Sensitivity to Saccharomyces Cerevisiae (Coxsb/Hypoxlc Gee/Aerobk Repression/High Mobiity Group Box) JAMES R

Total Page:16

File Type:pdf, Size:1020Kb

Sensitivity to Saccharomyces Cerevisiae (Coxsb/Hypoxlc Gee/Aerobk Repression/High Mobiity Group Box) JAMES R Proc. Nati. Acad. Sci. USA Vol. 91, pp. 7345-7349, July 1994 Genetics The ORDI gene encodes a transcription factor involved in oxygen regulation and is identical to IXR1, a gene that confers cisplatin sensitivity to Saccharomyces cerevisiae (COXSb/hypoxlc gee/aerobk repressIon/hIgh mobiity group box) JAMES R. LAMBERT, VIRGINIA W. BILANCHONE, AND MICHAEL G. CUMSKY* Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92717 Communicated by Stephen J. Lippard, March 18, 1994 (receivedfor review December 23, 1993) ABSTRACT The yeast COX5a and COXSb genes encode gen-dependent processes (respiration, sterol synthesis, oxida- isoforms of subunit Va of the mitochondrial inner membrane tive damage repair), and several, like the COXS genes, exist as protein complex cytochrome c oxidase. These genes have been pairs inversely regulated by oxygen and heme (8, 9). shown to be inversely regulated at the level oftranscription by Several upstream elements that regulate the expression of oxygen, which functions through the metabolic coeffector the COX5b gene have been identified (5). These include two heme. In earlier studies we identified several regulatory ele- sites of positive control (activation elements or UASs) and ments that control tnscriptional activation and aerobic re- three sites ofnegative control (repression elements or URSs) pression of one of these genes, COX5b. Here, we report the that mediate aerobic repression. Two of the repression ele- isolation of trans-acting mutants that are defective in the ments contain the consensus sequence ATTGTTCT, which aerobic repression of COXSb transcription. The mutants fall is found upstream of most hypoxic genes and appears to be into two complementation groups. One group species ROXI, the binding site for the ROXI repressor protein (8, 10). The which encodes a product reported to be involved in transcrip- third repression element contains a 13-bp sequence TCGT- tional repression. The other group idented the gene we have TCGTTGCCT, which is also found upstream of several desiguated ORDI. Mutations in ORDI cause overexpression of hypoxic genes (5, 10). COX5b aerobically but do not affect the expression of the In we hypoxic genes CYC7, HEM13, andANBI. ORDI mutations also this study searched for trans-acting factors that are do not affect the expression ofthe aerobic genes COX5a, CYCI, involved in the aerobic repression ofCOX5b. Using a genetic ROXI, ROX3, and TIF51A. The yeast genome contains a single approach, we isolated mutants in which COX5b was over- ORDI gene that resides on chromosome XI. Strains caring expressed under aerobic growth conditions. The mutants fell chromosomal deletions ofthe ORDI locus are viable andexbit into two complementation groups. (i) The first corresponds to phenotypes similar to, but less severe than, that of the original the previously identified ROXI gene. (ii) The second defines mutant. The nucleotide sequence of ORD! revealed that It is another gene, which we call ORD]. The ORD) gene was identical to IXRI, a yeast gene whose product contains two high cloned, and its DNA sequence was determined; it specifies a mobility group boxes, binds to platinated DNA, and confers polypeptide of 67.2 kDa that contains two high mobility sensitivit to the antitumor drug cisplatin. Consistent with the group-boxes and several polyglutamine tracts. Surprisingly, latter observations, we found that the ORD1 product could we show that ORD] is identical to a recently described gene, bind to both the upstem region of COXSb and to DNA IXRJ, which has been shown to confer sensitivity to the modified with cisplatin. antitumor drug cisplatin (11).t Cytochrome c oxidase is a heterooligomeric protein complex MATERIALS AND METHODS located in the mitochondrial inner membrane. In the yeast Saccharomyces cerevisiae, the cytochrome oxidase complex Yeast Strains and Growth Conditions. The Saccharomyces is composed of 12 nonidentical subunits (1). The genes cerevisiae strains constructed in this study were as follows: COXSa and COXSb specify functionally interchangeable, yet JM43-GD5a/ord1 (MATa his4-580 trp)-289 leu2-3, 112 ura3-S2 structurally distinct, forms of subunit V of the yeast enzyme coxfaA::URA3 ordlA::LEU2) and JL1-20c (MATa his4-580 (refs. 2, 3; referred to as subunits Va and Vb, respectively). leu2-3, 112 ura3-52 cox aA::hisG ord -1). Additional strains Previous work has shown that the yeast COXS genes are used included JM43, JM43-GD5a, JM43-GD5ab, JM6, inversely regulated at the level of transcription by oxygen, BMH281, CT39-7B, and CT149-3D, which have been de- which exerts its effect through a metabolic coeffector, heme scribed (2, 3, 6, 7, 12). Yeast strains were grown aerobically (4-7). Specifically, during aerobic growth the presence of at 300C in either yeast extract/peptone/dextrose (YPD), yeast oxygen permits heme biosynthesis; heme then interacts with extract/peptone/glycerol/ethanol (YPGE), or SD medium one or more regulatory proteins to activate the transcription of (supplemented with amino acids as necessary; ref. 13). Res- COXSa and repress the transcription of COXSb (4-7). Under piratory proficiency was tested with YPGE medium, which is anaerobic or hypoxic conditions (low oxygen tension), when nonfermentable. heme is limiting, COXSa is not transcribed, whereas transcrip- Genetic Methods and the Isolation of Mutants That Over- tion of COXSb derepresses 5- to 20-fold (4, 5). It has become express COX5b Aerobically. Strain construction, matings, clear that the COXS genes are part of a family of physiologi- and tetrad standard cally important yeast genes whose expression is controlled sporulation, analysis were done by using either positively or negatively by oxygen and/or heme. These yeast genetic techniques (13). Mutants overexpressing genes share several common features: most function in oxy- Abbreviations: UAS, upstream activation site; URS, upstream re- pression site; HMG, high mobility group. The publication costs ofthis article were defrayed in part by page charge *To whom reprint requests should be addressed. payment. This article must therefore be hereby marked "advertisement" tThe sequence reported in this paper was previously deposited in the in accordance with 18 U.S.C. §1734 solely to indicate this fact. GenBank data base (under IXRI; accession no. L16900). 7345 Downloaded by guest on September 24, 2021 7346 Genetics: Lambert et al. Proc. Natl. Acad. Sci. USA 91 (1994) COXSb aerobically were selected by the ability ofyeast strain ofboth subunit V genes; because aformofsubunit V is essential JM43-GD5ab(YCp5b) to grow on YPGE plates (see Results). for cytochrome oxidase activity, which is, in turn, essential for Approximately 100 spontaneous mutants were selected; respiration, this strain cannot grow on nonfermentable sub- these displayed a wide variety of growth rates on YPGE. strates (4). JM43-GD5ab strains expressing COXSb from cen- Mutants displaying the best growth rates on YPGE were tromeric or low-copy plasmids, like YCpSb, also fail to grow subjected to a cis/trans test that consisted of curing the under these conditions due to the low level of aerobic COXSb mutant of its plasmid and then retransforming the plasmid- expression (4). Thus, these strains must overexpress COXSb to free isolate with a fresh preparation of vector YCp5b. Those grow on nonfermentable substrates. mutants retaining the ability to grow on YPGE medium after Spontaneous mutants were identified by their ability to retransformation were considered to carry trans-acting, chro- grow on YPGE medium. Initially, >100 prospective mutants mosomal mutations. Trans-acting mutants were then mated were characterized. From these, five strains carrying reces- to yeast strain BMH281 to determine whether the mutations sive, trans-acting mutations were chosen for further study. they carried were dominant or recessive. Recessive muta- Each of these mutants was stable, grew rapidly on YPGE tions are complemented in the diploid, which results in a medium, and, from the results ofNorthern blot analysis, had respiratory-deficient phenotype observed as the lack of elevated levels of COX5b mRNA when grown aerobically growth on YPGE medium. Five recessive, trans-acting mu- (data not shown). Each mutant was also analyzed by South- tants were ultimately chosen for further study. For comple- ern blotting, which confirmed that centromere function on mentation analysis, appropriately marked derivatives ofeach the plasmid was normal and that the COXSb gene had not mutant were constructed through standard genetic tech- niques. The complementation test consisted of mating each been amplified (data not shown). mutant in pairwise combinations and scoring the diploids for Appropriately marked derivatives of each mutant were growth on YPGE medium. Mutants that produced diploids mated in pairwise combinations to test for complementation, capable of growth on this medium were considered to be in which was defined as the failure ofthe resulting diploid strain the same complementation group. to grow on YPGE medium. Two complementation groups Cloning the ORDB Structural Gene. The ORD) gene was were identified. Because yeast strains with mutations in either cloned by functional complementation ofthe ordl-I-encoded the ROXI, ROX3, ROX4 (also called TUPI andAER2), orthe phenotype (in JL1-20c) using a yeast genomic library in the REOM genes might also be expected to cause overexpression vector YCp5O (14). Ura+ transformants were first selected on of COX5b (4, 6, 8, 12), we tested whether
Recommended publications
  • Androgen Receptor Interacting Proteins and Coregulators Table
    ANDROGEN RECEPTOR INTERACTING PROTEINS AND COREGULATORS TABLE Compiled by: Lenore K. Beitel, Ph.D. Lady Davis Institute for Medical Research 3755 Cote Ste Catherine Rd, Montreal, Quebec H3T 1E2 Canada Telephone: 514-340-8260 Fax: 514-340-7502 E-Mail: [email protected] Internet: http://androgendb.mcgill.ca Date of this version: 2010-08-03 (includes articles published as of 2009-12-31) Table Legend: Gene: Official symbol with hyperlink to NCBI Entrez Gene entry Protein: Protein name Preferred Name: NCBI Entrez Gene preferred name and alternate names Function: General protein function, categorized as in Heemers HV and Tindall DJ. Endocrine Reviews 28: 778-808, 2007. Coregulator: CoA, coactivator; coR, corepressor; -, not reported/no effect Interactn: Type of interaction. Direct, interacts directly with androgen receptor (AR); indirect, indirect interaction; -, not reported Domain: Interacts with specified AR domain. FL-AR, full-length AR; NTD, N-terminal domain; DBD, DNA-binding domain; h, hinge; LBD, ligand-binding domain; C-term, C-terminal; -, not reported References: Selected references with hyperlink to PubMed abstract. Note: Due to space limitations, all references for each AR-interacting protein/coregulator could not be cited. The reader is advised to consult PubMed for additional references. Also known as: Alternate gene names Gene Protein Preferred Name Function Coregulator Interactn Domain References Also known as AATF AATF/Che-1 apoptosis cell cycle coA direct FL-AR Leister P et al. Signal Transduction 3:17-25, 2003 DED; CHE1; antagonizing regulator Burgdorf S et al. J Biol Chem 279:17524-17534, 2004 CHE-1; AATF transcription factor ACTB actin, beta actin, cytoplasmic 1; cytoskeletal coA - - Ting HJ et al.
    [Show full text]
  • 551978V2.Full.Pdf
    bioRxiv preprint doi: https://doi.org/10.1101/551978; this version posted February 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A high-resolution, chromosome-assigned Komodo dragon genome reveals adaptations in the 2 cardiovascular, muscular, and chemosensory systems of monitor lizards 3 4 Abigail L. Lind1, Yvonne Y.Y. Lai2, Yulia Mostovoy2, Alisha K. Holloway1, Alessio Iannucci3, Angel 5 C.Y. Mak2, Marco Fondi3, Valerio Orlandini3, Walter L. Eckalbar4, Massimo Milan5, Michail 6 Rovatsos6,7, , Ilya G. Kichigin8, Alex I. Makunin8, Martina J. Pokorná6, Marie Altmanová6, Vladimir 7 A. Trifonov8, Elio Schijlen9, Lukáš Kratochvíl6, Renato Fani3, Tim S. Jessop10, Tomaso Patarnello5, 8 James W. Hicks11, Oliver A. Ryder12, Joseph R. Mendelson III13,14, Claudio Ciofi3, Pui-Yan 9 Kwok2,4,15, Katherine S. Pollard1,4,16,17,18, & Benoit G. Bruneau1,2,19 10 11 1. Gladstone Institutes, San Francisco, CA 94158, USA. 12 2. Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA. 13 3. Department of Biology, University of Florence, 50019 Sesto Fiorentino (FI), Italy 14 4. Institute for Human Genetics, University of California, San Francisco, CA 94143, USA. 15 5. Department of Comparative Biomedicine and Food Science, University of Padova, 35020 16 Legnaro (PD), Italy 17 6. Department of Ecology, Charles University, 128 00 Prague, Czech Republic 18 7. Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, 277 21 19 Liběchov, Czech Republic 20 8.
    [Show full text]
  • Structure-Function Relationship of Mitochondrial Cytochrome C Oxidase: Redox Centres, Proton Pathways and Isozymes
    Structure-function relationship of mitochondrial cytochrome c oxidase: redox centres, proton pathways and isozymes Raksha Jagdish Dodia Structural Molecular Biology University College London Submitted for the Degree of Doctor of Philosophy 2014 Supervisor: Prof. Peter R. Rich Internal examiner: Dr. Joanne Santini External examiner: Prof. Peter J. Nixon 1 Signed declaration I Raksha J. Dodia confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Abstract Cytochrome c oxidase (CcO) reduces O2 to water with four electrons from cytochromes c2+ and four matrix protons. The energy released is conserved in the protonmotive force by translocation of four additional protons into the intermembrane space. Electrons are transferred via CuA, haem a, to the binuclear centre; haem a3 and CuB, where O2 is reduced. Four major aspects of its structure/function have been investigated in this study. Mid-infrared (IR) spectroscopy has been used to probe redox-induced structural changes. By using electrochemically-poised samples of cyanide- and carbon monoxide-ligated bovine CcO these redox-linked IR changes were shown to be linked primarily with CuA and haem a metal centre transitions with fewer changes associated with transitions in haem a3 and CuB. CcO contains a cross-linked Tyr-His which is believed to form a Tyr radical in the PM intermediate. In this work, electrochemical conditions to induce Tyr-His model compound radicals have been combined with IR spectroscopy to record IR reference spectra. This has aided tentative assignment of IR bands at 1572 cm-1 or 1555 cm-1 to .
    [Show full text]
  • COX5B Regulates MAVS-Mediated Antiviral Signaling Through Interaction with ATG5 and Repressing ROS Production
    COX5B Regulates MAVS-mediated Antiviral Signaling through Interaction with ATG5 and Repressing ROS Production Yuanyuan Zhao1., Xiaofeng Sun1., Xuanli Nie1, Liwei Sun2, Tie-shan Tang1, Dahua Chen2, Qinmiao Sun1* 1 State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R.2 St at e China, Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R.hina C Abstract Innate antiviral immunity is the first line of the host defense system that rapidly detects invading viruses. Mitochondria function as platforms for innate antiviral signal transduction in mammals through the adaptor protein, MAVS. Excessive activation of MAVS-mediated antiviral signaling leads to dysfunction of mitochondria and cell apoptosis that likely causes the pathogenesis of autoimmunity. However, the mechanism of how MAVS is regulated at mitochondria remains unknown. Here we show that the Cytochrome c Oxidase (CcO) complex subunit COX5B physically interacts with MAVS and negatively regulates the MAVS-mediated antiviral pathway. Mechanistically, we find that while activation of MAVS leads to increased ROS production and COX5B expression, COX5B down-regulated MAVS signaling by repressing ROS production. Importantly, our study reveals that COX5B coordinates with the autophagy pathway to control MAVS aggregation, thereby balancing the antiviral signaling activity. Thus, our study provides novel insights into the link between mitochondrial electron transport system and the autophagy pathway in regulating innate antiviral immunity. Citation: Zhao Y, Sun X, Nie X, Sun L, Tang T-s, et al. (2012) COX5B Regulates MAVS-mediated Antiviral Signaling through Interaction with ATG5 and Repressing ROS Production.
    [Show full text]
  • Rcf2 Revealed in Cryo-EM Structures of Hypoxic Isoforms of Mature Mitochondrial III-IV Supercomplexes
    Rcf2 revealed in cryo-EM structures of hypoxic isoforms of mature mitochondrial III-IV supercomplexes Andrew M. Hartleya, Brigitte Meunierb, Nikos Pinotsisa, and Amandine Maréchala,c,1 aInstitute of Structural and Molecular Biology, Birkbeck College, WC1E 7HX London, United Kingdom; bInstitute for Integrative Biology of the Cell (I2BC), CNRS, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; and cInstitute of Structural and Molecular Biology, University College London, WC1E 6BT London, United Kingdom Edited by Harry B. Gray, California Institute of Technology, Pasadena, CA, and approved March 12, 2020 (received for review November 25, 2019) The organization of the mitochondrial electron transport chain formed by CI, III, and IV in varying stoichiometries (11–14) and I– proteins into supercomplexes (SCs) is now undisputed; however, III2 SCs (11, 14). Overall, they reveal a conserved arrangement of their assembly process, or the role of differential expression CI and CIII across species, including strong protein–protein inter- isoforms, remain to be determined. In Saccharomyces cerevisiae, actions. Slightly different orientationsofCIIIrelativetoCIwithin cytochrome c oxidase (CIV) forms SCs of varying stoichiometry the respirasome have been reported that have been linked to in- bc with cytochrome 1 (CIII). Recent studies have revealed, in stability of the SC during the purification procedure, although the normoxic growth conditions, an interface made exclusively by possibility of a subpopulation of respirasomes in which CI is in the Cox5A, the only yeast respiratory protein that exists as one of deactivated state could not be excluded (9, 14). However, when two isoforms depending on oxygen levels.
    [Show full text]
  • Role of Cytochrome C Oxidase Nuclear-Encoded Subunits in Health and Disease
    Physiol. Res. 69: 947-965, 2020 https://doi.org/10.33549/physiolres.934446 REVIEW Role of Cytochrome c Oxidase Nuclear-Encoded Subunits in Health and Disease Kristýna ČUNÁTOVÁ1, David PAJUELO REGUERA1, Josef HOUŠTĚK1, Tomáš MRÁČEK1, Petr PECINA1 1Department of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic Received February 2, 2020 Accepted September 13, 2020 Epub Ahead of Print November 2, 2020 Summary [email protected] and Tomáš Mráček, Department of Cytochrome c oxidase (COX), the terminal enzyme of Bioenergetics, Institute of Physiology CAS, Vídeňská 1083, 142 mitochondrial electron transport chain, couples electron transport 20 Prague 4, Czech Republic. E-mail: [email protected] to oxygen with generation of proton gradient indispensable for the production of vast majority of ATP molecules in mammalian Cytochrome c oxidase cells. The review summarizes current knowledge of COX structure and function of nuclear-encoded COX subunits, which may Energy demands of mammalian cells are mainly modulate enzyme activity according to various conditions. covered by ATP synthesis carried out by oxidative Moreover, some nuclear-encoded subunits possess tissue-specific phosphorylation apparatus (OXPHOS) located in the and development-specific isoforms, possibly enabling fine-tuning central bioenergetic organelle, mitochondria. OXPHOS is of COX function in individual tissues. The importance of nuclear- composed of five multi-subunit complexes embedded in encoded subunits is emphasized by recently discovered the inner mitochondrial membrane (IMM). Electron pathogenic mutations in patients with severe mitopathies. In transport from reduced substrates of complexes I and II to addition, proteins substoichiometrically associated with COX were cytochrome c oxidase (COX, complex IV, CIV) is found to contribute to COX activity regulation and stabilization of achieved by increasing redox potential of individual the respiratory supercomplexes.
    [Show full text]
  • Electron Transport Chain Activity Is a Predictor and Target for Venetoclax Sensitivity in Multiple Myeloma
    ARTICLE https://doi.org/10.1038/s41467-020-15051-z OPEN Electron transport chain activity is a predictor and target for venetoclax sensitivity in multiple myeloma Richa Bajpai1,7, Aditi Sharma 1,7, Abhinav Achreja2,3, Claudia L. Edgar1, Changyong Wei1, Arusha A. Siddiqa1, Vikas A. Gupta1, Shannon M. Matulis1, Samuel K. McBrayer 4, Anjali Mittal3,5, Manali Rupji 6, Benjamin G. Barwick 1, Sagar Lonial1, Ajay K. Nooka 1, Lawrence H. Boise 1, Deepak Nagrath2,3,5 & ✉ Mala Shanmugam 1 1234567890():,; The BCL-2 antagonist venetoclax is highly effective in multiple myeloma (MM) patients exhibiting the 11;14 translocation, the mechanistic basis of which is unknown. In evaluating cellular energetics and metabolism of t(11;14) and non-t(11;14) MM, we determine that venetoclax-sensitive myeloma has reduced mitochondrial respiration. Consistent with this, low electron transport chain (ETC) Complex I and Complex II activities correlate with venetoclax sensitivity. Inhibition of Complex I, using IACS-010759, an orally bioavailable Complex I inhibitor in clinical trials, as well as succinate ubiquinone reductase (SQR) activity of Complex II, using thenoyltrifluoroacetone (TTFA) or introduction of SDHC R72C mutant, independently sensitize resistant MM to venetoclax. We demonstrate that ETC inhibition increases BCL-2 dependence and the ‘primed’ state via the ATF4-BIM/NOXA axis. Further, SQR activity correlates with venetoclax sensitivity in patient samples irrespective of t(11;14) status. Use of SQR activity in a functional-biomarker informed manner may better select for MM patients responsive to venetoclax therapy. 1 Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA.
    [Show full text]
  • Two Nonidentical Forms of Subunit V Are Functional in Yeast
    Proc. Nati. Acad. Sci. USA Vol. 82, pp. 2235-2239, April 1985 Biochemistry Two nonidentical forms of subunit V are functional in yeast cytochrome c oxidase (Saccharomyces cerevisiae/nuclear genes/mitochondria/DNA sequence/gene disruption) MICHAEL G. CUMSKY, CHRISTINE Ko, CYNTHIA E. TRUEBLOOD, AND ROBERT 0. POYTON Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Campus Box 347, Boulder, CO 80309 Communicated by David M. Prescott, November 19, 1984 ABSTRACT In Saccharomyces cerevisiae, the inner mito- ing the gene on a multicopy plasmid, (ii) the ability of the chondrial membrane protein cytochrome c oxidase is com- plasmid to select subunit V-specific mRNA, and (iii) the ap- posed of nine polypeptide subunits. Six of these subunits (IV, pearance of a new cross-reacting subunit V polypeptide in V, VI, VII, VIIa, VIII) are encoded by the nuclear genome, transformant mitochondria (5, 6). and the remaining three (I, II, III) are encoded by mitochon- In this paper, we report that the latter gene, now called drial DNA. We report here the existence of two nonidentical COXSb, encodes a subunit V polypeptide that is similar to, subunit V polypeptides, which are encoded by separate genes but not identical with, the subunit V polypeptide recently within the yeast genome. One gene, COX5a, encodes the poly- sequenced in this laboratory (7). We also report the molecu- peptide Va, normally found in preparations of holocytochrome lar cloning of another gene for subunit V, COX5a. This gene c oxidase. The other gene, COX5b, encodes the polypeptide encodes a polypeptide identical in sequence to the subunit V Vb, which cross-reacts with anti-subunit Va antiserum and re- polypeptide found in the holoenzyme.
    [Show full text]
  • COX5B-Mediated Bioenergetic Alteration Regulates Tumor Growth and Migration by Modulating AMPK-UHMK1-ERK Cascade in Hepatoma
    cancers Article COX5B-Mediated Bioenergetic Alteration Regulates Tumor Growth and Migration by Modulating AMPK-UHMK1-ERK Cascade in Hepatoma 1, 1,2,3, 1 1 3 Yu-De Chu y, Wey-Ran Lin y , Yang-Hsiang Lin , Wen-Hsin Kuo , Chin-Ju Tseng , Siew-Na Lim 3,4, Yen-Lin Huang 5, Shih-Chiang Huang 5, Ting-Jung Wu 1, Kwang-Huei Lin 1 and Chau-Ting Yeh 1,2,3,6,* 1 Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; [email protected] (Y.-D.C.); [email protected] (W.-R.L.); [email protected] (Y.-H.L.); [email protected] (W.-H.K.); [email protected] (T.-J.W.); [email protected] (K.-H.L.) 2 Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan 3 Department of Internal Medicine, Chang Gung University College of Medicine, Taoyuan 333, Taiwan; [email protected] (C.-J.T.); [email protected] (S.-N.L.) 4 Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan 5 Department of Anatomic Pathology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; [email protected] (Y.-L.H.); [email protected] (S.-C.H.) 6 Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan * Correspondence: [email protected]; Tel.: +886-3-3281200 (ext. 8129) These authors contributed equally to this work. y Received: 11 June 2020; Accepted: 19 June 2020; Published: 22 June 2020 Abstract: The oxidative phosphorylation machinery in mitochondria, which generates the main bioenergy pool in cells, includes four enzyme complexes for electron transport and ATP synthase.
    [Show full text]
  • Insights Into the Mechanism of Action of 13-Cis Retinoic Acid
    The Pennsylvania State University The Graduate School College of Medicine INSIGHTS INTO THE MECHANISM OF ACTION OF 13-CIS RETINOIC ACID IN SUPPRESSING SEBACEOUS GLAND FUNCTION A Thesis in Molecular Medicine by Amanda Marie Nelson © 2007 Amanda Marie Nelson Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2007 The thesis of Amanda Marie Nelson was reviewed and approved* by the following: Diane M. Thiboutot Professor of Dermatology Thesis Advisor Chair of Committee Gary A. Clawson Professor of Pathology, Biochemistry and Molecular Biology Mark Kester Distinguished Professor of Pharmacology Jeffrey M. Peters Associate Professor of Molecular Toxicology Jong K. Yun Assistant Professor of Pharmacology Craig Meyers Professor of Microbiology and Immunology Co-chair, Molecular Medicine Graduate Degree Program *Signatures are on file in the Graduate School iii ABSTRACT Nearly 40-50 million people of all races and ages in the United States have acne, making it the most common skin disease. Although acne is not a serious health threat, severe acne can lead to disfiguring, permanent scarring; increased anxiety; and depression. Isotretinoin (13-cis Retinoic Acid) is the most potent agent that affects each of the pathogenic features of acne: 1) follicular hyperkeratinization, 2) the activity of Propionibacterium acnes, 3) inflammation and 4) increased sebum production. Isotretinoin has been on the market since 1982 and even though it has been prescribed for 25 years, extensive studies into its molecular mechanism of action in human skin and sebaceous glands have not been done. Since isotretinoin is a teratogen, there is a clear need for safe and effective alternative therapeutic agents.
    [Show full text]
  • Multiple Mechanisms Regulate Eukaryotic Cytochrome C Oxidase
    cells Review Multiple Mechanisms Regulate Eukaryotic Cytochrome C Oxidase Rabia Ramzan 1, Bernhard Kadenbach 2,* and Sebastian Vogt 3 1 Cardiovascular Research Laboratory, Biochemical-Pharmacological Center, Philipps-University Marburg, Karl-von-Frisch-Strasse 1, D-35043 Marburg, Germany; [email protected] 2 Fachbereich Chemie, Philipps-University, D-35032 Marburg, Germany 3 Department of Heart Surgery, Campus Marburg, University Hospital of Giessen and Marburg, D-35043 Marburg, Germany; [email protected] * Correspondence: [email protected] Abstract: Cytochrome c oxidase (COX), the rate-limiting enzyme of mitochondrial respiration, is regulated by various mechanisms. Its regulation by ATP (adenosine triphosphate) appears of particular importance, since it evolved early during evolution and is still found in cyanobacteria, but not in other bacteria. Therefore the “allosteric ATP inhibition of COX” is described here in more detail. Most regulatory properties of COX are related to “supernumerary” subunits, which are largely absent in bacterial COX. The “allosteric ATP inhibition of COX” was also recently described in intact isolated rat heart mitochondria. Keywords: mitochondria; energy metabolism; respiration; regulation; cytochrome c oxidase; adenine nucleotides; electron transport; efficiency; ROS generation 1. Introduction Citation: Ramzan, R.; Kadenbach, B.; There exists a basic difference in the regulation of ATP synthesis by oxidative phospho- Vogt, S. Multiple Mechanisms rylation (OxPhos) between bacteria (except cyanobacteria) and eukaryotic organisms. Aer- Regulate Eukaryotic Cytochrome C obic bacteria grow and divide continuously under constant conditions. Higher organisms Oxidase. Cells 2021, 10, 514. https:// change the rates of ATP synthesis and consumption up to a factor of 10 depending on vari- doi.org/10.3390/cells10030514 ous inner and outer signals.
    [Show full text]
  • COX5B Antibody Cat
    COX5B Antibody Cat. No.: 18-748 COX5B Antibody Immunohistochemistry of paraffin-embedded Immunohistochemistry of paraffin-embedded mouse heart using human liver damage using COX5B antibody COX5B antibody (18-748) at dilution of 1:100 (40x lens). (18-748) at dilution of 1:100 (40x lens). Immunofluorescence analysis of NIH-3T3 cells Immunofluorescence analysis of C6 cells using COX5B antibody using COX5B antibody (18-748) at dilution of 1:100. (18-748) at dilution of 1:100. Blue: DAPI for nuclear staining. Blue: DAPI for nuclear staining. September 29, 2021 1 https://www.prosci-inc.com/cox5b-antibody-18-748.html Immunoprecipitation analysis of 200ug extracts of Immunofluorescence analysis of U-2 OS cells using COX5B HepG2 cells, using 3 ug COX5B antibody (18-748). antibody (18-748) at dilution of 1:100. Blue: DAPI for nuclear Western blot was performed from the staining. immunoprecipitate using COX5B antibody (18-748) at a dilition of 1:1000. Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human, Mouse, Rat Recombinant fusion protein containing a sequence corresponding to amino acids 32-129 IMMUNOGEN: of human COX5B (NP_001853.2). TESTED APPLICATIONS: IF, IHC, IP, WB WB: ,1:500 - 1:2000 IHC: ,1:50 - 1:100 APPLICATIONS: IF: ,1:50 - 1:100 IP: ,1:50 - 1:100 POSITIVE CONTROL: 1) HepG2 2) 22Rv1 3) SW480 4) HeLa 5) A-549 6) Mouse heart PREDICTED MOLECULAR Observed: 14kDa WEIGHT: Properties PURIFICATION: Affinity purification CLONALITY: Polyclonal September 29, 2021 2 https://www.prosci-inc.com/cox5b-antibody-18-748.html ISOTYPE: IgG CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: PBS with 0.02% sodium azide, 50% glycerol, pH7.3.
    [Show full text]