Acanthodactylus Boskianus) 20 1.11.1

Total Page:16

File Type:pdf, Size:1020Kb

Acanthodactylus Boskianus) 20 1.11.1 THE UNIVERSITY OF HULL Comparative chemical ecology, behaviour, and evolutionary genetics of Acanthodactlylus boskianus (Squamata: Lacertidae) A PhD Thesis Comparative Chemical Ecology, Behaviour and Evolution Submitted to Hull University By Eraqi Radwan R. Khannoon (MSc) November, 2009 Contents ABSTRACT 1 Chapter 1 1. INTRODUCTION AND HISTORICAL REVIEW 2 1.1. Evolution and skin adaptation 2 1.2. Skin Glands 4 1.3. Vomeronasal organ (VNO) and Pheromones perception 6 1.4. Tongue flicking mechanism 7 1.5. Gas Chromatography-Mass Spectroscopy (GC-MS) 9 1.6. Pheromones and animal communication 12 13 1.7. Chemical studies on the epidermal glands 1.8. Behavioural studies on the epidermal glands 16 1.9.Y-maze bioassay 17 1.10. Phylogeography and Molecular analysis 17 1.11. Studied species (Acanthodactylus boskianus) 20 1.11.1. Identification 21 1.11.2. Ecology and social behaviour 22 1.11.3. Geographic Range 23 1.12. Hypotheses and Aim of the Work 24 1.13. References 27 Chapter 2 (Paper 1) Sexual differences in behavioural response to femoral gland pheromones of Acanthodactylus boskianus (Squamata: Lacertidae). 2.1. Title 36 2.2. Abstract 37 2.3. Introduction 38 2.4. Materials and Methods 40 ii 2.5. Results 43 2.6. Discussion 45 2.7. References 50 2.8. Figures and Tables 54 Chapter 3 (Paper 2) New compounds, sexual differences, and age-related variations in the femoral gland secretion of the lacertid lizard Acanthodactylus boskianus. 3.1. Title 59 3.2. Abstract 60 3.3. Introduction 61 3.4. Materials and Methods 63 3.5. Results 66 3.6. Discussions 69 3.7. References 76 3.8. Figures and Tables 82 Chapter 4 (Paper 3) Scent marking pheromones in lizards: Cholesterol and long chain alcohols elicit avoidance and aggression of male Acanthodactylus boskianus (Squamata: Lacertidae). 4.1. Title 94 4.2. Abstract 95 4.3. Introduction 96 4.4. Materials and Methods 100 4.5. Results 108 4.6. Discussions 110 iii 4.7. References 116 4.8. Figures and Tables 123 Chapter 5 (Paper 4) Divergence of scent pheromones in allopatric populations of Acanthodactylus boskianus (Squamata: Lacertidae). 5.1. Title 128 5.2. Abstract 129 5.3. Introduction 130 5.4. Materials and Methods 133 5.5. Results 138 5.6. Discussions 140 5.7. References 146 5.8. Figures and Tables 152 Chapter 6 Discussion and conclusions 155 iv Acknowledgements First of all I would like to thank Allah (my God) too much for his help and support throughout my life and the duration of my research. On a personal basis, my heartfelt thanks to my mother and my father who are always doing supplication and prayers for me. Also I would like to extend my thanks to my wife for her support and encouragement. My thanks go to my brother and sisters for their encouragement. On the research level, I want to thank my supervisors Dr. Jörg Hardege and Dr. David Lunt who were supportive and teaching me chemical ecology, behaviour and evolution basics and techniques. Great thanks to go to Prof. Dr. Afaf El-Gendy (Fayoum University, Egypt), who helped me a lot in samples collection and paperwork and who was always encouraging me throughout the research. Many thanks are for Prof. Dr. Schulz who helped me a lot in GC-MS analysis, preparation of the samples, sample injection and MS interpretations. I thank him and his group in Braunschweig, Germany for their help and hospitality particularly, Dr. Birte Flachsbarth. Great thanks go to the man who passed away 3 years ago, the man whom I will never forget, my supervisor Prof. Dr. Mohammed Bahgat. Other people I would like to thank are Yasser Shaaban for his help in samples collection, also my thanks go to Dr. Kandeel Hashem, who helped me a lot with his encouragement and support. Dr. Ahmad Kandeel and Ibrahim Salama deserve thanks for their encouragement and help. v Abstract Acanthodactylus boskianus is a common lizard species frequently occurring in different habitats throughout Egypt. Both males and females have well developed epidermal femoral glands. This species is territorial and males acquire dominance hierarchies in captivity. The current work included three different techniques to study the importance of femoral gland secretions in communication and signal evolution of A. boskianus. These are behaviour, chemical and DNA analyses techniques. Behavioural bioassays in different experiments showed that the femoral gland secretions are used in communication between the lizards. Communication includes possible roles in mate choice, agonistic behaviour between potential competitor males, and chemical trailing of scent pheromones. These behavioural results reflect the chemical results which showed the chemical variability between male ages, sexes, and allopatric populations. Chemical analysis of the secretions resulted in the identification of natural compounds not previously reported in reptiles, glycerolmonoethers and monoglycerides. The secretions seem to be used as scent pheromones, which are involved in signal evolution processes resulting in divergence of the chemical fingerprints of the gland secretion between allopatric populations. 1 Eraqi Khannoon, 2009 CHAPTER 1 INTRODUCTION, HISTORICAL REVIEW, AND AIM OF THE WORK 1. INTRODUCTION AND HISTORICAL REVIEW 1.1. Evolution and skin adaptation Reptiles are considered as one of the classes under the phylum Chordata which emerged 550 million years ago. Fossil and comparative anatomical data confirm diversity of skin, but the main function as an interface separating between external and internal environment remains unchanged (Chuong et al., 2002). The skin is composed of two main layers; epidermis and dermis, unlike lower animals, vertebrates have a multilayered epidermis (Bereiter-Hahn et al., 1986). Today the reptiles are represented by four orders: Crocodilia (alligators and crocodiles), Chelonia (tortoises and turtles), Squamata (lizards and snakes), and Rhynchocephalia (represented by one surviving species only, the tutara, Sphenodon). The reptiles were the first fully terrestrial vertebrates, and could solve the problem of reproduction in the absence of an aquatic environment. Complete removal from water has severe consequences and new demands on the skin structure are needed for the terrestrial environment. The formation of a barrier against transcutaneous water loss is needed to avoid dessication of the reptilian animal, which are mostly living in dry habitats. An efficient tool to protect the reptiles was to form lipidic membrane-like layers in the keratinized skin 2 Eraqi Khannoon, 2009 epidermis (Landmann et al., 1981). Another problem faced the reptiles, which is the mechanical friction to which the skin will be subjected on the surface of the earth. This problem has been solved by the fact that their epidermis is supported by both types of keratins; hard β-keratin and pliable α-keratin, and the dermis is supported by bony plates (osteoderms) (Maderson, 1985). This strength of both epidermis and dermis give the skin a very strong rigid structure which might need some flexibility for the animal to be able to move freely in its environment. This flexibility is found by the formation of the scales or the scutes which are folding of the dermo-epidermal boundary, the scales are connected with hinge regions which are supported only by α-keratin (Khannoon, 2004, Maderson, 1985). The dermis of vertebrates contains mainly fibrous collagen, secreted extracellularly by fibroblasts. There are always a relatively loosely-packed superficial dermis, and a much denser-packed deep dermis. The latter is attached to muscle fascia by subcutaneous connective tissue, the amount of which varies among body regions and species. Epidermal renewal is a unique process occurs as a result of the presence of stratified layers of the epidermis and the presence of α- and β- keratins. In other vertebrates, epidermis is renewed by exfoliation from the surface and this necessitates the continuous cell proliferation and differentiation. In squamates, the epidermal cell division and its differentiation give rise to a new complete epidermal generation beneath 3 Eraqi Khannoon, 2009 the old one prior to sloughing. During sloughing, the old outer generation is shed and the subjacent new inner generation plays as the body surface (Landmann et al., 1981). The skin of squamates is playing another role in the colour change, which is important for matching the environment as a camouflage or in the communication between the animals. This happens by the movement of melanosomes in the melanophore dendrites in response to melanophore-stimulating hormone (MSH) secreted by the pituitary gland (Sawyer et al., 1983). Colour change is very obvious in lizards such as agamids, anolids and highly noticeable in chamaeleons. 1.2. Skin Glands The reptilian skin is usually described as dry skin, which means that it is devoid of glands. Occasionally there are integumental glands which usually appear around the anal area. These glands might be named femoral glands or pre-anal glands, particularly in squamates (lizards and snakes), occuring on the femur or the posterior part of the abdomen, successively. These glands are epidermal in origin and give their secretions to the external environment. Generally there are two types of epidermal glandular specializations in the lizard epidermis (Maderson, 1967, Maderson, 1968). The first type is the generation glands, which are subdivided into “escutcheon scales” and β-glands. This type is represented by some patches of scales on the posterior abdominal or femoral regions of the body which show some concavities on the outer scale surface. Exposure of gland 4 Eraqi Khannoon, 2009 materials to the environment occurs during sloughing when the outer layer is lost (Maderson, 1968). The second type of gland is the femoral or pre- anal glands. Histological, these femoral or pre-anal glands might be follicular or tubular and open to the exterior by a well defined pore (Cole, 1966a). This type of glands is independent of the skin activity during the sloughing cycle.
Recommended publications
  • Acanthodactylus Harranensis
    The IUCN Red List of Threatened Species™ ISSN 2307-8235 (online) IUCN 2008: T164562A5908003 Acanthodactylus harranensis Assessment by: Yakup Kaska, Yusuf Kumlutaş, Aziz Avci, Nazan Üzüm, Can Yeniyurt, Ferdi Akarsu, Roberto Sindaco View on www.iucnredlist.org Citation: Yakup Kaska, Yusuf Kumlutaş, Aziz Avci, Nazan Üzüm, Can Yeniyurt, Ferdi Akarsu, Roberto Sindaco. 2009. Acanthodactylus harranensis. The IUCN Red List of Threatened Species 2009: e.T164562A5908003. http://dx.doi.org/10.2305/IUCN.UK.2009.RLTS.T164562A5908003.en Copyright: © 2015 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale, reposting or other commercial purposes is prohibited without prior written permission from the copyright holder. For further details see Terms of Use. The IUCN Red List of Threatened Species™ is produced and managed by the IUCN Global Species Programme, the IUCN Species Survival Commission (SSC) and The IUCN Red List Partnership. The IUCN Red List Partners are: BirdLife International; Botanic Gardens Conservation International; Conservation International; Microsoft; NatureServe; Royal Botanic Gardens, Kew; Sapienza University of Rome; Texas A&M University; Wildscreen; and Zoological Society of London. If you see any errors or have any questions or suggestions on what is shown in this document,
    [Show full text]
  • Sauria: Lacertidae) for Iran
    1999 Asiatic Herpetological Research Vol. 8, pp. 85-89 First Record of the Lacertid Acanthodactylus boskianus (Sauria: Lacertidae) for Iran Nasrullah Rastegar-Pouyani Department of Zoology, Goteborg University. Box 463, SE 405 30 Goteborg, Sweden Abstract.- The first record of the lacertid li/.ard Acanthodactylus boskianus for Iran is presented based on material collected by the author in 1995 and 1996 from 2 km west of Harsin, Kermanshah province, western Iran, on the Astragalus -covered sandy hills at about 1420 m elevation. Systematics and distribution of this lizard are discussed and its conventional known subspecies are questioned. Key words.- Acanthodactylus boskianus, Lacertidae, Subspecies, New record. Western Iran, Kermanshah province, Harsin, Systematics, Distribution. Figurel . The distribution of Acanthodactylus boskianus in north Africa and the Middle East. Introduction Figure 2. The locality of Acanthodactylus boskianus spec- The lacertid genus Acanthodactylus Wiegman, 1834 imens collected by the author from Harsin, southeast of Kermanshah western Iran. = consists of about 30 species, distributed from Spain Province, (|) Harsin, = and Portugal across the Sahara desert and its periph- () Locality of A. boskianus specimens. ery to the Red Sea, over most of Arabia and as far Salvador. 1982). This genus has recently been revised north as Cyprus and the Syrian-Turkish border; it also by Salvador (1982) and Arnold (1983) who divide it extends through Iraq, southern, and eastern Iran, into 9 species groups. Among these groups is the "A. southern Afghanistan. Pakistan and northwestern boskianus and A. schreiberi "group defined by several India (Arnold, 1983). distinguishing characters (Arnold, 1983: 315). Apart from the present record, four additional spe- So far, there is no record in the literature for the cies of this genus occur in Iran, mainly in southern occurrence of A.
    [Show full text]
  • Assessment of Genetic Diversity Within Acanthodactylus Erythrurus (Reptilia: Lacertidae) in Morocco and the Iberian Peninsula Using Mitochondrial DNA Sequence Data
    Short Notes 227 Vielliard, J.M.E., Cardoso, A.J. (1996): Adaptação de sinais sonoros de anfíbios e aves a ambientes de riachos com corredeiras. In: Herpetologia Neotropical: Actas del II Congresso Latinoamericano de Herpetología, Vol. II, p. 97-119. Péfaur, J.E., Ed., Merida, Univ. de los Andes, Consejo de Publ., Consejo de Desarrolo Cientifico, Humanistico y Tecnologico. Weygoldt, P., Carvalho e Silva, S.P. (1992): Mating and oviposition in the hylodine frog Crossodactylus gaudichaudii (Anura: Leptodactylidae). Amphibia-Reptilia 13: 35-45. Received: October 23, 2002. Accepted: May 20, 2003. Assessment of genetic diversity within Acanthodactylus erythrurus (Reptilia: Lacertidae) in Morocco and the Iberian Peninsula using mitochondrial DNA sequence data D.J. Harris, V. Batista, M.A. Carretero Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO\UP), ICETA, Campus Agrario de Vairão, 4485-661 Vila do Conde, Portugal e-mail: [email protected] Spiny-footed lizards Acanthodactylus consist of approximately 32 ground-dwelling lizards widely distributed across northern Africa and southwestern Asia. Acanthodactylus erythru- rus (Schinz, 1838) is the only representative of the genus occurring in continental Europe, being found in the southern and central Iberian Peninsula as well as across Morocco and a large part of northern Algeria. Taxonomically Acanthodactylus is a notoriously difficult group, since most species are morphologically similar and often show intraspecific vari- ability, and A. erythrurus is no exception. Salvador (1982) and Arnold (1983) accepted three subspecies: A. e. erythrurus (Schinz, 1838) in the Iberian Penninsula, A. e. lineomac- ulatus Duméril and Bibron, 1839 in the western plains and Atlantic coast of Morocco, and A.
    [Show full text]
  • This Study of the Family Lacertidae Has Not Been Done by Any Research Worker Previously
    Rec. Zool. Surv. Pakistan, 14: 49-54 (2002) HOME RANGE AND GROWTH RATE OF FRINGE-TOED SAND LIZARD (ACANTHODACTYLUS CANTORIS CANTORIS) AT HAWKSBAY AREA, KARACHI. HAFIZUR REHMAN, SYED IFTIKHAR AHMED & SHAMIM FAKHRI Zoological Survey Department, Government of Pakistan, Karachi. ABSTRACT : - Hawks bay area is an important breeding ground of Fringe-Toed sand lizard (Acunthodoctylus Cantoris Cantons). This work was intended to study the habitat, home range and growth of the species. The study was based on 48 visits. During the whole study period 240 specimens of Acanthodactylus Cantoris Cantoris were captured to find its home range and growth rate. The recaptured specimens were also examined from time to time. KEY WORDS: Reptiles, Lacertidae, Sindh, Pakistan, ecology & biology. Introduction : This study of the family Lacertidae has not been done by any research worker previously. In July, 19981 initiated the study of the common Indian Fringe-Toed sand lizard (Acanthodactylus Cantons Cantoris) at hawksbay, Karachi, Sindh. This study was continued up to June 2000. The results of two years of the work are reported here as final result, Material and Methods: The entire study was restricted to Hawkesbay area on N- W side along the sea-shore (a distance about two Kilometer). The study area was purely sandy with scattered xerophytic habitat in which grass and Acacia species were dominant. All specimens were captured by me and the staff of the Department who walked along the edge of plants and captured the individuals by hands. Each captured location was later checked, photographed and notes were made on local habitat, with temperature from the exact places where Indian Fringe-Toed sand lizard were first seen.
    [Show full text]
  • An Etymological Review of the Lizards of Iran: Families Lacertidae, Scincidae, Uromastycidae, Varanidae
    International Journal of Animal and Veterinary Advances 3(5): 322-329, 2011 ISSN: 2041-2908 © Maxwell Scientific Organization, 2011 Submitted: July 28, 2011 Accepted: September 25, 2011 Published: October 15, 2011 An Etymological Review of the Lizards of Iran: Families Lacertidae, Scincidae, Uromastycidae, Varanidae 1Peyman Mikaili and 2Jalal Shayegh 1Department of Pharmacology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran 2Department of Veterinary Medicine, Faculty of Agriculture and Veterinary, Shabestar Branch, Islamic Azad University, Shabestar, Iran Abstract: The etymology of the reptiles, especially the lizards of Iran has not been completely presented in other published works. Iran is a very active geographic area for any animals, and more especially for lizards, due to its wide range deserts and ecology. We have attempted to ascertain, as much as possible, the construction of the Latin binomials of all Iranian lizard species. We believe that a review of these names is instructive, not only in codifying many aspects of the biology of the lizards, but in presenting a historical overview of collectors and taxonomic work in Iran and Middle East region. We have listed all recorded lizards of Iran according to the order of the scientific names in the book of Anderson, The Lizards of Iran. All lizard species and types have been grouped under their proper Families, and then they have been alphabetically ordered based on their scientific binominal nomenclature. We also examined numerous published works in addition to those included in the original papers presenting each binomial. Key words: Etymology, genera, iran, lizards, Middle East, species, taxonomy. INTRODUCTION comprising the fauna of Iran, including Field guide to the reptiles of Iran, (Vol.
    [Show full text]
  • Cephalochordata, Chordata)
    © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zoologicalbulletin.de; www.biologiezentrum.at ( MICROSCOPIC ANATOMY OF DEVELOPMENTAL STAGES OF BRANCHIOSTOMA LANCEOLATUM (CEPHALOCHORDATA, CHORDATA) by Thomas Stach ^ 8 20(J4 BONNER ZOOLOGISCHE MONOGRAPHIEN, Nr. 47 2000 Herausgeber: ZOOLOGISCHES FORSCHUNGSINSTITUT UND MUSEUM A. KOENIG BONN © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zoologicalbulletin.de; www.biologiezentrum.at BONNER ZOOLOGISCHE MONOGRAPHIEN Die Serie wird vom Zoologischen Forschungsinstitut und Museum Alexander Koenig herausgegeben und bringt Originalarbeiten, die für eine Unterbringung in den „Bonner zoologischen Beiträgen" zu lang sind und eine Veröffentlichung als Monographie rechtfertigen. Anfragen bezüglich der Vorlage von Manuskripten sind an die Schriftleitung zu richten; Bestellungen und Tauschangebote bitte an die Bibliothek des Instituts. This series of monographs, published by the Alexander Koenig Research Institute and Museum of Zoology, has been established for original contributions too long for inclu- sion in „Bonner zoologische Beiträge". Correspondence concerning manuscripts for publication should be addressed to the editor. Purchase orders and requests for exchange please address to the library of the institute. LTnstitut de Recherches Zoologiques et Museum Alexander Koenig a etabli cette serie de monographies pour pouvoir publier des travaux zoologiques trop longs pour etre inclus dans les „Bonner zoologische Beiträge". Toute correspondance concemante
    [Show full text]
  • Checklist of Amphibians and Reptiles of Morocco: a Taxonomic Update and Standard Arabic Names
    Herpetology Notes, volume 14: 1-14 (2021) (published online on 08 January 2021) Checklist of amphibians and reptiles of Morocco: A taxonomic update and standard Arabic names Abdellah Bouazza1,*, El Hassan El Mouden2, and Abdeslam Rihane3,4 Abstract. Morocco has one of the highest levels of biodiversity and endemism in the Western Palaearctic, which is mainly attributable to the country’s complex topographic and climatic patterns that favoured allopatric speciation. Taxonomic studies of Moroccan amphibians and reptiles have increased noticeably during the last few decades, including the recognition of new species and the revision of other taxa. In this study, we provide a taxonomically updated checklist and notes on nomenclatural changes based on studies published before April 2020. The updated checklist includes 130 extant species (i.e., 14 amphibians and 116 reptiles, including six sea turtles), increasing considerably the number of species compared to previous recent assessments. Arabic names of the species are also provided as a response to the demands of many Moroccan naturalists. Keywords. North Africa, Morocco, Herpetofauna, Species list, Nomenclature Introduction mya) led to a major faunal exchange (e.g., Blain et al., 2013; Mendes et al., 2017) and the climatic events that Morocco has one of the most varied herpetofauna occurred since Miocene and during Plio-Pleistocene in the Western Palearctic and the highest diversities (i.e., shift from tropical to arid environments) promoted of endemism and European relict species among allopatric speciation (e.g., Escoriza et al., 2006; Salvi North African reptiles (Bons and Geniez, 1996; et al., 2018). Pleguezuelos et al., 2010; del Mármol et al., 2019).
    [Show full text]
  • Red Tails Are Effective Decoys for Avian Predators
    Evol Ecol DOI 10.1007/s10682-014-9739-2 Red tails are effective decoys for avian predators Bele´n Fresnillo • Josabel Belliure • Jose´ Javier Cuervo Received: 2 August 2014 / Accepted: 18 October 2014 Ó Springer International Publishing Switzerland 2014 Abstract The decoy or deflection hypothesis, which states that conspicuous colouration is present in non-vital parts of the body to divert attacks from head and trunk, thus increasing survival probability, is a possible explanation for the presence of such col- ouration in juveniles of non-aposematic species. To test this hypothesis we made plasticine and plaster lizard models of two colour morphs, red or dark-and-light striped tails, based on the colouration of spiny-footed lizard (Acanthodactylus erythrurus) hatchlings, which naturally show a dark-and-light striped dorsal pattern and red tail. Lizard models were placed in the field and also presented to captive common kestrels (Falco tinnunculus), a common avian lizard predator. The number of attacks and the body part attacked (tail or rest-of-body) were recorded, as well as the latency to attack. Our results suggest that models of both colour morphs were recognized as prey and attacked at a similar rate, but in the field, red-tailed models were detected, and thus attacked, sooner than striped-tailed. Despite this increase in detection rate by predators, red-tailed models effectively diverted attacks to the tail from the more vulnerable body parts, thus supporting the decoy hypothesis. Greater fitness benefits of attack diversion to the tail compared to the costs of increased detection rate by predators would explain the evolution and maintenance of red tail colouration in lizards.
    [Show full text]
  • A Multivariate Analysis of the Fringe-Toed Lizards of the Acanthodactylus Scutellatus Group (Squamata: Lacertidae): Systematic and Biogeographical Implications
    Blackwell Science, LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082The Lin- nean Society of London, 2003January 2003 1371 Original Article Revision of the Acanthodactylus scutellatus groupPierre-André Crochet et al. Zoological Journal of the Linnean Society, 2003, 137, 117–155. With 21 figures A multivariate analysis of the fringe-toed lizards of the Acanthodactylus scutellatus group (Squamata: Lacertidae): systematic and biogeographical implications PIERRE-ANDRÉ CROCHET1,2, PHILIPPE GENIEZ1 and IVAN INEICH3 1Ecole Pratique des Hautes Etudes, Laboratoire de Biogéographie et Ecologie des Vertébrés, Université Montpellier II, Place Eugène Bataillon, F-34095 Montpellier cedex 5, France 2Centre d’Ecologie Fonctionnelle et Evolutive, CNRS, 1919 route de Mende, F-34293 Montpellier cedex 05, France 3Muséum national d’Histoire naturelle, Laboratoire de Zoologie (Reptiles & Amphibiens), 25 rue Cuvier, F-75005 Paris, France The taxonomy of the fringe-toed lizards of the Acanthodactylus scutellatus group has long been unstable and no con- sensus exists on the systematic status of its various forms. A multivariate analysis of morphological characters, per- formed on over 1000 specimens from most of the African range of this group, allowed us to clarify the specific allocation of most of the Saharan populations included in this species group. Based on comparisons of morphology between allopatric and sympatric populations of this complex, we propose the recognition of six biological species. Our results confirm the specific status of Acanthodactylus aureus, A. dumerili, A. scutellatus, A. longipes and the recently described A. taghitensis. In addition, we re-validate A. senegalensis (occurring from Mauritania and Mali south to Senegal), which has been treated as a synonym of A.
    [Show full text]
  • Acanthodactylus Erythrurus): Patterns of Seasonal Colour Change
    Amphibia-Reptilia 34 (2013): 525-538 Exploring the function of red colouration in female spiny-footed lizards (Acanthodactylus erythrurus): patterns of seasonal colour change José J. Cuervo1,∗, Josabel Belliure2 Abstract. In spiny-footed lizards (Acanthodactylus erythrurus), adult females (but not males) show conspicuous red colouration in the tail and hind legs. To investigate the function of this red colouring and proximal causes of seasonal colour change, we captured adult females before the reproductive season and kept them in captivity in one of the three following situations: with a male and fertilization possible, with a male and fertilization impossible, or with another female (fertilization also impossible). Colour was quantified using spectrophotometry. Red colouration increased shortly before the onset of reproduction, but faded during the breeding season and became whitish (light buff-gray) in all cases. Both fertilized and unfertilized females laid eggs or were gravid after two months of the experiment, but while fertilized females laid mostly fertile eggs, unfertilized females only laid infertile eggs. Both egg formation and colour change might be triggered by abiotic factors, although female characteristics also play a role, since heavier females changed colour and laid eggs earlier. Females interacting freely with a male were darker at the end of the breeding season than females separated from the male, indicating that fertilization or physical contact might also have an effect on colouration. Colour change patterns found in this study suggest that female red colouration might have a mating-related function, but do not support a courtship rejection function for the red colour. However, whitish colouration resulting from red fading might signal gravidity in this species.
    [Show full text]
  • A Population of Bosk's Fringe-Toed Lizard Acanthodactylus Boskianus (Daudin, 1802) in the Hajar Mountain Foothills of the UAE
    A population of Bosk's fringe-toed lizard Acanthodactylus boskianus (Daudin, 1802) in the Hajar Mountain foothills of the UAE by Binish Roobas and Gary R. Feulner Fig. 1: Records of Acanthodactylus boskianus from the UAE and Oman (courtesy of A.S. Gardner). Point 1 represents the two sites discussed in this paper. Point 2 shows the approximate location of the first UAE reports of A. boskianus (Arnold 1984). Point 3 represents unpublished records from Peter L. Cunningham, described as being "in the area between Ash-Shu'ayb [Shuwayb or Shwaib] and [the] general Hatta direction" (Cunningham, pers. comm .). The map is not an authorityon international borders. Abstract A localised population of Acanthodactylus although termites were actively dug for and eaten boskianus lizards (n 50 ± 10) has been identified and other, larger prey is probably taken along a wadi in the foothills of the Hajar Mountains opportunistically. The lizards are active primarily in of the United Arab Emirates (UAE). Photographs the morning but some, particularly adolescents, of adult male, adult female, juvenile and also forage in late afternoon. Population evidence adolescent individuals are presented for reference. indicates that the reproductive season is extended This constitutes only the second report of A. but may be centered in fall and winter. Winter boskianus from within the UAE and expands the dormancy is possible but not confirmed. habitat for that species from what has been Our successful effort to find A. boskianus at a described on the basis of most earlier records from second, similar location leads us to suggest that the UAE and neighbouring northern Oman.
    [Show full text]
  • Acanthodactylus Beershebensis, Be'er Sheva Fringe-Fingered
    The IUCN Red List of Threatened Species™ ISSN 2307-8235 (online) IUCN 2008: T61454A12488658 Acanthodactylus beershebensis, Be’er Sheva Fringe-fingered Lizard Assessment by: Werner, Y., Disi, M. & Mousa Disi, A.M. View on www.iucnredlist.org Citation: Werner, Y., Disi, M. & Mousa Disi, A.M. 2006. Acanthodactylus beershebensis. The IUCN Red List of Threatened Species 2006: e.T61454A12488658. http://dx.doi.org/10.2305/IUCN.UK.2006.RLTS.T61454A12488658.en Copyright: © 2015 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale, reposting or other commercial purposes is prohibited without prior written permission from the copyright holder. For further details see Terms of Use. The IUCN Red List of Threatened Species™ is produced and managed by the IUCN Global Species Programme, the IUCN Species Survival Commission (SSC) and The IUCN Red List Partnership. The IUCN Red List Partners are: BirdLife International; Botanic Gardens Conservation International; Conservation International; Microsoft; NatureServe; Royal Botanic Gardens, Kew; Sapienza University of Rome; Texas A&M University; Wildscreen; and Zoological Society of London. If you see any errors or have any questions or suggestions on what is shown in this document, please provide us with feedback so that we can correct or extend the information
    [Show full text]