Composition of Foods Raw, Processed, Prepared USDA National Nutrient Database for Standard Reference, Release 25

Total Page:16

File Type:pdf, Size:1020Kb

Composition of Foods Raw, Processed, Prepared USDA National Nutrient Database for Standard Reference, Release 25 Composition of Foods Raw, Processed, Prepared USDA National Nutrient Database for Standard Reference, Release 25 September 2012 U.S. Department of Agriculture Agricultural Research Service Beltsville Human Nutrition Research Center Nutrient Data Laboratory 10300 Baltimore Avenue Building 005, Room 107, BARC-West Beltsville, Maryland 20705 Suggested Citation: U.S. Department of Agriculture, Agricultural Research Service. 2012. USDA National Nutrient Database for Standard Reference, Release 25. Nutrient Data Laboratory Home Page, http://www.ars.usda.gov/ba/bhnrc/ndl Disclaimers: Mention of trade names, commercial products, or companies in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture over others not mentioned. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410, or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. Issued September 2012 i The USDA National Nutrient Database for Standard Reference, Release 25 was prepared by the following staff members of the Nutrient Data Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture: Coordinator David B. Haytowitz Senior Scientists Jaspreet K.C. Ahuja Jacob Exler David B. Haytowitz Pamela R. Pehrsson Janet Roseland Scientists Mona Khan Melissa Nickle Kris Patterson Bethany Showell Meena Somanchi Robin Thomas Juhi Williams Research Leader Paul Cotton (Acting) Joanne Holden (Ret.) IT Support Kim Klingenstein Cevon McLean Administrative Support Carole Miller Acknowledgements: The authors gratefully acknowledge the constructive contributions of the peer reviewers: Carol J. Boushey, University of Hawaii Cancer Center and Diane C. Mitchell, Department of Nutritional Sciences, Pennsylvania State University. ii Contents Introduction ..................................................................................................................... 1 Specific Changes for SR25 ............................................................................................. 1 Database Reports ........................................................................................................... 3 Database Content ........................................................................................................... 4 Food Descriptions ....................................................................................................... 4 Food Group ............................................................................................................. 5 LanguaL .................................................................................................................. 5 Nutrients ...................................................................................................................... 6 Nutrient Retention and Food Yield .......................................................................... 8 Proximates ............................................................................................................ 11 Minerals ................................................................................................................. 13 Vitamins ................................................................................................................ 13 Lipid Components ................................................................................................. 20 Amino Acids .......................................................................................................... 24 Weights and Measures .............................................................................................. 24 Sources of Data ........................................................................................................ 25 Explanation of File Formats ........................................................................................... 26 Relational Files .......................................................................................................... 26 Food Description File ............................................................................................ 28 Food Group Description File ................................................................................. 29 LanguaL Factor ..................................................................................................... 29 LanguaL Factors Description File .......................................................................... 30 Nutrient Data File .................................................................................................. 30 Nutrient Definition File ........................................................................................... 32 Source Code File .................................................................................................. 33 Data Derivation Code Description File .................................................................. 33 Weight File ............................................................................................................ 34 Footnote File ......................................................................................................... 35 Sources of Data Link File ...................................................................................... 35 Sources of Data File .............................................................................................. 36 Abbreviated File ........................................................................................................ 37 Update Files .............................................................................................................. 39 Summary ....................................................................................................................... 41 References Cited in the Documentation ........................................................................ 42 iii Contents (Continued) Notes on Foods ............................................................................................................. 49 Introduction ............................................................................................................... 49 National Food and Nutrient Analysis Program .......................................................... 49 Identify Key Foods and critical nutrients for sampling and analysis ...................... 50 Evaluate existing data for scientific quality ............................................................ 50 Devise and implement a probability-based sampling survey of U.S. foods ........... 51 Analyze sampled foods under USDA-supervised laboratory contracts ................. 52 Compile newly generated data to update the National Nutrient Databank ............ 55 Beef Products (Food Group 13) ................................................................................ 59 Breakfast Cereals (Food Group 08) .......................................................................... 70 Cereal Grains and Pasta (Food Group 20) ................................................................ 74 Eggs (Food Group 01)............................................................................................... 79 Legumes and Legume Products (Food Group 16) .................................................... 81 Nut and Seed Products (Food Group 12) .................................................................. 89 Pork Products (Food Group 10) ................................................................................ 97 Poultry Products (Food Group 05) .......................................................................... 106 Vegetable and Vegetable Products (Food Group 11) ............................................. 111 Appendix A. Abbreviations Used in Short Descriptions ................................................A-1 Appendix B. Other Abbreviations .................................................................................B-1 iv Introduction The USDA National Nutrient Database for Standard Reference (SR) is the major source of food composition data in the United States. It provides the foundation for most food composition databases in the public and private sectors. As information is updated, new versions of the database are released. This version, Release 25 (SR25), contains data on 8,194 food items and up to 146 food components. It replaces SR24 issued in September 2011. Updated data have been published electronically on the USDA Nutrient Data Laboratory (NDL) web site since 1992. SR25 includes composition data for all the food groups and nutrients published in the 21 volumes of “Agriculture Handbook 8” (U.S. Department of Agriculture
Recommended publications
  • CHESTNUT (CASTANEA Spp.) CULTIVAR EVALUATION for COMMERCIAL CHESTNUT PRODUCTION
    CHESTNUT (CASTANEA spp.) CULTIVAR EVALUATION FOR COMMERCIAL CHESTNUT PRODUCTION IN HAMILTON COUNTY, TENNESSEE By Ana Maria Metaxas Approved: James Hill Craddock Jennifer Boyd Professor of Biological Sciences Assistant Professor of Biological and Environmental Sciences (Director of Thesis) (Committee Member) Gregory Reighard Jeffery Elwell Professor of Horticulture Dean, College of Arts and Sciences (Committee Member) A. Jerald Ainsworth Dean of the Graduate School CHESTNUT (CASTANEA spp.) CULTIVAR EVALUATION FOR COMMERCIAL CHESTNUT PRODUCTION IN HAMILTON COUNTY, TENNESSEE by Ana Maria Metaxas A Thesis Submitted to the Faculty of the University of Tennessee at Chattanooga in Partial Fulfillment of the Requirements for the Degree of Master of Science in Environmental Science May 2013 ii ABSTRACT Chestnut cultivars were evaluated for their commercial applicability under the environmental conditions in Hamilton County, TN at 35°13ꞌ 45ꞌꞌ N 85° 00ꞌ 03.97ꞌꞌ W elevation 230 meters. In 2003 and 2004, 534 trees were planted, representing 64 different cultivars, varieties, and species. Twenty trees from each of 20 different cultivars were planted as five-tree plots in a randomized complete block design in four blocks of 100 trees each, amounting to 400 trees. The remaining 44 chestnut cultivars, varieties, and species served as a germplasm collection. These were planted in guard rows surrounding the four blocks in completely randomized, single-tree plots. In the analysis, we investigated our collection predominantly with the aim to: 1) discover the degree of acclimation of grower- recommended cultivars to southeastern Tennessee climatic conditions and 2) ascertain the cultivars’ ability to survive in the area with Cryphonectria parasitica and other chestnut diseases and pests present.
    [Show full text]
  • Alien Introgression Studies Involving Vigna Mungo X Vigna Umbellata Hybridization
    Int.J.Curr.Microbiol.App.Sci (2020) 9(2): 268-276 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 9 Number 2 (2020) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2020.902.034 Alien Introgression Studies Involving Vigna mungo x Vigna umbellata Hybridization Shayla Bindra1*, R.K. Mittal2, V.K. Sood2 and H.K. Chaudhary2 1Department of Plant Breeding & Genetics, Punjab Agricultural University, Ludhiana, Punjab, India 2Department of Crop Improvement, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, India *Corresponding author ABSTRACT Urdbean has narrow genetic base due to common ancestry of various K e yw or ds superior genotypes, poor plant type and genetic vulnerability to biotic and abiotic stresses. The underutilized related specie, V. umbellata (ricebean), Alien introgression, Urdbean, Ricebean, nutritive and resistant to most of the fungal pathogens, is speculated to be hybridization potential donor. Therefore, V. mungo and V. umbellata were crossed with a view to introgress alien genes. On inter-specific hybridization, the presence Article Info of pre-fertilization barriers and post-fertilization barriers were observed. Accepted: As, hybrids exhibited reduced germination and sterility. The frequency of 05 January 2020 hybridization, radicle and plant production percentage among three cross Available Online: combinations revealed genotype specific response between both the 10 February 2020 species. Introduction ancestry, poor plant type, vulnerability to biotic and abiotic stresses and its cultivation in The grain legume, urdbean (Vigna mungo L. marginal land and harsh environmental Hepper) also known as blackgram, black conditions. It is susceptible to various fungal lentil, mungo bean, black matpe bean.
    [Show full text]
  • Frank Meyer, Isabel Shipley Cunningham Agricultural Explorer
    Frank Meyer, Isabel Shipley Cunningham Agricultural Explorer For 60 years the work of Frank N. Meyer has 2,500 pages of his letters tell of his journeys remained a neglected segment of America’s and the plants he collected, and the USDA heritage. Now, as people are becoming con- Inventory of Seeds and Plants Imported con- cerned about feeding the world’s growing tains descriptions of his introductions. population and about the loss of genetic di- Until recently little was known about the versity of crops, Meyer’s accomplishments first 25 years of Meyer’s life, when he lived have a special relevance. Entering China in in Amsterdam and was called Frans Meijer. 1905, near the dawn of the single era when Dutch sources reveal that he was bom into a explorers could travel freely there, he be- loving family in 1875. Frans was a quiet boy, came the first plant hunter to represent a who enjoyed taking long walks, reading government and to search primarily for eco- about distant lands, and working in his fami- nomically useful plants rather than orna- ly’s small garden. By the time he had mentals. No one before him had spent 10 fimshed elementary school, he knew that ’ years crossing the mountains, deserts, farms, wanted to be a world traveler who studied he ’,if and forests of Asia in search of fruits, nuts, plants; however, his parents could not afford vegetables, grains, and fodder crops; no one to give him further education. When he was has done so since. 14 years old, he found work as a gardener’s During four plant-hunting expeditions to helper at the Amsterdam Botanical Garden.
    [Show full text]
  • Castanea Mollissima Blume): the Roots of Nut Tree Domestication
    ORIGINAL RESEARCH published: 25 June 2018 doi: 10.3389/fpls.2018.00810 Signatures of Selection in the Genomes of Chinese Chestnut (Castanea mollissima Blume): The Roots of Nut Tree Domestication Nicholas R. LaBonte 1*, Peng Zhao 2 and Keith Woeste 3 1 Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States, 2 Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China, 3 Hardwood Tree Improvement and Regeneration Center, Northern Research Station, USDA Forest Service, West Lafayette, IN, United States Chestnuts (Castanea) are major nut crops in East Asia and southern Europe, and are unique among temperate nut crops in that the harvested seeds are starchy rather than oily. Chestnut species have been cultivated for three millennia or more in China, so it is likely that artificial selection has affected the genome of orchard-grown chestnuts. The genetics of Chinese chestnut (Castanea mollissima Blume) domestication are also of Edited by: interest to breeders of hybrid American chestnut, especially if the low-growing, branching S. Hong Lee, habit of Chinese chestnut, an impediment to American chestnut restoration, is partly University of South Australia, Australia the result of artificial selection. We resequenced genomes of wild and orchard-derived Reviewed by: Guo-Bo Chen, Chinese chestnuts and identified selective sweeps based on pooled whole-genome SNP Zhejiang Provincial People’s Hospital, datasets. We present candidate gene loci for chestnut domestication and discuss the China potential phenotypic effects of candidate loci, some of which may be useful genes for Chaeyoung Lee, Soongsil University, South Korea chestnut improvement in Asia and North America.
    [Show full text]
  • Appendix A~K
    Appendix A~K Appendix A. Detailed information for the 146 Chinese chestnut (C.mollissima) accessions and nine chinese chinquapin (C.henryi) accessions used in this study Sample Name Species Cultivars Group Germplasm Cultivation region 1 Huijian Castanea mollissima Bl. Northwest China PC Shanxi,China 2 Mingjian Castanea mollissima Bl. Northwest China PC Shanxi,China 3 Chunli Castanea mollissima Bl. Northwest China PC Shanxi,China 4 Zuohongli Castanea mollissima Bl. Northwest China PC Shanxi,China 5 Zhenbashuangjie Castanea mollissima Bl. Northwest China PC Shanxi,China 6 zha 18 Castanea mollissima Bl. Northwest China LC Shanxi,China 7 Jingshuhong Castanea mollissima Bl. North China PC Beijing,China 8 Huaixiang Castanea mollissima Bl. North China PC Beijing,China 9 Huaihuang Castanea mollissima Bl. North China PC Beijing,China 10 Huzhaoli Castanea mollissima Bl. North China LC Beijing,China 11 Huaifeng Castanea mollissima Bl. North China PC Beijing,China 12 Yanshanhongli Castanea mollissima Bl. North China PC Beijing,China 13 Xiazhuang Castanea mollissima Bl. North China LC Beijing,China 14 Xinzhuang 2 Castanea mollissima Bl. North China LC Beijing,China 15 Huaijiu Castanea mollissima Bl. North China PC Beijing,China 16 Yanchang Castanea mollissima Bl. North China PC Beijing,China 17 Yanfeng Castanea mollissima Bl. North China PC Beijing,China 18 Yanshanzaofeng Castanea mollissima Bl. North China NC Hebei,China 19 Donglimingzhu Castanea mollissima Bl. North China PC Hebei,China 20 Zipo Castanea mollissima Bl. North China PC Hebei,China 21 Tasi Castanea mollissima Bl. North China PC Hebei,China 1 22 Zundali Castanea mollissima Bl. North China PC Hebei,China 23 Duanzhiyabian Castanea mollissima Bl.
    [Show full text]
  • Plants for Tropical Subsistence Farms
    SELECTING THE BEST PLANTS FOR THE TROPICAL SUBSISTENCE FARM By Dr. F. W. Martin. Published in parts, 1989 and 1994; Revised 1998 and 2007 by ECHO Staff Dedication: This document is dedicated to the memory of Scott Sherman who worked as ECHO's Assistant Director until his death in January 1996. He spent countless hours corresponding with hundreds of missionaries and national workers around the world, answering technical questions and helping them select new and useful plants to evaluate. Scott took special joy in this work because he Photo by ECHO Staff knew the God who had created these plants--to be a blessing to all the nations. WHAT’S INSIDE: TABLE OF CONTENTS HOW TO FIND THE BEST PLANTS… Plants for Feeding Animals Grasses DESCRIPTIONS OF USEFUL PLANTS Legumes Plants for Food Other Feed Plants Staple Food Crops Plants for Supplemental Human Needs Cereal and Non-Leguminous Grain Fibers Pulses (Leguminous Grains) Thatching/Weaving and Clothes Roots and Tubers Timber and Fuel Woods Vegetable Crops Plants for the Farm Itself Leguminous Vegetables Crops to Conserve or Improve the Soil Non-Leguminous Fruit Vegetables Nitrogen-Fixing Trees Leafy Vegetables Miners of Deep (in Soil) Minerals Miscellaneous Vegetables Manure Crops Fruits and Nut Crops Borders Against Erosion Basic Survival Fruits Mulch High Value Fruits Cover Crops Outstanding Nuts Crops to Modify the Climate Specialty Food Crops Windbreaks Sugar, Starch, and Oil Plants for Shade Beverages, Spices and Condiment Herbs Other Special-Purpose Plants Plants for Medicinal Purposes Living Fences Copyright © ECHO 2007. All rights reserved. This document may be reproduced for training purposes if Plants for Alley Cropping distributed free of charge or at cost and credit is given to ECHO.
    [Show full text]
  • Castanea Mollissima
    Castanea mollissima As the American chestnut struggles with disease, the blight- resistant Chinese chestnut is quickly gaining popularity. The sweet-tasting nuts are often roasted for holiday eating and have been made famous in turkey stuffing recipes across the country. But this is more than a nut tree. The shade of its spreading canopy is dense, providing relief in the hot, dry climates the Chinese chestnut does well in. Hardiness Zones: The chinese chestnut can be expected to grow in Hardiness Zones 4-8. Tree Type: This is a nut-producing tree, yielding nuts for human and wildlife consumption. Mature Size: The Chinese chestnut grows to a height of 40-60' and a spread of 40-60' at maturity. Growth Rate: This tree grows at a slow to medium rate, with height increases of anywhere from less than 12" to 24" per year. Sun Preference: Full sun is the ideal condition for this tree, meaning it should get at least six hours of direct, unfiltered sunlight each day. Soil Preference: The Chinese chestnut grows in acidic, loamy, moist, sandy, well-drained, and clay soils. It is drought-tolerant. Attributes This tree: Should be planted in pairs or groups to ensure pollination. 1 Yields a ripened nut crop mid/late September through October. A prickly 2-3 /2" seed husk en- closes 1-4 nuts. The nuts are large, meaty, crisp, and sweet, although less sweet than American chestnuts. Begins to bear nuts in 4-5 years if grown from seed. Provides dense shade with a handsome, spreading canopy. Has wood that is very durable and resistant to rot.
    [Show full text]
  • Canarium Ovatum) Shells
    International Journal of Engineering Research And Management (IJERM) ISSN: 2349- 2058, Volume-04, Issue-09, September 2017 Physical and Mechanical Properties of Particleboard Utilizing Pili Nut (Canarium Ovatum) Shells Ariel B. Morales are widely used for various purposes. It is a lightweight and Abstract— This study aims to make a 200 mm x 200 mm strong kind of plastic that can be easily remolded into particleboard with nine millimeter thickness using Crushed Pili different shapes [5]. This study also helps in lessening Nut Shells (CPNS) and sawdust as raw materials with the ratios non-biodegradable wastes and be useful as a resin. This study (CPNS: sawdust) 100:0, 75:25, and 50:50 by weight and determine their physical and mechanical properties. Also, the specifically aims the following objectives: results were compared to the standard properties of commercial • To determine its physical property such as density, unit particleboard set classified by the Philippine Standard weight and thickness swelling, Association (PHILSA). The raw materials were mixed with • To determine the mechanical property, specifically High-Density Polyethylene (HDPE) as an adhesive. All Modulus of Rupture (MOR). particleboards have passed and exceeded the PHILSA standard • To compare the results to the standard properties for for particle board where 100:0 mixtures with density of 1204.09 kg/m3 has the highest MOR of 110 MPa and lowest thickness commercial particleboard from Philippine Standard swelling of 1.11%. Therefore, particleboard made from Pili nut Association (PHILSA) if it will pass or exceed the given shells has an outstanding property compared to commercial standards. particleboards that depends on its application.
    [Show full text]
  • Impact of Cobalt on Germination and Seedling Growth of Eleusine Coracana L
    Global Journal of Molecular Sciences 3 (1): 18-20, 2008 ISSN 1990-9241 © IDOSI Publications, 2008 Impact of Cobalt on Germination and Seedling Growth of Eleusine coracana L. And Oryza sativa L. Under Hydroponic Culture 1Kaliyamoorthy Jayakumar, 1,2Cheruth Abdul Jaleel and 3,4M.M. Azooz 1Stress Physiology Lab, Department of Botany, Annamalai University, Annamalainagar 608 002, Tamilnadu, India 2DMJM International (AECOM Middle East Ltd.), Consultant of Gardens Sector Projects, Alain Municipality and Eastern Emirates, P.O. Box 1419, Al-Ain, Abu Dhabi, United Arab Emirates 3Department of Botany, Faculty of Science, South Valley University, 83523 Qena, Egypt 4Department of Biology, Faculty of Science, King Faisal University, P.O. Box: 380, Al-Hassa 31982, Saudi Arabia Abstract: Germination studies were conducted in ragi (Eleusine coracana L.) and paddy (Oryza sativa L.) inorder to find out the impact of soil cobalt level on germination and seedling vigour. The seeds of ragi and paddy were germinated with six concentrations of cobalt chloride solution ranging from 5-100 mg/l in hydroponic condition upto 8 days. The germination was found increased significantly under low level of cobalt with decreased in germination and reduction in the length of radical and plumule were observed in seeds of ragi and paddy. Vigour index, tolerance index and dry weight of root and shoot of the seedlings increased at low level of cobalt treatments and decreased with increase in cobalt concentrations. However, the germination percentage of ragi and paddy seeds showed a significant difference with cobalt treatment. Key words: Cobalt, Ragi, Paddy, Germination, Seedling, Vigour, Hydroponics INTRODUCTION Coimbatore and seeds of paddy (Oryza sativa L.) cv ADT-43 were obtained from Tamilnadu Rice Research The presence of heavy metals in the environment is Institute, Aduthurai.
    [Show full text]
  • Chestnut Growers Urged to Implement Quarantine for Chestnut Gall Wasp
    Vol. 18 No. 4 Published by Chestnut Growers of America, Inc. Fall 2017 Chestnut Growers Urged to Implement Quarantine for Chestnut Gall Wasp By Michelle Warmund, Ph.D., University of Missouri Center for Agroforestry; Tom Green, Ph.D., Professor Emeritus, Western Illinois University; Tom Wahl, Red Fern Farms; Kathy Dice, Red Fern Farms; and Jim Dallmeyer, Thistle Creek Orchard he chestnut gall wasp, Dryocosumus 40 days and the larvae remain dormant Indeed, this pest was first introduced to Tkuriphilus Yasumatsu, is a tiny, gnat- until the following spring, when galls are the US on scion wood. Dispersal by flight sized, non-stinging insect that causes formed. With bud break, larvae induce is eclipsed by human transport. A serious galls in chestnut trees. These galls retard gall formation on developing plant tissues. source of propagation comes from home plant growth and flowering and can kill Larvae feed on the inner gall tissue for 20 owners who plant chestnuts in their yards branches. Severe infestations can kill trees. to 30 days before pupating. Adult wasps and hunters who plant them in woods to After the adult insects emerge, the dried, emerge from the galls in late May and attract deer. While commercial orchards blackened galls become woody and can early June. Beyond the gall clusters of dead may be fairly far apart, these alternate persist on older limbs for several years. leaves form. Called flags, these are easily growers provide additional “stepping Older, slower growing trees are more visible, making location of galls quickly stones” for the spread of the CGW. vulnerable.
    [Show full text]
  • Morphological and Agronomic Traits Variations for Mungbean Variety Selection and Improvement in Uganda
    African Crop Science Journal, Vol. 22, No. 2, pp. 123 - 136 ISSN 1021-9730/2014 $4.00 Printed in Uganda. All rights reserved © 2014, African Crop Science Society MORPHOLOGICAL AND AGRONOMIC TRAITS VARIATIONS FOR MUNGBEAN VARIETY SELECTION AND IMPROVEMENT IN UGANDA A. WANIALE, N. WANYERA1 and H. TALWANA School of Agricultural and Environmental Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda 1National Semi-Arid Resources Research Institute, National Agricultural Research Organization, P. O. Box Soroti, Uganda Corresponding author: [email protected] (Received 18 December, 2013; accepted 5 May, 2014) ABSTRACT Mungbean (Vigna radiata L. Wilczek), is a pulse species that is widely cultivated in sub-tropical and tropical regions of the world. Unfortunately, the yield of mungbean in Uganda is very low mainly due to inherent genotype failures and losses due to pests and diseases. To achieve a gain in yield through breeding requires collection, characterisation, and evaluation of germplasm, as the first step in identifying genotypes with the desired characteristics. The objective of this study was to describe the nature and extent of genotypic variation among mungbean collections for a range of traits of potential agronomic and adaptive interests in Uganda. A total of 35 mungbean accessions acquired mainly from the World Vegetable Centre (AVRDC) in Taiwan, two local ricebean (Vigna umbellata (Thunb.) Ohwi and Ohashi) and one local blackgram genotype (Vigna mungo) were evaluated for several diverse traits for two cropping seasons at two different locations in Uganda. Genotype by environment interaction (GEI) was significant (P < 0.001) for all the traits, indicating inconsistent performance by some genotypes across two locations and two seasons.
    [Show full text]
  • 422 Part 180—Tolerances and Ex- Emptions for Pesticide
    Pt. 180 40 CFR Ch. I (7–1–16 Edition) at any time before the filing of the ini- 180.124 Methyl bromide; tolerances for resi- tial decision. dues. 180.127 Piperonyl butoxide; tolerances for [55 FR 50293, Dec. 5, 1990, as amended at 70 residues. FR 33360, June 8, 2005] 180.128 Pyrethrins; tolerances for residues. 180.129 o-Phenylphenol and its sodium salt; PART 180—TOLERANCES AND EX- tolerances for residues. 180.130 Hydrogen Cyanide; tolerances for EMPTIONS FOR PESTICIDE CHEM- residues. ICAL RESIDUES IN FOOD 180.132 Thiram; tolerances for residues. 180.142 2,4-D; tolerances for residues. Subpart A—Definitions and Interpretative 180.145 Fluorine compounds; tolerances for Regulations residues. 180.151 Ethylene oxide; tolerances for resi- Sec. dues. 180.1 Definitions and interpretations. 180.153 Diazinon; tolerances for residues. 180.3 Tolerances for related pesticide chemi- 180.154 Azinphos-methyl; tolerances for resi- cals. dues. 180.4 Exceptions. 180.155 1-Naphthaleneacetic acid; tolerances 180.5 Zero tolerances. for residues. 180.6 Pesticide tolerances regarding milk, 180.163 Dicofol; tolerances for residues. eggs, meat, and/or poultry; statement of 180.169 Carbaryl; tolerances for residues. policy. 180.172 Dodine; tolerances for residues. 180.175 Maleic hydrazide; tolerances for resi- Subpart B—Procedural Regulations dues. 180.176 Mancozeb; tolerances for residues. 180.7 Petitions proposing tolerances or ex- 180.178 Ethoxyquin; tolerances for residues. emptions for pesticide residues in or on 180.181 Chlorpropham; tolerances for resi- raw agricultural commodities or proc- dues. essed foods. 180.182 Endosulfan; tolerances for residues. 180.8 Withdrawal of petitions without preju- 180.183 Disulfoton; tolerances for residues.
    [Show full text]