulcers, 57 ear necroses, 4 facial necroses and 5 other skin ulcers. Occurrence of spirochetes was detected by phase contrast microscopy, Warthin-Starry silver staining, PCR and Fluorescent In Situ Hybridization (FISH). Treponemal diversity was investigated by sequencing of 16S-23S rRNA intergenic spacer region 2 (ISR2) and high-throughput sequencing (HTS) of a part of the 16S rRNA gene. Culturing and characterization of treponemes by biochemical analyses, testing of antimicrobial susceptibility and fingerprinting by random amplified polymorphic DNA (RAPD) were carried out. A challenge study was performed to test if Treponema pedis induced skin lesions. Serological response towards TPE0673, a T. pedis protein, was tested with ELISA. Spirochetes were found in all types of skin ulcers and in all herds.
    [Show full text]
  • Treponema Caldaria Comb. Nov
    Lawrence Berkeley National Laboratory Recent Work Title Genome sequence of the thermophilic fresh-water bacterium Spirochaeta caldaria type strain (H1(T)), reclassification of Spirochaeta caldaria, Spirochaeta stenostrepta, and Spirochaeta zuelzerae in the genus Treponema as Treponema caldaria comb. nov.,... Permalink https://escholarship.org/uc/item/3qr1w6qx Journal Standards in genomic sciences, 8(1) ISSN 1944-3277 Authors Abt, Birte Göker, Markus Scheuner, Carmen et al. Publication Date 2013-04-15 DOI 10.4056/sigs.3096473 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2013) 8:88-105 DOI:10.4056/sigs.3096473 Genome sequence of the thermophilic fresh-water bacterium Spirochaeta caldaria type strain (H1T), reclassification of Spirochaeta caldaria, Spirochaeta stenostrepta, and Spirochaeta zuelzerae in the genus Treponema as Treponema caldaria comb. nov., Treponema stenostrepta comb. nov., and Treponema zuelzerae comb. nov., and emendation of the genus Treponema Birte Abt1†, Markus Göker1†, Carmen Scheuner1, Cliff Han2,3, Megan Lu2,3, Monica Misra2,3, Alla Lapidus2, Matt Nolan2, Susan Lucas2, Nancy Hammon2, Shweta Deshpande2, Jan-Fang Cheng2, Roxanne Tapia2,3, Lynne A. Goodwin2,3, Sam Pitluck2, Konstantinos Liolios2, Ioanna Pagani2, Natalia Ivanova2, Konstantinos Mavromatis2, Natalia Mikhailova2, Marcel Huntemann2, Amrita Pati2, Amy Chen4, Krishna Palaniappan4, Miriam Land2,5, Loren Hauser2,5, Cynthia D. Jeffries2,5, Manfred Rohde6, Stefan Spring1, Sabine
    [Show full text]
  • And Long-Read Metagenomics of South African Gut Microbiomes Reveal 2 a Transitional Composition and Novel Taxa 3 4 Fiona B
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.18.099820; this version posted October 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Short- and long-read metagenomics of South African gut microbiomes reveal 2 a transitional composition and novel taxa 3 4 Fiona B. Tamburini1, Dylan Maghini1, Ovokeraye H. Oduaran2, Ryan Brewster3, Michaella R. 5 Hulley2,4, Venesa Sahibdeen4, Shane A. Norris5,6, Stephen Tollman7,8, Kathleen Kahn7,8, Ryan G. 6 Wagner7,8, Alisha N. Wade7, Floidy Wafawanaka7, Xavier Gómez-Olivé7,8, Rhian Twine7, Zané 7 Lombard4, Scott Hazelhurst2,9*, Ami S. Bhatt1,3,10*⍖ 8 9 1Department of Genetics, Stanford University, Stanford, CA, USA 10 2Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, 11 Johannesburg, South Africa 12 3School of Medicine, Stanford University, Stanford, CA, USA 13 4Division of Human Genetics, School of Pathology, Faculty of Health Sciences, National Health 14 Laboratory Service & University of the Witwatersrand, Johannesburg, South Africa 15 5SAMRC Developmental Pathways for Health Research Unit, Department of Paediatrics, 16 University of the Witwatersrand, Johannesburg, South Africa 17 6School of Human Development and Health, University of Southampton, UK 18 7MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of 19 Public Health,
    [Show full text]