551978V2.Full.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Increased COUP-TFII Expression in Adult Hearts Induces Mitochondrial Dysfunction Resulting in Heart Failure
ARTICLE Received 9 Mar 2015 | Accepted 30 Jul 2015 | Published 10 Sep 2015 DOI: 10.1038/ncomms9245 OPEN Increased COUP-TFII expression in adult hearts induces mitochondrial dysfunction resulting in heart failure San-Pin Wu1,2, Chung-Yang Kao1, Leiming Wang1, Chad J. Creighton3,4, Jin Yang5, Taraka R. Donti6, Romain Harmancey7, Hernan G. Vasquez7, Brett H. Graham6,8, Hugo J. Bellen6,8, Heinrich Taegtmeyer7, Ching-Pin Chang5, Ming-Jer Tsai1,8 & Sophia Y. Tsai1,8 Mitochondrial dysfunction and metabolic remodelling are pivotal in the development of cardiomyopathy. Here, we show that myocardial COUP-TFII overexpression causes heart failure in mice, suggesting a causal effect of elevated COUP-TFII levels on development of dilated cardiomyopathy. COUP-TFII represses genes critical for mitochondrial electron transport chain enzyme activity, oxidative stress detoxification and mitochondrial dynamics, resulting in increased levels of reactive oxygen species and lower rates of oxygen consumption in mitochondria. COUP-TFII also suppresses the metabolic regulator PGC-1 network and decreases the expression of key glucose and lipid utilization genes, leading to a reduction in both glucose and oleate oxidation in the hearts. These data suggest that COUP- TFII affects mitochondrial function, impairs metabolic remodelling and has a key role in dilated cardiomyopathy. Last, COUP-TFII haploinsufficiency attenuates the progression of cardiac dilation and improves survival in a calcineurin transgenic mouse model, indicating that COUP-TFII may serve as a therapeutic target for the treatment of dilated cardiomyopathy. 1 Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA. 2 Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana 70130, USA. -
Establishing the Pathogenicity of Novel Mitochondrial DNA Sequence Variations: a Cell and Molecular Biology Approach
Mafalda Rita Avó Bacalhau Establishing the Pathogenicity of Novel Mitochondrial DNA Sequence Variations: a Cell and Molecular Biology Approach Tese de doutoramento do Programa de Doutoramento em Ciências da Saúde, ramo de Ciências Biomédicas, orientada pela Professora Doutora Maria Manuela Monteiro Grazina e co-orientada pelo Professor Doutor Henrique Manuel Paixão dos Santos Girão e pela Professora Doutora Lee-Jun C. Wong e apresentada à Faculdade de Medicina da Universidade de Coimbra Julho 2017 Faculty of Medicine Establishing the pathogenicity of novel mitochondrial DNA sequence variations: a cell and molecular biology approach Mafalda Rita Avó Bacalhau Tese de doutoramento do programa em Ciências da Saúde, ramo de Ciências Biomédicas, realizada sob a orientação científica da Professora Doutora Maria Manuela Monteiro Grazina; e co-orientação do Professor Doutor Henrique Manuel Paixão dos Santos Girão e da Professora Doutora Lee-Jun C. Wong, apresentada à Faculdade de Medicina da Universidade de Coimbra. Julho, 2017 Copyright© Mafalda Bacalhau e Manuela Grazina, 2017 Esta cópia da tese é fornecida na condição de que quem a consulta reconhece que os direitos de autor são pertença do autor da tese e do orientador científico e que nenhuma citação ou informação obtida a partir dela pode ser publicada sem a referência apropriada e autorização. This copy of the thesis has been supplied on the condition that anyone who consults it recognizes that its copyright belongs to its author and scientific supervisor and that no quotation from the -
Efficacy and Mechanistic Evaluation of Tic10, a Novel Antitumor Agent
University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2012 Efficacy and Mechanisticv E aluation of Tic10, A Novel Antitumor Agent Joshua Edward Allen University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Oncology Commons Recommended Citation Allen, Joshua Edward, "Efficacy and Mechanisticv E aluation of Tic10, A Novel Antitumor Agent" (2012). Publicly Accessible Penn Dissertations. 488. https://repository.upenn.edu/edissertations/488 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/488 For more information, please contact [email protected]. Efficacy and Mechanisticv E aluation of Tic10, A Novel Antitumor Agent Abstract TNF-related apoptosis-inducing ligand (TRAIL; Apo2L) is an endogenous protein that selectively induces apoptosis in cancer cells and is a critical effector in the immune surveillance of cancer. Recombinant TRAIL and TRAIL-agonist antibodies are in clinical trials for the treatment of solid malignancies due to the cancer-specific cytotoxicity of TRAIL. Recombinant TRAIL has a short serum half-life and both recombinant TRAIL and TRAIL receptor agonist antibodies have a limited capacity to perfuse to tissue compartments such as the brain, limiting their efficacy in certain malignancies. To overcome such limitations, we searched for small molecules capable of inducing the TRAIL gene using a high throughput luciferase reporter gene assay. We selected TRAIL-inducing compound 10 (TIC10) for further study based on its induction of TRAIL at the cell surface and its promising therapeutic index. TIC10 is a potent, stable, and orally active antitumor agent that crosses the blood-brain barrier and transcriptionally induces TRAIL and TRAIL-mediated cell death in a p53-independent manner. -
Studies of Mitochondrial Dysfunction in Models of Rett Syndrome
Studies of Mitochondrial Dysfunction in Models of Rett Syndrome by Natalya O. Shulyakova A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Physiology University of Toronto © Copyright by Natalya O. Shulyakova 2016 Studies of Mitochondrial Dysfunction in Models of Rett Syndrome Natalya O. Shulyakova Doctor of Philosophy Department of Physiology University of Toronto 2016 Abstract Rett syndrome (RTT) is a neurodevelopmental disorder affecting primarily females that is predominantly caused by mutations in the MECP2 gene. RTT is characterized by a loss of previously acquired skills, ambulatory deficits, respiratory problems and overall retarded growth. Mitochondrial dysfunction and oxidative stress identified in MeCP2-deficient tissues raised the possibility that mitochondrial impairments may play role in the pathogenesis of RTT. To further investigate the role of mitochondrial dysfunction in the absence of MeCP2, I analyzed mitochondrial function and morphology in Mecp2-deficient mouse adult skin fibroblasts (ASF) and in Mecp2-null mouse ESC derived neurons using an array of fluorescent dyes coupled with flow cytometry and confocal microscopy. The heterogeneity of cellular responses in ASF prevented identification of consistent changes in mitochondrial function, making them an unsuitable model for studying mitochondrial dysfunctions. Mecp2-null mouse ESC were differentiated into enriched population of neurons. Mecp2-null neurons displayed hyperpolarized mitochondria, high levels of ROS, low ATP and impaired mitochondrial trafficking. Resveratrol and mitochondrial cocktail that target expression of mitochondrial genes and mitochondrial metabolism, but not simple ROS scavengers, were successful at ameliorating ROS levels and normalizing mitochondrial membrane potential. Since oxidative stress was reported in RTT ii mice, I tested whether resveratrol and mitochondrial cocktail could reverse or improve behavioral phenotype in RTT mice. -
Sensitivity to Saccharomyces Cerevisiae (Coxsb/Hypoxlc Gee/Aerobk Repression/High Mobiity Group Box) JAMES R
Proc. Nati. Acad. Sci. USA Vol. 91, pp. 7345-7349, July 1994 Genetics The ORDI gene encodes a transcription factor involved in oxygen regulation and is identical to IXR1, a gene that confers cisplatin sensitivity to Saccharomyces cerevisiae (COXSb/hypoxlc gee/aerobk repressIon/hIgh mobiity group box) JAMES R. LAMBERT, VIRGINIA W. BILANCHONE, AND MICHAEL G. CUMSKY* Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92717 Communicated by Stephen J. Lippard, March 18, 1994 (receivedfor review December 23, 1993) ABSTRACT The yeast COX5a and COXSb genes encode gen-dependent processes (respiration, sterol synthesis, oxida- isoforms of subunit Va of the mitochondrial inner membrane tive damage repair), and several, like the COXS genes, exist as protein complex cytochrome c oxidase. These genes have been pairs inversely regulated by oxygen and heme (8, 9). shown to be inversely regulated at the level oftranscription by Several upstream elements that regulate the expression of oxygen, which functions through the metabolic coeffector the COX5b gene have been identified (5). These include two heme. In earlier studies we identified several regulatory ele- sites of positive control (activation elements or UASs) and ments that control tnscriptional activation and aerobic re- three sites ofnegative control (repression elements or URSs) pression of one of these genes, COX5b. Here, we report the that mediate aerobic repression. Two of the repression ele- isolation of trans-acting mutants that are defective in the ments contain the consensus sequence ATTGTTCT, which aerobic repression of COXSb transcription. The mutants fall is found upstream of most hypoxic genes and appears to be into two complementation groups. -
Androgen Receptor Interacting Proteins and Coregulators Table
ANDROGEN RECEPTOR INTERACTING PROTEINS AND COREGULATORS TABLE Compiled by: Lenore K. Beitel, Ph.D. Lady Davis Institute for Medical Research 3755 Cote Ste Catherine Rd, Montreal, Quebec H3T 1E2 Canada Telephone: 514-340-8260 Fax: 514-340-7502 E-Mail: [email protected] Internet: http://androgendb.mcgill.ca Date of this version: 2010-08-03 (includes articles published as of 2009-12-31) Table Legend: Gene: Official symbol with hyperlink to NCBI Entrez Gene entry Protein: Protein name Preferred Name: NCBI Entrez Gene preferred name and alternate names Function: General protein function, categorized as in Heemers HV and Tindall DJ. Endocrine Reviews 28: 778-808, 2007. Coregulator: CoA, coactivator; coR, corepressor; -, not reported/no effect Interactn: Type of interaction. Direct, interacts directly with androgen receptor (AR); indirect, indirect interaction; -, not reported Domain: Interacts with specified AR domain. FL-AR, full-length AR; NTD, N-terminal domain; DBD, DNA-binding domain; h, hinge; LBD, ligand-binding domain; C-term, C-terminal; -, not reported References: Selected references with hyperlink to PubMed abstract. Note: Due to space limitations, all references for each AR-interacting protein/coregulator could not be cited. The reader is advised to consult PubMed for additional references. Also known as: Alternate gene names Gene Protein Preferred Name Function Coregulator Interactn Domain References Also known as AATF AATF/Che-1 apoptosis cell cycle coA direct FL-AR Leister P et al. Signal Transduction 3:17-25, 2003 DED; CHE1; antagonizing regulator Burgdorf S et al. J Biol Chem 279:17524-17534, 2004 CHE-1; AATF transcription factor ACTB actin, beta actin, cytoplasmic 1; cytoskeletal coA - - Ting HJ et al. -
Proteomic and Metabolomic Analyses of Mitochondrial Complex I-Deficient
THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 287, NO. 24, pp. 20652–20663, June 8, 2012 © 2012 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A. Proteomic and Metabolomic Analyses of Mitochondrial Complex I-deficient Mouse Model Generated by Spontaneous B2 Short Interspersed Nuclear Element (SINE) Insertion into NADH Dehydrogenase (Ubiquinone) Fe-S Protein 4 (Ndufs4) Gene*□S Received for publication, November 25, 2011, and in revised form, April 5, 2012 Published, JBC Papers in Press, April 25, 2012, DOI 10.1074/jbc.M111.327601 Dillon W. Leong,a1 Jasper C. Komen,b1 Chelsee A. Hewitt,a Estelle Arnaud,c Matthew McKenzie,d Belinda Phipson,e Melanie Bahlo,e,f Adrienne Laskowski,b Sarah A. Kinkel,a,g,h Gayle M. Davey,g William R. Heath,g Anne K. Voss,a,h René P. Zahedi,i James J. Pitt,j Roman Chrast,c Albert Sickmann,i,k Michael T. Ryan,l Gordon K. Smyth,e,f,h b2 a,h,m,n3 David R. Thorburn, and Hamish S. Scott Downloaded from From the aMolecular Medicine Division, gImmunology Division, and eBioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia, the bMurdoch Childrens Research Institute, Royal Children’s Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia, the cDépartement de Génétique Médicale, Université de Lausanne, 1005 Lausanne, Switzerland, the dCentre for Reproduction and Development, Monash Institute of Medical Research, Clayton, Victoria 3168, Australia, the hDepartment of Medical Biology -
Low Abundance of the Matrix Arm of Complex I in Mitochondria Predicts Longevity in Mice
ARTICLE Received 24 Jan 2014 | Accepted 9 Apr 2014 | Published 12 May 2014 DOI: 10.1038/ncomms4837 OPEN Low abundance of the matrix arm of complex I in mitochondria predicts longevity in mice Satomi Miwa1, Howsun Jow2, Karen Baty3, Amy Johnson1, Rafal Czapiewski1, Gabriele Saretzki1, Achim Treumann3 & Thomas von Zglinicki1 Mitochondrial function is an important determinant of the ageing process; however, the mitochondrial properties that enable longevity are not well understood. Here we show that optimal assembly of mitochondrial complex I predicts longevity in mice. Using an unbiased high-coverage high-confidence approach, we demonstrate that electron transport chain proteins, especially the matrix arm subunits of complex I, are decreased in young long-living mice, which is associated with improved complex I assembly, higher complex I-linked state 3 oxygen consumption rates and decreased superoxide production, whereas the opposite is seen in old mice. Disruption of complex I assembly reduces oxidative metabolism with concomitant increase in mitochondrial superoxide production. This is rescued by knockdown of the mitochondrial chaperone, prohibitin. Disrupted complex I assembly causes premature senescence in primary cells. We propose that lower abundance of free catalytic complex I components supports complex I assembly, efficacy of substrate utilization and minimal ROS production, enabling enhanced longevity. 1 Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE4 5PL, UK. 2 Centre for Integrated Systems Biology of Ageing and Nutrition, Newcastle University, Newcastle upon Tyne NE4 5PL, UK. 3 Newcastle University Protein and Proteome Analysis, Devonshire Building, Devonshire Terrace, Newcastle upon Tyne NE1 7RU, UK. Correspondence and requests for materials should be addressed to T.v.Z. -
Noelia Díaz Blanco
Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
Mitochondrial Atpif1 Regulates Haem Synthesis in Developing Erythroblasts
LETTER doi:10.1038/nature11536 Mitochondrial Atpif1 regulates haem synthesis in developing erythroblasts Dhvanit I. Shah1, Naoko Takahashi-Makise2, Jeffrey D. Cooney1{, Liangtao Li2, Iman J. Schultz1{, Eric L. Pierce1{, Anupama Narla1,3, Alexandra Seguin2, Shilpa M. Hattangadi3,4{, Amy E. Medlock5, Nathaniel B. Langer1{, Tamara A. Dailey5, Slater N. Hurst1, Danilo Faccenda6, Jessica M. Wiwczar7{, Spencer K. Heggers1, Guillaume Vogin1{, Wen Chen1{, Caiyong Chen1, Dean R. Campagna8, Carlo Brugnara9,YiZhou3, Benjamin L. Ebert1, Nika N. Danial7, Mark D. Fleming8, Diane M. Ward2, Michelangelo Campanella6, Harry A. Dailey5, Jerry Kaplan2 & Barry H. Paw1,3 Defects in the availability of haem substrates or the catalytic activ- and band-3 (data not shown). On the basis of red cell indices, the ity of the terminal enzyme in haem biosynthesis, ferrochelatase erythrocytes from pnt embryos that survive to adult stage exhibited (Fech), impair haem synthesis and thus cause human congenital hypochromic, microcytic anaemia (Supplementary Fig. 1a). Histolo- anaemias1,2. The interdependent functions of regulators of mito- gical analysis of adult pnt haematopoietic tissues showed no gross chondrial homeostasis and enzymes responsible for haem synthesis morphological defects (Supplementary Fig. 1b). are largely unknown. To investigate this we used zebrafish genetic To identify a candidate gene for the pnt locus we carried out posi- screens and cloned mitochondrial ATPase inhibitory factor 1 tional cloning and chromosomal walk, which identified the most (atpif1) from a zebrafish mutant with profound anaemia, pinotage (pnt tq209). Here we describe a direct mechanism establishing that a b Atpif1 regulates the catalytic efficiency of vertebrate Fech to syn- z42828bz15222 z160 z67416 z13215 thesize haem. -
Structure-Function Relationship of Mitochondrial Cytochrome C Oxidase: Redox Centres, Proton Pathways and Isozymes
Structure-function relationship of mitochondrial cytochrome c oxidase: redox centres, proton pathways and isozymes Raksha Jagdish Dodia Structural Molecular Biology University College London Submitted for the Degree of Doctor of Philosophy 2014 Supervisor: Prof. Peter R. Rich Internal examiner: Dr. Joanne Santini External examiner: Prof. Peter J. Nixon 1 Signed declaration I Raksha J. Dodia confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Abstract Cytochrome c oxidase (CcO) reduces O2 to water with four electrons from cytochromes c2+ and four matrix protons. The energy released is conserved in the protonmotive force by translocation of four additional protons into the intermembrane space. Electrons are transferred via CuA, haem a, to the binuclear centre; haem a3 and CuB, where O2 is reduced. Four major aspects of its structure/function have been investigated in this study. Mid-infrared (IR) spectroscopy has been used to probe redox-induced structural changes. By using electrochemically-poised samples of cyanide- and carbon monoxide-ligated bovine CcO these redox-linked IR changes were shown to be linked primarily with CuA and haem a metal centre transitions with fewer changes associated with transitions in haem a3 and CuB. CcO contains a cross-linked Tyr-His which is believed to form a Tyr radical in the PM intermediate. In this work, electrochemical conditions to induce Tyr-His model compound radicals have been combined with IR spectroscopy to record IR reference spectra. This has aided tentative assignment of IR bands at 1572 cm-1 or 1555 cm-1 to .