Contributions of the Langley Research Center to U.S. Military Aircraft of the 1990S

Total Page:16

File Type:pdf, Size:1020Kb

Contributions of the Langley Research Center to U.S. Military Aircraft of the 1990S Contributions of the Langley Research Center to U.S. Military Aircraft of the 1990s Joseph R. Chambers 1 4 NASA SP-2000-4519 Partners in Freedom Contributions of the Langley Research Center to U.S. Military Aircraft of the 1990's By Joseph R. Chambers Monographs in Aerospace History Number 19 The NASA History Series National Aeronautics and Space Administration Office of Policy and Plans NASA History Division Washington, DC 2000 Library of Congress Cataloging-in-Publication Data Chambers, Joseph R. Partners in freedom contributions of the Langley Research Center to U.S. military aircraft of the 1990's / by Joseph R. Chambers. p. cm. -- (NASA history series) Includes bibliographical references and index. 1. Langley Research Center. 2. Aeronautics, Military--Research--United States--History. 3. Airplaces, Military--United States--Design and construction. I. Title. II. Series. UG644.H36 .C43 2000 623.7'46'072073--dc2 1 00-056072 The use of trademarks or names of manufacturers in this publication is for accurate reporting and does not constitute an official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics and Space Administration. Acknowledgments I am sincerely indebted to the dozens of current and retired employees of the NASA Langley Research Center who consented to be interviewed and submitted their personal experiences, recollections, and files from which this documentation of Langley contri- butions was drawn. The following individuals contributed vital information to this effort: Irving Abel Stuart G. Flechner Linwood W. McKinney William J. Alford, Jr. Charles H. Fox, Jr. James C. Newman, Jr. Jerry M. Allen Charles M. Fremaux Luat T. Nguyen Theodore G. Ayers William P. Gilbert James C. Patterson, Jr. Donald D. Baals Sue B. Grafton John W. Paulson, Jr. E. Ann Bare David E. Hahne Edward C. Polhamus Bobby L. Berrier James B. Hallissy Richard J. Re Ralph P. Bielat Perry W. Hanson Wilmer H. Reed, Jr. James S. Bowman, Jr. Roy V. Harris, Jr. Rodney H. Ricketts Francis J. Capone Lowell E. Hasel Charles L. Ruhlin Huey D. Carden William P. Henderson Maynard C. Sandford Stanley R. Cole Charles M. Jackson David S. Shaw Mark A. Croom Lisa E. Jones M. Leroy Spearman Richard G. Culpepper Joseph L. Johnson, Jr. Raymond D. Whipple H. Benson Dexter Donald F. Keller Richard T. Whitcomb Robert V. Doggett Richard E. Kuhn Thomas J. Yager Robert H. Daugherty John E. Lamar E. Carson Yates Moses G. Farmer Laurence K. Loftin, Jr Long P. Yip Donald L. Loving Special thanks to Bobby Berrier and Patricia A. West, who provided their superb techni- cal editing and proofreading skills to the project. I would like to express my special grat- itude to Noel A. Talcott and Jeffrey A. Yetter, who provided the inspiration to undertake this activity, and to A. Gary Price, who provided the mechanism. Thanks also to Percival J. Tesoro for the cover design, Leanna D. Bullock for assistance with the photographs, Peggy S. Overbey for manuscript preparation services, Cathy W. Everett for bibliography verification and formatting, Christine A. Ryan for printing coordination, and Gail S. Langevin for editing and document production coordination. Ultimately, however, the greatest thanks go to the thousands of current and retired employees of the NASA Langley Research Center, who provided the personal dedica- tion, expertise, and innovation that enabled the legendary contributions covered in this work. Joseph R. Chambers Yorktown, VA April 20, 2000 Acknowledgments Page intentionally left blank Page intentionally left blank Preface For over 80 years, Langley Research Center has exemplified the cutting edge of world- class aeronautics research for civil and military aircraft. Established in 1917 as the nation's first civil aeronautics research laboratory under the charter of the National Advisory Committee for Aeronautics (NACA), Langley initially existed as a small, highly productive laboratory with emphasis on solving the problems of flight for the military and the civil aviation industry. During World War II (WWII), the Langley Memorial Aeronautical Laboratory directed virtually all of its workforce and facilities to research for military aircraft. Following WWII, a more balanced program of military and civil projects was undertaken. The emergence of the Space Age and the incorpora- tion of the NACA and Langley into the new National Aeronautics and Space Adminis- tration (NASA) led to a rapid growth of space related research and the cultural change of the old laboratory into a major research center. Today, Langley research efforts encompass critical areas of both aeronautics and space technology. Throughout its history, Langley has maintained a close working partnership with the Department of Defense, U.S. industry, universities, and other government agencies to support the defense of the nation with fundamental and applied research. Many of the legendary contributions of Langley to military aircraft technology have been discussed and documented by specialists, the media, and historians. Langley contributions to famous military projects such as the aircraft drag cleanup studies of WWII, the advent of supersonic flight and the X-1, the development and tests of the Century-series fight- ers, the X- 15, and many, many others have been archived in detail. The objective of this particular undertaking is to document the contributions of Langley Research Center to specific military aircraft that were operational in the 1990's. Virtu- ally all military aircraft that participated in Operation Desert Storm, Kosovo, and other peacekeeping missions of this era have Langley technical contributions to their design, development, and support. In some instances Langley research from one aircraft devel- opment program helped to solve a problem in another development program. At the conclusion of some development programs, Langley researchers obtained the research models to conduct additional tests to learn more about previously unknown phenomena. These data also proved useful in later developmental programs. Perhaps the most con- sistent element in all of the research programs is the length of time for the development and maturation of new research concepts before they are implemented in new aircraft. Many of the military aircraft in the U.S. inventory as of late 1999 were over 20 years old. Langley activities that contributed to the development of some of these aircraft began over 50 years prior. Preface This publication documents the role—from early concept stages to problem solving for fleet aircraft—that Langley played in the military aircraft fleet of the United States for the 1990's. The declassification of documents and other material has provided an oppor- tunity to record the contributions of Langley personnel and facilities and discuss the impact of these contributions on Department of Defense aircraft programs. This review is intended for the general public with an interest in aircraft development. For more technical information about specific aircraft and programs, please see the publications listed in the bibliography. Readers familiar with NASA and its research centers will note that the former Lewis Research Center is referred to by its new name, Glenn Research Center. The decision to use the new name was made to avoid confusion for those readers less familiar with the NASA centers and to avoid disruptive explanations in the text for all readers. Vi Preface Contents Introduction . 1 Langley Contributions to Selected Aircraft .............. 3 BAI Exdrone BQM-147A ............................ 5 Highlights of Research by Langley for the Exdrone .............. 5 Langley Contributions to the Exdrone BQM-147A...............7 Background.......................................................7 Langley Research Efforts ............................................7 Subsequent Exdrone Vehicle Applications ...............................8 Boeing AV-8 Harrier .............................. 11 Highlights of Research by Langley for the AV-8 ................11 Langley Contributions to the AV-8............................13 Background......................................................13 Contributions to the P1127 .........................................13 Contributions to the Kestrel .........................................16 Contributions to the AV-8 ...........................................18 Boeing C-17 Globemaster III ........................21 Highlights of Research by Langley for the C-17 ................21 Langley Contributions to the C-17...........................23 The CX Competition ...............................................23 The Externally Blown Flap Concept ..................................23 TheYC-15 .......................................................24 The C- 17 Supercritical Wing, Winglets, and Aerodynamic Studies ...........26 Composite Materials...............................................27 Fly-by-Wire Control System .........................................27 Avoiding the Deep Stall ............................................27 Recognition Visit..................................................28 Contents vii Boeing F/A- 18 Hornet . 29 Highlights of Research by Langley for the F/A- 18 .............. 29 Langley Contributions to the F/A- 18 ......................... 31 Vortex Lift and Maneuvering Flaps ................................... 31 Development of the YF-17 ........................................... 32 F/A-l8AtoF/A-18D ..................................... 35 Development of the F/A-18
Recommended publications
  • Feeling Supersonic
    FlightGlobal.com May 2021 How Max cuts hurt Boeing backlog Making throwaway Feeling aircraft aff ordable p32 Hydrogen switch for Fresson’s Islander p34 supersonic Will Overture be in tune with demand? p52 9 770015 371327 £4.99 Big worries Warning sign We assess A380 Why NOTAM outlook as last burden can delivery looms baffl e pilots 05 p14 p22 Comment Prospects receding Future dreaming Once thought of as the future of air travel, the A380 is already heading into retirement, but aviation is keenly focused on the next big thing Airbus t has been a rapid rise and fall for on who you ask. As we report else- Hydrogen is not without its the Airbus A380, which not so where in this issue, there are those issues, of course, but nonethe- long ago was being hailed as the banking on supersonic speeds be- less it appears more feasible as a future of long-haul air travel. ing the answer. power source for large transport IThe superjumbo would be, The likes of Aerion and Boom Su- aircraft than batteries do at pres- forecasts said, the perfect tool for personic view the ability to shave ent, even allowing for improving airlines operating into mega-hubs significant time from journeys as a energy densities. such as Dubai that were beginning unique selling point. However, there are others who to spring up. While projects are likely to be see hydrogen through a differ- But the planners at Airbus failed technologically feasible, to be able ent filter. They argue that so- to take into consideration the to sell these new aircraft in signif- called sub-regional aircraft – the efficiency gains available from icant volumes their manufacturers Britten-Norman Islander, among a new generation of widebody will have to ensure that supersonic others – can be given fresh impetus twinjets that allowed operators to flight is not merely the domain of if a fuel source can be found that is open up previously uneconomical the ultra-rich.
    [Show full text]
  • Gallery of USAF Weapons Note: Inventory Numbers Are Total Active Inventory figures As of Sept
    Gallery of USAF Weapons Note: Inventory numbers are total active inventory figures as of Sept. 30, 2014. By Aaron M. U. Church, Associate Editor I 2015 USAF Almanac BOMBER AIRCRAFT flight controls actuate trailing edge surfaces that combine aileron, elevator, and rudder functions. New EHF satcom and high-speed computer upgrade B-1 Lancer recently entered full production. Both are part of the Defensive Management Brief: A long-range bomber capable of penetrating enemy defenses and System-Modernization (DMS-M). Efforts are underway to develop a new VLF delivering the largest weapon load of any aircraft in the inventory. receiver for alternative comms. Weapons integration includes the improved COMMENTARY GBU-57 Massive Ordnance Penetrator and JASSM-ER and future weapons The B-1A was initially proposed as replacement for the B-52, and four pro- such as GBU-53 SDB II, GBU-56 Laser JDAM, JDAM-5000, and LRSO. Flex- totypes were developed and tested in 1970s before program cancellation in ible Strike Package mods will feed GPS data to the weapons bays to allow 1977. The program was revived in 1981 as B-1B. The vastly upgraded aircraft weapons to be guided before release, to thwart jamming. It also will move added 74,000 lb of usable payload, improved radar, and reduced radar cross stores management to a new integrated processor. Phase 2 will allow nuclear section, but cut maximum speed to Mach 1.2. The B-1B first saw combat in and conventional weapons to be carried simultaneously to increase flexibility. Iraq during Desert Fox in December 1998.
    [Show full text]
  • Make America Boom Again: How to Bring Back Supersonic Transport,” Eli Dourado and Samuel Hammond Show That It Is Time to Revisit the Ban
    MAKE AMERICA BOOM AGAIN How to Bring Back Supersonic Transport _____________________ In 1973, the Federal Aviation Administration (FAA) banned civil supersonic flight over the United States, stymieing the development of a supersonic aviation industry. In “Make America Boom Again: How to Bring Back Supersonic Transport,” Eli Dourado and Samuel Hammond show that it is time to revisit the ban. Better technology—including better materials, engines, and simulation capabilities—mean it is now possible to produce a supersonic jet that is more economical and less noisy than those of the 1970s. It is time to rescind the ban in favor of a more modest and sensible noise standard. BACKGROUND Past studies addressing the ban on supersonic flight have had little effect. However, this paper takes a comprehensive view of the topic, covering the history of supersonic flight, the case for supersonic travel, the problems raised by supersonic flight, and regulatory alternatives to the ban. Dourado and Hammond synthesize the best arguments for rescinding the ban on supersonic flights over land and establish that the ban has had a real impact on the development of supersonic transport. KEY FINDINGS The FAA Should Replace the Ban on Overland Supersonic Flight with a Noise Standard The sonic boom generated by the Concorde and other early supersonic aircraft was very loud, and as a result the FAA banned flights in the United States from going faster than the speed of sound (Mach 1). This ban should be rescinded and replaced with a noise standard. A noise limit of 85–90 A-weighted decibels would be similar to noise standards for lawnmowers, blenders, and motorcy- cles, and would therefore be a reasonable standard during daytime hours.
    [Show full text]
  • Over Thirty Years After the Wright Brothers
    ver thirty years after the Wright Brothers absolutely right in terms of a so-called “pure” helicop- attained powered, heavier-than-air, fixed-wing ter. However, the quest for speed in rotary-wing flight Oflight in the United States, Germany astounded drove designers to consider another option: the com- the world in 1936 with demonstrations of the vertical pound helicopter. flight capabilities of the side-by-side rotor Focke Fw 61, The definition of a “compound helicopter” is open to which eclipsed all previous attempts at controlled verti- debate (see sidebar). Although many contend that aug- cal flight. However, even its overall performance was mented forward propulsion is all that is necessary to modest, particularly with regards to forward speed. Even place a helicopter in the “compound” category, others after Igor Sikorsky perfected the now-classic configura- insist that it need only possess some form of augment- tion of a large single main rotor and a smaller anti- ed lift, or that it must have both. Focusing on what torque tail rotor a few years later, speed was still limited could be called “propulsive compounds,” the following in comparison to that of the helicopter’s fixed-wing pages provide a broad overview of the different helicop- brethren. Although Sikorsky’s basic design withstood ters that have been flown over the years with some sort the test of time and became the dominant helicopter of auxiliary propulsion unit: one or more propellers or configuration worldwide (approximately 95% today), jet engines. This survey also gives a brief look at the all helicopters currently in service suffer from one pri- ways in which different manufacturers have chosen to mary limitation: the inability to achieve forward speeds approach the problem of increased forward speed while much greater than 200 kt (230 mph).
    [Show full text]
  • Gallery of USAF Weapons Note: Inventory Numbers Are Total Active Inventory Figures As of Sept
    Gallery of USAF Weapons Note: Inventory numbers are total active inventory figures as of Sept. 30, 2011. ■ 2012 USAF Almanac Bombers B-1 Lancer Brief: A long-range, air refuelable multirole bomber capable of flying intercontinental missions and penetrating enemy defenses with the largest payload of guided and unguided weapons in the Air Force inventory. Function: Long-range conventional bomber. Operator: ACC, AFMC. First Flight: Dec. 23, 1974 (B-1A); Oct. 18, 1984 (B-1B). Delivered: June 1985-May 1988. IOC: Oct. 1, 1986, Dyess AFB, Tex. (B-1B). Production: 104. Inventory: 66. Aircraft Location: Dyess AFB, Tex.; Edwards AFB, Calif.; Eglin AFB, Fla.; Ellsworth AFB, S.D. Contractor: Boeing, AIL Systems, General Electric. Power Plant: four General Electric F101-GE-102 turbofans, each 30,780 lb thrust. Accommodation: pilot, copilot, and two WSOs (offensive and defensive), on zero/zero ACES II ejection seats. Dimensions: span 137 ft (spread forward) to 79 ft (swept aft), length 146 ft, height 34 ft. B-1B Lancer (SSgt. Brian Ferguson) Weight: max T-O 477,000 lb. Ceiling: more than 30,000 ft. carriage, improved onboard computers, improved B-2 Spirit Performance: speed 900+ mph at S-L, range communications. Sniper targeting pod added in Brief: Stealthy, long-range multirole bomber that intercontinental. mid-2008. Receiving Fully Integrated Data Link can deliver nuclear and conventional munitions Armament: three internal weapons bays capable of (FIDL) upgrade to include Link 16 and Joint Range anywhere on the globe. accommodating a wide range of weapons incl up to Extension data link, enabling permanent LOS and Function: Long-range heavy bomber.
    [Show full text]
  • Aircraft of Today. Aerospace Education I
    DOCUMENT RESUME ED 068 287 SE 014 551 AUTHOR Sayler, D. S. TITLE Aircraft of Today. Aerospace EducationI. INSTITUTION Air Univ.,, Maxwell AFB, Ala. JuniorReserve Office Training Corps. SPONS AGENCY Department of Defense, Washington, D.C. PUB DATE 71 NOTE 179p. EDRS PRICE MF-$0.65 HC-$6.58 DESCRIPTORS *Aerospace Education; *Aerospace Technology; Instruction; National Defense; *PhysicalSciences; *Resource Materials; Supplementary Textbooks; *Textbooks ABSTRACT This textbook gives a brief idea aboutthe modern aircraft used in defense and forcommercial purposes. Aerospace technology in its present form has developedalong certain basic principles of aerodynamic forces. Differentparts in an airplane have different functions to balance theaircraft in air, provide a thrust, and control the general mechanisms.Profusely illustrated descriptions provide a picture of whatkinds of aircraft are used for cargo, passenger travel, bombing, and supersonicflights. Propulsion principles and descriptions of differentkinds of engines are quite helpful. At the end of each chapter,new terminology is listed. The book is not available on the market andis to be used only in the Air Force ROTC program. (PS) SC AEROSPACE EDUCATION I U S DEPARTMENT OF HEALTH. EDUCATION & WELFARE OFFICE OF EDUCATION THIS DOCUMENT HAS BEEN REPRO OUCH) EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIG INATING IT POINTS OF VIEW OR OPIN 'IONS STATED 00 NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EOU CATION POSITION OR POLICY AIR FORCE JUNIOR ROTC MR,UNIVERS17/14AXWELL MR FORCEBASE, ALABAMA Aerospace Education I Aircraft of Today D. S. Sayler Academic Publications Division 3825th Support Group (Academic) AIR FORCE JUNIOR ROTC AIR UNIVERSITY MAXWELL AIR FORCE BASE, ALABAMA 2 1971 Thispublication has been reviewed and approvedby competent personnel of the preparing command in accordance with current directiveson doctrine, policy, essentiality, propriety, and quality.
    [Show full text]
  • Roger Hiorns: Plane Burial / the Retrospective View of the Pathway (Pathways), 2017 Ongoing
    Roger Hiorns: Plane Burial / The retrospective view of the pathway (pathways), 2017 ongoing Off-site project on the occassion of the 100th exhibtion of the gallery’s establishment in 1994 When: Sunday 1 October, talks from 11am, plane burial from 2pm Where: ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Za Radnicí 835, Dolní Břežany, Praha-Západ The latest project of the British artist Roger Hiorns, who exhibited at Galerie Rudolfinum in 2015, “buries” a jet fighter MiG-21. In his project, Hiorns references the land art tradition as well as the recent phenomenon of updating traditional rituals in today’s globalized society. From the innate human dream to take flight, powerful machines were born – apparatuses for demonstrating and cementing power, underlining the triumph of enlightenment, technology and progress. The machines are confronted with the man’s last rites. An act of solemn parting. A silent triumph in a dystopian landscape. A terse sculptural happening with an undertone of social criticism. An idea of buried aircraft of different types, in different corners of our planets, and in different contexts. Roger Hiorns Studied art at Goldsmiths, University of London. Short-listed for the Turner Prize in 2009. Participated at the Venice Biennale 2013, exhibited at prominent art galleries including Tate Modern in London, MoMA Contemporary Art Center in Long Island City, NY, Armand Hammer Museum of Art at UCLA, Los Angeles, and Walker Art Center, Minneapolis. Roger Hiorns’ solo exhibitions include IKON Gallery, Birmingham (2016), Kunsthaus CentrePasquArt, Biel and Galerie Rudolfinum, Prague (2015), Kunsthalle Wien and The Hepworth, Wakefield, United Kingdom (2014), De Hallen, Haarlem, the Netherlands (2012-2013) and MIMA, Middlesbrough, United Kingdom (2012).
    [Show full text]
  • The Power for Flight: NASA's Contributions To
    The Power Power The forFlight NASA’s Contributions to Aircraft Propulsion for for Flight Jeremy R. Kinney ThePower for NASA’s Contributions to Aircraft Propulsion Flight Jeremy R. Kinney Library of Congress Cataloging-in-Publication Data Names: Kinney, Jeremy R., author. Title: The power for flight : NASA’s contributions to aircraft propulsion / Jeremy R. Kinney. Description: Washington, DC : National Aeronautics and Space Administration, [2017] | Includes bibliographical references and index. Identifiers: LCCN 2017027182 (print) | LCCN 2017028761 (ebook) | ISBN 9781626830387 (Epub) | ISBN 9781626830370 (hardcover) ) | ISBN 9781626830394 (softcover) Subjects: LCSH: United States. National Aeronautics and Space Administration– Research–History. | Airplanes–Jet propulsion–Research–United States– History. | Airplanes–Motors–Research–United States–History. Classification: LCC TL521.312 (ebook) | LCC TL521.312 .K47 2017 (print) | DDC 629.134/35072073–dc23 LC record available at https://lccn.loc.gov/2017027182 Copyright © 2017 by the National Aeronautics and Space Administration. The opinions expressed in this volume are those of the authors and do not necessarily reflect the official positions of the United States Government or of the National Aeronautics and Space Administration. This publication is available as a free download at http://www.nasa.gov/ebooks National Aeronautics and Space Administration Washington, DC Table of Contents Dedication v Acknowledgments vi Foreword vii Chapter 1: The NACA and Aircraft Propulsion, 1915–1958.................................1 Chapter 2: NASA Gets to Work, 1958–1975 ..................................................... 49 Chapter 3: The Shift Toward Commercial Aviation, 1966–1975 ...................... 73 Chapter 4: The Quest for Propulsive Efficiency, 1976–1989 ......................... 103 Chapter 5: Propulsion Control Enters the Computer Era, 1976–1998 ........... 139 Chapter 6: Transiting to a New Century, 1990–2008 ....................................
    [Show full text]
  • Mitchell Institute Policy Paper 4 (Arlington, VA: Force and North Vietnam, 1966–1973 (Washington, September 2016)
    Vol. 27, May 2021 L INS EL TIT CH U IT T E MITCHELL INSTITUTE M f s o e r i Ae ud Policy Paper rospace St Key Points Command and Control Imperatives The drive for relevant command and control lies for the 21st Century: The Next Areas with a simple goal: empowering highly effective aerospace combat power. of Growth for ABMS and JADC2 By Douglas A. Birkey A command and control design must be effective Executive Director, The Mitchell Institute for Aerospace Studies across the spectrum of operational environments. Abstract Creating a successful approach to Advanced The Air Force is at a major juncture in the development of command and Battle Management System (ABMS) and Joint control (C2) capabilities. Under the aegis of the Advanced Battle Management System All-Domain Command and Control (JADC2) (ABMS) and Joint All-Domain Command and Control (JADC2) programs, the Air Force is pushing ahead with efforts to modernize its C2 architecture by capitalizing on will require the Air Force to harness advanced emerging technologies such as artificial intelligence and machine learning. Faced with technologies like fifth-generation aircraft fusion the heightened threat environment created by America’s adversaries, these investments and machine learning. are critical to the Air Force’s ability to operate and win in future conflicts. However, this progress demands a holistic risk mitigation approach that blends innovation, High-speed, high-altitude manned command operationally mature systems, and backup redundancies. and control, intelligence, surveillance, and Over the past two decades, technological advances in the field of networked reconnaissance (C2ISR) sensor platforms could connectivity, high-fidelity sensors, persistent overwatch by remotely piloted aircraft (RPA), and huge gains in computing power saw seismic advances in combat edge provide supplementary “look-in” and network- situational awareness and decision-making.
    [Show full text]
  • Issue No. 4, Oct-Dec
    VOL. 6, NO. 4, OCTOBER - DECEMBER 1979 t l"i ~ ; •• , - --;j..,,,,,,1:: ~ '<• I '5t--A SERVt(;E P\JBLICATtON Of: t.OCKH EE:O-G EORGlA COt.'PAfllV A 01Vt$10,.. or t.OCKHEEOCOAf'ORATION A SERVICE PUBLICATION OF LOCKHEED-GEORGIA COMPANY The C-130 and Special Projects Engineering A DIVISION OF Division is pleased to welcome you to a LOCKHEED CORPORATION special “Meet the Hercules” edition of Service News magazine. This issue is de- Editor voted entirely to a description of the sys- Don H. Hungate tems and features of the current production models of the Hercules aircraft, the Ad- Associate Editors Charles 1. Gale vanced C-130H, and the L-100-30. Our James A. Loftin primary purpose is to better acquaint you with these two most recently updated Arch McCleskey members of Lockheed’s distinguished family Patricia A. Thomas of Hercules airlifters, but first we’d like to say a few words about the engineering or- Art Direction & Production ganization that stands behind them. Anne G. Anderson We in the Project Design organization have the responsibility for the configuration and Vol. 6, No. 4, October-December 1979 systems operation of all new or modified CONTENTS C-130 or L-100 aircraft. During the past 26 years, we have been intimately involved with all facets of Hercules design and maintenance. Our goal 2 Focal Point is to keep the Lockheed Hercules the most efficient and versatile cargo aircraft in the world. We 0. C. Brockington, C-130 encourage our customers to communicate their field experiences and recommendations to us so that Engineering Program Manager we can pass along information which will be useful to all operators, and act on those items that would benefit from engineeringattention.
    [Show full text]
  • Analysis of Aircraft for the Fire Fighting Mission in Colorado
    Analysis of the Alenia C-27J, British Aerospace 146-200, Lockheed S-3B and Lockheed C-130H/Q Aircraft for the Fire Fighting Mission in Colorado. December 6, 2013 Prepared by: Conklin & de Decker Aviation Information Arlington, TX 76012 817 277 6403 www.conklindd.com Analysis of C-27J, BAe 146, S-3B and C-130H/Q for the Fire Fighting Mission in Colorado Conklin & de Decker Aviation Information, December 6, 2013 Table of Contents Page 1 Summary and Conclusions.......................................................................................... 3 2 Introduction ................................................................................................................ 5 3 Aircraft Analyzed......................................................................................................... 6 3.1 Alenia C-27J......................................................................................................... 6 3.1.1 Retardant Tank Capacity............................................................................. 7 3.2 British Aerospace BAe-146 ................................................................................. 9 3.2.1 Retardant Tank Capacity........................................................................... 10 3.3 Lockheed C-130H/Q.......................................................................................... 11 3.3.1 Retardant Tank Capacity........................................................................... 12 3.4 Lockheed S-3B..................................................................................................
    [Show full text]
  • Gallery of USAF Weapons Note: Inventory Numbers Are Total Active Inventory Figures As of Sept
    Gallery of USAF Weapons Note: Inventory numbers are total active inventory figures as of Sept. 30, 2015. By Aaron M. U. Church, Senior Editor ■ 2016 USAF Almanac BOMBER AIRCRAFT B-1 Lancer Brief: Long-range bomber capable of penetrating enemy defenses and de- livering the largest weapon load of any aircraft in the inventory. COMMENTARY The B-1A was initially proposed as replacement for the B-52, and four proto- types were developed and tested before program cancellation in 1977. The program was revived in 1981 as B-1B. The vastly upgraded aircraft added 74,000 lb of usable payload, improved radar, and reduced radar cross section, but cut maximum speed to Mach 1.2. The B-1B first saw combat in Iraq during Desert Fox in December 1998. Its three internal weapons bays accommodate a substantial payload of weapons, including a mix of different weapons in each bay. Lancer production totaled 100 aircraft. The bomber’s blended wing/ body configuration, variable-geometry design, and turbofan engines provide long range and loiter time. The B-1B has been upgraded with GPS, smart weapons, and mission systems. Offensive avionics include SAR for tracking, B-2A Spirit (SSgt. Jeremy M. Wilson) targeting, and engaging moving vehicles and terrain following. GPS-aided INS lets aircrews autonomously navigate without ground-based navigation aids Dimensions: Span 137 ft (spread forward) to 79 ft (swept aft), length 146 and precisely engage targets. Sniper pod was added in 2008. The ongoing ft, height 34 ft. integrated battle station modifications is the most comprehensive refresh in Weight: Max T-O 477,000 lb.
    [Show full text]