Structure-Function Relationship of Mitochondrial Cytochrome C Oxidase: Redox Centres, Proton Pathways and Isozymes

Total Page:16

File Type:pdf, Size:1020Kb

Structure-Function Relationship of Mitochondrial Cytochrome C Oxidase: Redox Centres, Proton Pathways and Isozymes Structure-function relationship of mitochondrial cytochrome c oxidase: redox centres, proton pathways and isozymes Raksha Jagdish Dodia Structural Molecular Biology University College London Submitted for the Degree of Doctor of Philosophy 2014 Supervisor: Prof. Peter R. Rich Internal examiner: Dr. Joanne Santini External examiner: Prof. Peter J. Nixon 1 Signed declaration I Raksha J. Dodia confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Abstract Cytochrome c oxidase (CcO) reduces O2 to water with four electrons from cytochromes c2+ and four matrix protons. The energy released is conserved in the protonmotive force by translocation of four additional protons into the intermembrane space. Electrons are transferred via CuA, haem a, to the binuclear centre; haem a3 and CuB, where O2 is reduced. Four major aspects of its structure/function have been investigated in this study. Mid-infrared (IR) spectroscopy has been used to probe redox-induced structural changes. By using electrochemically-poised samples of cyanide- and carbon monoxide-ligated bovine CcO these redox-linked IR changes were shown to be linked primarily with CuA and haem a metal centre transitions with fewer changes associated with transitions in haem a3 and CuB. CcO contains a cross-linked Tyr-His which is believed to form a Tyr radical in the PM intermediate. In this work, electrochemical conditions to induce Tyr-His model compound radicals have been combined with IR spectroscopy to record IR reference spectra. This has aided tentative assignment of IR bands at 1572 cm-1 or 1555 cm-1 to . v8a(C-C), 1519 cm-1 to v7a(C-O ) to the phenoxyl radical and at 1336 cm-1 to a His ring stretch of the cross-linked structure in the PM state of bovine CcO. There is strong evidence from mutagenesis studies in bacterial CcOs that the well- conserved D channel is the proton translocation pathway. However, mutagenesis studies in a human/bovine hybrid CcO of an extensive hydrophilic H channel suggest that it fulfils this function, at least in mammalian CcOs. A structural model of Saccharomyces cerevisiae CcO produced by homology modelling indicates that it also contains an H channel (Maréchal, A., Meunier, B., Lee, D., Orengo, C. and Rich, P. R. (2012) Biochim. Biophys. Acta. 1817, 620-628). However, measurements of the H+/e- stoichiometry of a yeast H channel mutant (Q411L/Q413L/S458A/S455A) suggest it is not critical for proton translocation in yeast CcO. The nuclear-encoded subunit 5 of yeast CcO has two isoforms, 5A and 5B. COX5A is expressed aerobically and COX5B below 1 µM O2. They are reported to alter core catalytic activity; however comparisons were not strictly controlled. Here mutants were constructed where COX5B expression was controlled by the COX5A promoter yielding wild type levels of aerobically expressed 5B isozyme. Interestingly, this 5B isozyme exhibits the same catalytic activity and oxygen affinity as the 5A isozyme and the previously observed elevated activity must arise from a secondary effect. 3 Contents 1 Introduction _________________________________________________ 19 1.1 Electron transport chain __________________________________________ 20 1.2 Protonmotive force _______________________________________________ 25 1.3 Cytochrome c oxidase function ____________________________________ 26 1.4 Cytochrome c oxidase structure ___________________________________ 27 1.5 Overview of the electron transfer route _____________________________ 28 1.6 Subunit I structure ________________________________________________ 29 1.7 Subunit II and III structure _________________________________________ 32 1.8 Reaction mechanism _____________________________________________ 33 1.9 P and F transient intermediates ____________________________________ 34 1.9.1 Experimentally induced P and F states ____________________________________ 35 1.9.1.1 PM ________________________________________________________________ 36 1.9.1.2 PR ________________________________________________________________ 37 1.9.1.3 F _________________________________________________________________ 37 . 1.9.1.4 F (F dot) _________________________________________________________ 37 1.9.2 Detection of a radical species in PM _______________________________________ 38 1.10 Route for substrate protons ______________________________________ 39 1.11 Route for translocated protons ___________________________________ 39 1.12 Model for proton translocation via the D pathway __________________ 40 1.13 Controversial points on the D pathway ____________________________ 43 1.14 Model for proton translocation via the H pathway __________________ 44 1.15 Controversial points on the H pathway ____________________________ 47 1.16 Infrared spectroscopy on functional carboxyl groups ______________ 48 1.17 Yeast CcO as a model system ____________________________________ 49 1.18 Supernumerary subunits _________________________________________ 50 1.18.1 Bovine supernumerary subunit IV and yeast subunit 5 _____________________ 52 1.19 Aims ___________________________________________________________ 54 2 Materials and methods _______________________________________ 56 2.1 Sources of (bio) chemicals ________________________________________ 57 2.2 Yeast mutant generation __________________________________________ 57 2.3 Construction of 5A or 5B isozymes of yeast CcO ____________________ 58 2.4 Yeast cell growth and mitochondrial preparation ____________________ 59 2.5 Determination of protein content in yeast mitos _____________________ 60 2.6 Purification of yeast CcO __________________________________________ 61 2.6.1 Purification method 1 ___________________________________________________ 61 2.6.2 Purification method 2 ___________________________________________________ 62 2.6.3 Purification of yeast CcO in the presence of digitonin _______________________ 66 2.7 Purification of bovine CcO ________________________________________ 67 2.8 ATR-FTIR spectroscopy overview __________________________________ 68 4 2.9 Bovine CcO layer preparation for ATR-IR spectroscopy _____________ 69 2.10 ATR-FTIR spectroscopy with controlled electrochemistry __________ 71 2.11 Redox mediators ________________________________________________ 73 2.12 IR difference spectroscopy _______________________________________ 74 2.12.1 Measurement of IR difference spectra ___________________________________ 75 2.12.2 Preparation CN and CO bound CcO for IR measurements _________________ 75 2.13 Electrochemically induced IR difference spectra of Tyr and Tyr-His model compounds ______________________________________________________ 76 2.14 Perfusion-induced IR difference spectroscopy _____________________ 76 2.15 IR data manipulation _____________________________________________ 78 2.15.1 Baseline corrections ___________________________________________________ 78 2.16 Normalisation of redox spectra ___________________________________ 79 2.17 Gaussian calculated IR absorbance spectra _______________________ 80 2.18 Determination of pKa values of Tyr-His(trimethyl) __________________ 82 2.19 Oxygen electrode assay to determine turnover number ____________ 82 2.20 Determination of oxygen affinity __________________________________ 84 2.21 Membrane reconstitution of bovine CcO __________________________ 86 2.21.1 Optimisation of membrane reconstitution of yeast CcO ____________________ 87 2.21.2 Respiratory control ratio ________________________________________________ 87 2.21.3 Ferrocytochrome c preparation _________________________________________ 88 2.21.4 Proton/electron stoichiometry ___________________________________________ 88 2.22 Cyclic voltammetry ______________________________________________ 90 2.22.1 Cyclic voltammetry measurements ______________________________________ 93 3 Separation and redox linkage of IR signatures of bovine cytochrome c oxidase _______________________________________________ 94 3.1 Introduction ______________________________________________________ 95 3.2 Aims _____________________________________________________________ 96 3.3 Results __________________________________________________________ 97 3.3.1 Unligated CcO: FR – O difference spectra ________________________________ 97 3.3.2 CN-ligated CcO: MV-CN – O-CN difference spectra________________________ 98 3.3.3 In situ visible spectra ___________________________________________________ 99 3.3.4 CN-ligated CcO: FR-CN – O-CN difference spectra _______________________ 100 3.3.5 In situ visible spectra of unligated and CN-ligated CcO _____________________ 102 3.3.6 CN-ligated CcO: FR-CN – MV-CN difference spectra _____________________ 103 3.3.7 CN ligation to CcO: O-CN minus O spectra _______________________________ 104 3.3.8 Visible spectrum of CN ligation __________________________________________ 105 3.3.9 CO-ligated CcO: FR-CO – MV-CO spectra_______________________________ 106 3.3.10 CN-ligated and CO-ligated CcO: calculated (MV-CN – O-CN) minus (FR-CO - MV-CO) double difference spectra _______________________________________________ 107 3.3.11 Comparison of all redox difference spectra ______________________________ 108 3.3.12 Assigning IR changes in the 1700-1000 cm-1 range with specific metal centre redox transitions _______________________________________________________________ 109 3.4 Discussion ______________________________________________________ 110 3.4.1 FR minus O IR difference spectrum of unligated bovine CcO _______________ 110 3.4.2 Monitoring
Recommended publications
  • Sensitivity to Saccharomyces Cerevisiae (Coxsb/Hypoxlc Gee/Aerobk Repression/High Mobiity Group Box) JAMES R
    Proc. Nati. Acad. Sci. USA Vol. 91, pp. 7345-7349, July 1994 Genetics The ORDI gene encodes a transcription factor involved in oxygen regulation and is identical to IXR1, a gene that confers cisplatin sensitivity to Saccharomyces cerevisiae (COXSb/hypoxlc gee/aerobk repressIon/hIgh mobiity group box) JAMES R. LAMBERT, VIRGINIA W. BILANCHONE, AND MICHAEL G. CUMSKY* Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92717 Communicated by Stephen J. Lippard, March 18, 1994 (receivedfor review December 23, 1993) ABSTRACT The yeast COX5a and COXSb genes encode gen-dependent processes (respiration, sterol synthesis, oxida- isoforms of subunit Va of the mitochondrial inner membrane tive damage repair), and several, like the COXS genes, exist as protein complex cytochrome c oxidase. These genes have been pairs inversely regulated by oxygen and heme (8, 9). shown to be inversely regulated at the level oftranscription by Several upstream elements that regulate the expression of oxygen, which functions through the metabolic coeffector the COX5b gene have been identified (5). These include two heme. In earlier studies we identified several regulatory ele- sites of positive control (activation elements or UASs) and ments that control tnscriptional activation and aerobic re- three sites ofnegative control (repression elements or URSs) pression of one of these genes, COX5b. Here, we report the that mediate aerobic repression. Two of the repression ele- isolation of trans-acting mutants that are defective in the ments contain the consensus sequence ATTGTTCT, which aerobic repression of COXSb transcription. The mutants fall is found upstream of most hypoxic genes and appears to be into two complementation groups.
    [Show full text]
  • Androgen Receptor Interacting Proteins and Coregulators Table
    ANDROGEN RECEPTOR INTERACTING PROTEINS AND COREGULATORS TABLE Compiled by: Lenore K. Beitel, Ph.D. Lady Davis Institute for Medical Research 3755 Cote Ste Catherine Rd, Montreal, Quebec H3T 1E2 Canada Telephone: 514-340-8260 Fax: 514-340-7502 E-Mail: [email protected] Internet: http://androgendb.mcgill.ca Date of this version: 2010-08-03 (includes articles published as of 2009-12-31) Table Legend: Gene: Official symbol with hyperlink to NCBI Entrez Gene entry Protein: Protein name Preferred Name: NCBI Entrez Gene preferred name and alternate names Function: General protein function, categorized as in Heemers HV and Tindall DJ. Endocrine Reviews 28: 778-808, 2007. Coregulator: CoA, coactivator; coR, corepressor; -, not reported/no effect Interactn: Type of interaction. Direct, interacts directly with androgen receptor (AR); indirect, indirect interaction; -, not reported Domain: Interacts with specified AR domain. FL-AR, full-length AR; NTD, N-terminal domain; DBD, DNA-binding domain; h, hinge; LBD, ligand-binding domain; C-term, C-terminal; -, not reported References: Selected references with hyperlink to PubMed abstract. Note: Due to space limitations, all references for each AR-interacting protein/coregulator could not be cited. The reader is advised to consult PubMed for additional references. Also known as: Alternate gene names Gene Protein Preferred Name Function Coregulator Interactn Domain References Also known as AATF AATF/Che-1 apoptosis cell cycle coA direct FL-AR Leister P et al. Signal Transduction 3:17-25, 2003 DED; CHE1; antagonizing regulator Burgdorf S et al. J Biol Chem 279:17524-17534, 2004 CHE-1; AATF transcription factor ACTB actin, beta actin, cytoplasmic 1; cytoskeletal coA - - Ting HJ et al.
    [Show full text]
  • 551978V2.Full.Pdf
    bioRxiv preprint doi: https://doi.org/10.1101/551978; this version posted February 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A high-resolution, chromosome-assigned Komodo dragon genome reveals adaptations in the 2 cardiovascular, muscular, and chemosensory systems of monitor lizards 3 4 Abigail L. Lind1, Yvonne Y.Y. Lai2, Yulia Mostovoy2, Alisha K. Holloway1, Alessio Iannucci3, Angel 5 C.Y. Mak2, Marco Fondi3, Valerio Orlandini3, Walter L. Eckalbar4, Massimo Milan5, Michail 6 Rovatsos6,7, , Ilya G. Kichigin8, Alex I. Makunin8, Martina J. Pokorná6, Marie Altmanová6, Vladimir 7 A. Trifonov8, Elio Schijlen9, Lukáš Kratochvíl6, Renato Fani3, Tim S. Jessop10, Tomaso Patarnello5, 8 James W. Hicks11, Oliver A. Ryder12, Joseph R. Mendelson III13,14, Claudio Ciofi3, Pui-Yan 9 Kwok2,4,15, Katherine S. Pollard1,4,16,17,18, & Benoit G. Bruneau1,2,19 10 11 1. Gladstone Institutes, San Francisco, CA 94158, USA. 12 2. Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA. 13 3. Department of Biology, University of Florence, 50019 Sesto Fiorentino (FI), Italy 14 4. Institute for Human Genetics, University of California, San Francisco, CA 94143, USA. 15 5. Department of Comparative Biomedicine and Food Science, University of Padova, 35020 16 Legnaro (PD), Italy 17 6. Department of Ecology, Charles University, 128 00 Prague, Czech Republic 18 7. Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, 277 21 19 Liběchov, Czech Republic 20 8.
    [Show full text]
  • COX5B Regulates MAVS-Mediated Antiviral Signaling Through Interaction with ATG5 and Repressing ROS Production
    COX5B Regulates MAVS-mediated Antiviral Signaling through Interaction with ATG5 and Repressing ROS Production Yuanyuan Zhao1., Xiaofeng Sun1., Xuanli Nie1, Liwei Sun2, Tie-shan Tang1, Dahua Chen2, Qinmiao Sun1* 1 State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R.2 St at e China, Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R.hina C Abstract Innate antiviral immunity is the first line of the host defense system that rapidly detects invading viruses. Mitochondria function as platforms for innate antiviral signal transduction in mammals through the adaptor protein, MAVS. Excessive activation of MAVS-mediated antiviral signaling leads to dysfunction of mitochondria and cell apoptosis that likely causes the pathogenesis of autoimmunity. However, the mechanism of how MAVS is regulated at mitochondria remains unknown. Here we show that the Cytochrome c Oxidase (CcO) complex subunit COX5B physically interacts with MAVS and negatively regulates the MAVS-mediated antiviral pathway. Mechanistically, we find that while activation of MAVS leads to increased ROS production and COX5B expression, COX5B down-regulated MAVS signaling by repressing ROS production. Importantly, our study reveals that COX5B coordinates with the autophagy pathway to control MAVS aggregation, thereby balancing the antiviral signaling activity. Thus, our study provides novel insights into the link between mitochondrial electron transport system and the autophagy pathway in regulating innate antiviral immunity. Citation: Zhao Y, Sun X, Nie X, Sun L, Tang T-s, et al. (2012) COX5B Regulates MAVS-mediated Antiviral Signaling through Interaction with ATG5 and Repressing ROS Production.
    [Show full text]
  • Rcf2 Revealed in Cryo-EM Structures of Hypoxic Isoforms of Mature Mitochondrial III-IV Supercomplexes
    Rcf2 revealed in cryo-EM structures of hypoxic isoforms of mature mitochondrial III-IV supercomplexes Andrew M. Hartleya, Brigitte Meunierb, Nikos Pinotsisa, and Amandine Maréchala,c,1 aInstitute of Structural and Molecular Biology, Birkbeck College, WC1E 7HX London, United Kingdom; bInstitute for Integrative Biology of the Cell (I2BC), CNRS, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; and cInstitute of Structural and Molecular Biology, University College London, WC1E 6BT London, United Kingdom Edited by Harry B. Gray, California Institute of Technology, Pasadena, CA, and approved March 12, 2020 (received for review November 25, 2019) The organization of the mitochondrial electron transport chain formed by CI, III, and IV in varying stoichiometries (11–14) and I– proteins into supercomplexes (SCs) is now undisputed; however, III2 SCs (11, 14). Overall, they reveal a conserved arrangement of their assembly process, or the role of differential expression CI and CIII across species, including strong protein–protein inter- isoforms, remain to be determined. In Saccharomyces cerevisiae, actions. Slightly different orientationsofCIIIrelativetoCIwithin cytochrome c oxidase (CIV) forms SCs of varying stoichiometry the respirasome have been reported that have been linked to in- bc with cytochrome 1 (CIII). Recent studies have revealed, in stability of the SC during the purification procedure, although the normoxic growth conditions, an interface made exclusively by possibility of a subpopulation of respirasomes in which CI is in the Cox5A, the only yeast respiratory protein that exists as one of deactivated state could not be excluded (9, 14). However, when two isoforms depending on oxygen levels.
    [Show full text]
  • Role of Cytochrome C Oxidase Nuclear-Encoded Subunits in Health and Disease
    Physiol. Res. 69: 947-965, 2020 https://doi.org/10.33549/physiolres.934446 REVIEW Role of Cytochrome c Oxidase Nuclear-Encoded Subunits in Health and Disease Kristýna ČUNÁTOVÁ1, David PAJUELO REGUERA1, Josef HOUŠTĚK1, Tomáš MRÁČEK1, Petr PECINA1 1Department of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic Received February 2, 2020 Accepted September 13, 2020 Epub Ahead of Print November 2, 2020 Summary [email protected] and Tomáš Mráček, Department of Cytochrome c oxidase (COX), the terminal enzyme of Bioenergetics, Institute of Physiology CAS, Vídeňská 1083, 142 mitochondrial electron transport chain, couples electron transport 20 Prague 4, Czech Republic. E-mail: [email protected] to oxygen with generation of proton gradient indispensable for the production of vast majority of ATP molecules in mammalian Cytochrome c oxidase cells. The review summarizes current knowledge of COX structure and function of nuclear-encoded COX subunits, which may Energy demands of mammalian cells are mainly modulate enzyme activity according to various conditions. covered by ATP synthesis carried out by oxidative Moreover, some nuclear-encoded subunits possess tissue-specific phosphorylation apparatus (OXPHOS) located in the and development-specific isoforms, possibly enabling fine-tuning central bioenergetic organelle, mitochondria. OXPHOS is of COX function in individual tissues. The importance of nuclear- composed of five multi-subunit complexes embedded in encoded subunits is emphasized by recently discovered the inner mitochondrial membrane (IMM). Electron pathogenic mutations in patients with severe mitopathies. In transport from reduced substrates of complexes I and II to addition, proteins substoichiometrically associated with COX were cytochrome c oxidase (COX, complex IV, CIV) is found to contribute to COX activity regulation and stabilization of achieved by increasing redox potential of individual the respiratory supercomplexes.
    [Show full text]
  • Electron Transport Chain Activity Is a Predictor and Target for Venetoclax Sensitivity in Multiple Myeloma
    ARTICLE https://doi.org/10.1038/s41467-020-15051-z OPEN Electron transport chain activity is a predictor and target for venetoclax sensitivity in multiple myeloma Richa Bajpai1,7, Aditi Sharma 1,7, Abhinav Achreja2,3, Claudia L. Edgar1, Changyong Wei1, Arusha A. Siddiqa1, Vikas A. Gupta1, Shannon M. Matulis1, Samuel K. McBrayer 4, Anjali Mittal3,5, Manali Rupji 6, Benjamin G. Barwick 1, Sagar Lonial1, Ajay K. Nooka 1, Lawrence H. Boise 1, Deepak Nagrath2,3,5 & ✉ Mala Shanmugam 1 1234567890():,; The BCL-2 antagonist venetoclax is highly effective in multiple myeloma (MM) patients exhibiting the 11;14 translocation, the mechanistic basis of which is unknown. In evaluating cellular energetics and metabolism of t(11;14) and non-t(11;14) MM, we determine that venetoclax-sensitive myeloma has reduced mitochondrial respiration. Consistent with this, low electron transport chain (ETC) Complex I and Complex II activities correlate with venetoclax sensitivity. Inhibition of Complex I, using IACS-010759, an orally bioavailable Complex I inhibitor in clinical trials, as well as succinate ubiquinone reductase (SQR) activity of Complex II, using thenoyltrifluoroacetone (TTFA) or introduction of SDHC R72C mutant, independently sensitize resistant MM to venetoclax. We demonstrate that ETC inhibition increases BCL-2 dependence and the ‘primed’ state via the ATF4-BIM/NOXA axis. Further, SQR activity correlates with venetoclax sensitivity in patient samples irrespective of t(11;14) status. Use of SQR activity in a functional-biomarker informed manner may better select for MM patients responsive to venetoclax therapy. 1 Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA.
    [Show full text]
  • Two Nonidentical Forms of Subunit V Are Functional in Yeast
    Proc. Nati. Acad. Sci. USA Vol. 82, pp. 2235-2239, April 1985 Biochemistry Two nonidentical forms of subunit V are functional in yeast cytochrome c oxidase (Saccharomyces cerevisiae/nuclear genes/mitochondria/DNA sequence/gene disruption) MICHAEL G. CUMSKY, CHRISTINE Ko, CYNTHIA E. TRUEBLOOD, AND ROBERT 0. POYTON Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Campus Box 347, Boulder, CO 80309 Communicated by David M. Prescott, November 19, 1984 ABSTRACT In Saccharomyces cerevisiae, the inner mito- ing the gene on a multicopy plasmid, (ii) the ability of the chondrial membrane protein cytochrome c oxidase is com- plasmid to select subunit V-specific mRNA, and (iii) the ap- posed of nine polypeptide subunits. Six of these subunits (IV, pearance of a new cross-reacting subunit V polypeptide in V, VI, VII, VIIa, VIII) are encoded by the nuclear genome, transformant mitochondria (5, 6). and the remaining three (I, II, III) are encoded by mitochon- In this paper, we report that the latter gene, now called drial DNA. We report here the existence of two nonidentical COXSb, encodes a subunit V polypeptide that is similar to, subunit V polypeptides, which are encoded by separate genes but not identical with, the subunit V polypeptide recently within the yeast genome. One gene, COX5a, encodes the poly- sequenced in this laboratory (7). We also report the molecu- peptide Va, normally found in preparations of holocytochrome lar cloning of another gene for subunit V, COX5a. This gene c oxidase. The other gene, COX5b, encodes the polypeptide encodes a polypeptide identical in sequence to the subunit V Vb, which cross-reacts with anti-subunit Va antiserum and re- polypeptide found in the holoenzyme.
    [Show full text]
  • COX5B-Mediated Bioenergetic Alteration Regulates Tumor Growth and Migration by Modulating AMPK-UHMK1-ERK Cascade in Hepatoma
    cancers Article COX5B-Mediated Bioenergetic Alteration Regulates Tumor Growth and Migration by Modulating AMPK-UHMK1-ERK Cascade in Hepatoma 1, 1,2,3, 1 1 3 Yu-De Chu y, Wey-Ran Lin y , Yang-Hsiang Lin , Wen-Hsin Kuo , Chin-Ju Tseng , Siew-Na Lim 3,4, Yen-Lin Huang 5, Shih-Chiang Huang 5, Ting-Jung Wu 1, Kwang-Huei Lin 1 and Chau-Ting Yeh 1,2,3,6,* 1 Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; [email protected] (Y.-D.C.); [email protected] (W.-R.L.); [email protected] (Y.-H.L.); [email protected] (W.-H.K.); [email protected] (T.-J.W.); [email protected] (K.-H.L.) 2 Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan 3 Department of Internal Medicine, Chang Gung University College of Medicine, Taoyuan 333, Taiwan; [email protected] (C.-J.T.); [email protected] (S.-N.L.) 4 Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan 5 Department of Anatomic Pathology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; [email protected] (Y.-L.H.); [email protected] (S.-C.H.) 6 Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan * Correspondence: [email protected]; Tel.: +886-3-3281200 (ext. 8129) These authors contributed equally to this work. y Received: 11 June 2020; Accepted: 19 June 2020; Published: 22 June 2020 Abstract: The oxidative phosphorylation machinery in mitochondria, which generates the main bioenergy pool in cells, includes four enzyme complexes for electron transport and ATP synthase.
    [Show full text]
  • Insights Into the Mechanism of Action of 13-Cis Retinoic Acid
    The Pennsylvania State University The Graduate School College of Medicine INSIGHTS INTO THE MECHANISM OF ACTION OF 13-CIS RETINOIC ACID IN SUPPRESSING SEBACEOUS GLAND FUNCTION A Thesis in Molecular Medicine by Amanda Marie Nelson © 2007 Amanda Marie Nelson Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2007 The thesis of Amanda Marie Nelson was reviewed and approved* by the following: Diane M. Thiboutot Professor of Dermatology Thesis Advisor Chair of Committee Gary A. Clawson Professor of Pathology, Biochemistry and Molecular Biology Mark Kester Distinguished Professor of Pharmacology Jeffrey M. Peters Associate Professor of Molecular Toxicology Jong K. Yun Assistant Professor of Pharmacology Craig Meyers Professor of Microbiology and Immunology Co-chair, Molecular Medicine Graduate Degree Program *Signatures are on file in the Graduate School iii ABSTRACT Nearly 40-50 million people of all races and ages in the United States have acne, making it the most common skin disease. Although acne is not a serious health threat, severe acne can lead to disfiguring, permanent scarring; increased anxiety; and depression. Isotretinoin (13-cis Retinoic Acid) is the most potent agent that affects each of the pathogenic features of acne: 1) follicular hyperkeratinization, 2) the activity of Propionibacterium acnes, 3) inflammation and 4) increased sebum production. Isotretinoin has been on the market since 1982 and even though it has been prescribed for 25 years, extensive studies into its molecular mechanism of action in human skin and sebaceous glands have not been done. Since isotretinoin is a teratogen, there is a clear need for safe and effective alternative therapeutic agents.
    [Show full text]
  • Multiple Mechanisms Regulate Eukaryotic Cytochrome C Oxidase
    cells Review Multiple Mechanisms Regulate Eukaryotic Cytochrome C Oxidase Rabia Ramzan 1, Bernhard Kadenbach 2,* and Sebastian Vogt 3 1 Cardiovascular Research Laboratory, Biochemical-Pharmacological Center, Philipps-University Marburg, Karl-von-Frisch-Strasse 1, D-35043 Marburg, Germany; [email protected] 2 Fachbereich Chemie, Philipps-University, D-35032 Marburg, Germany 3 Department of Heart Surgery, Campus Marburg, University Hospital of Giessen and Marburg, D-35043 Marburg, Germany; [email protected] * Correspondence: [email protected] Abstract: Cytochrome c oxidase (COX), the rate-limiting enzyme of mitochondrial respiration, is regulated by various mechanisms. Its regulation by ATP (adenosine triphosphate) appears of particular importance, since it evolved early during evolution and is still found in cyanobacteria, but not in other bacteria. Therefore the “allosteric ATP inhibition of COX” is described here in more detail. Most regulatory properties of COX are related to “supernumerary” subunits, which are largely absent in bacterial COX. The “allosteric ATP inhibition of COX” was also recently described in intact isolated rat heart mitochondria. Keywords: mitochondria; energy metabolism; respiration; regulation; cytochrome c oxidase; adenine nucleotides; electron transport; efficiency; ROS generation 1. Introduction Citation: Ramzan, R.; Kadenbach, B.; There exists a basic difference in the regulation of ATP synthesis by oxidative phospho- Vogt, S. Multiple Mechanisms rylation (OxPhos) between bacteria (except cyanobacteria) and eukaryotic organisms. Aer- Regulate Eukaryotic Cytochrome C obic bacteria grow and divide continuously under constant conditions. Higher organisms Oxidase. Cells 2021, 10, 514. https:// change the rates of ATP synthesis and consumption up to a factor of 10 depending on vari- doi.org/10.3390/cells10030514 ous inner and outer signals.
    [Show full text]
  • COX5B Antibody Cat
    COX5B Antibody Cat. No.: 18-748 COX5B Antibody Immunohistochemistry of paraffin-embedded Immunohistochemistry of paraffin-embedded mouse heart using human liver damage using COX5B antibody COX5B antibody (18-748) at dilution of 1:100 (40x lens). (18-748) at dilution of 1:100 (40x lens). Immunofluorescence analysis of NIH-3T3 cells Immunofluorescence analysis of C6 cells using COX5B antibody using COX5B antibody (18-748) at dilution of 1:100. (18-748) at dilution of 1:100. Blue: DAPI for nuclear staining. Blue: DAPI for nuclear staining. September 29, 2021 1 https://www.prosci-inc.com/cox5b-antibody-18-748.html Immunoprecipitation analysis of 200ug extracts of Immunofluorescence analysis of U-2 OS cells using COX5B HepG2 cells, using 3 ug COX5B antibody (18-748). antibody (18-748) at dilution of 1:100. Blue: DAPI for nuclear Western blot was performed from the staining. immunoprecipitate using COX5B antibody (18-748) at a dilition of 1:1000. Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human, Mouse, Rat Recombinant fusion protein containing a sequence corresponding to amino acids 32-129 IMMUNOGEN: of human COX5B (NP_001853.2). TESTED APPLICATIONS: IF, IHC, IP, WB WB: ,1:500 - 1:2000 IHC: ,1:50 - 1:100 APPLICATIONS: IF: ,1:50 - 1:100 IP: ,1:50 - 1:100 POSITIVE CONTROL: 1) HepG2 2) 22Rv1 3) SW480 4) HeLa 5) A-549 6) Mouse heart PREDICTED MOLECULAR Observed: 14kDa WEIGHT: Properties PURIFICATION: Affinity purification CLONALITY: Polyclonal September 29, 2021 2 https://www.prosci-inc.com/cox5b-antibody-18-748.html ISOTYPE: IgG CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: PBS with 0.02% sodium azide, 50% glycerol, pH7.3.
    [Show full text]