cancers Article COX5B-Mediated Bioenergetic Alteration Regulates Tumor Growth and Migration by Modulating AMPK-UHMK1-ERK Cascade in Hepatoma 1, 1,2,3, 1 1 3 Yu-De Chu y, Wey-Ran Lin y , Yang-Hsiang Lin , Wen-Hsin Kuo , Chin-Ju Tseng , Siew-Na Lim 3,4, Yen-Lin Huang 5, Shih-Chiang Huang 5, Ting-Jung Wu 1, Kwang-Huei Lin 1 and Chau-Ting Yeh 1,2,3,6,* 1 Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
[email protected] (Y.-D.C.);
[email protected] (W.-R.L.);
[email protected] (Y.-H.L.);
[email protected] (W.-H.K.);
[email protected] (T.-J.W.);
[email protected] (K.-H.L.) 2 Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan 3 Department of Internal Medicine, Chang Gung University College of Medicine, Taoyuan 333, Taiwan;
[email protected] (C.-J.T.);
[email protected] (S.-N.L.) 4 Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan 5 Department of Anatomic Pathology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
[email protected] (Y.-L.H.);
[email protected] (S.-C.H.) 6 Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan * Correspondence:
[email protected]; Tel.: +886-3-3281200 (ext. 8129) These authors contributed equally to this work. y Received: 11 June 2020; Accepted: 19 June 2020; Published: 22 June 2020 Abstract: The oxidative phosphorylation machinery in mitochondria, which generates the main bioenergy pool in cells, includes four enzyme complexes for electron transport and ATP synthase.