By Differential Display, Expression of the Active Arthritis-Affected Cartilage

Total Page:16

File Type:pdf, Size:1020Kb

By Differential Display, Expression of the Active Arthritis-Affected Cartilage TNF-α Convertase Enzyme from Human Arthritis-Affected Cartilage: Isolation of cDNA by Differential Display, Expression of the Active Enzyme, and Regulation of TNF- α This information is current as of September 27, 2021. Indravadan R. Patel, Mukundan G. Attur, Rajesh N. Patel, Steven A. Stuchin, Ruben A. Abagyan, Steven B. Abramson and Ashok R. Amin J Immunol 1998; 160:4570-4579; ; http://www.jimmunol.org/content/160/9/4570 Downloaded from References This article cites 48 articles, 11 of which you can access for free at: http://www.jimmunol.org/content/160/9/4570.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 27, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1998 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. TNF-a Convertase Enzyme from Human Arthritis-Affected Cartilage: Isolation of cDNA by Differential Display, Expression of the Active Enzyme, and Regulation of TNF-a1 Indravadan R. Patel,2* Mukundan G. Attur,2* Rajesh N. Patel,* Steven A. Stuchin,† Ruben A. Abagyan,‡ Steven B. Abramson,*§ and Ashok R. Amin3*§¶i A snake venom-like protease isolated by a differential display screen between normal and osteoarthritis (OA)-affected cartilage (designated as cSVP) has a cDNA sequence identical to TNF-a convertase enzyme (TACE). TACE shows the presence of an unknown prodomain, a cysteine switch, a catalytic domain, a zinc binding region, a disintegrin region, an EGF-like domain, a transmembrane domain, and a unique cytoplasmic region. A TACE construct harboring the signal 1 prodomain 1 catalytic region (TACE-SPCDDETCy), expressed in baculovirus could cleave preferentially (;12-fold) the TNF-specific peptide over the Downloaded from matrix metalloproteases peptide in vitro. This recombinant protein also cleaved the natural substrate GST-ProTNF-a to TNF-a (17 kDa) in vitro. The mRNA for TACE, which is broadly distributed and differentially expressed in a variety of human tissues, is up-regulated in arthritis-affected cartilage, but not normal cartilage. OA-affected cartilage also expressed TNF-a mRNA that was not detected in normal cartilage. The OA-affected cartilage (in explant assays) spontaneously released TNF-a and IL-8 in ex vivo conditions. Addition of TNF-aR fused to IgG Fc fragment (TNF-aR:Fc) in the presence or absence of soluble IL-1R (with http://www.jimmunol.org/ which it acted additively) significantly attenuated the spontaneous/autocrine release of articular IL-8 in this assay. These exper- iments demonstrate a functional paracrine/autocrine role of TNF-a in OA-affected cartilage that may depend, in part, on up- regulated levels of chondrocyte-derived TACE. The Journal of Immunology, 1998, 160: 4570–4579. umor necrosis factor a, a pleiotropic cytokine, produces a anti-TNF-a Abs (8) or soluble TNF-aR (9) has proven to be highly broad spectrum of injurious effects, which makes it an effective in reducing clinical score, paw swelling, and histologic T important target for therapeutic intervention. TNF-a is severity of the disease. Extension of these studies in patients with involved in the pathophysiology of arthritis, AIDS, cancer, auto- rheumatoid arthritis in phase II and III clinical trials has yielded immune diseases (immune complex diseases), lung fibrosis, mul- very encouraging results. These early clinical results indicate that by guest on September 27, 2021 tiple sclerosis, skin delayed-type hypersensitivity reactions, and neutralizing the effects of TNF-a may have profound effects on bacterial and parasitic infections (1–6). clinical symptoms and signs (10, 11). The gene for human TNF-a encodes a prohormone that is in- The matrix metalloproteases (MMPs)4 have long been impli- serted into the cell membrane as a polypeptide with a molecular cated in cartilage degradation in both rheumatoid arthritis (RA) mass of 26 kDa (5). This membrane-bound form of TNF-a is and osteoarthritis (OA), although their precise role in disease pro- bioactive as assayed by cell cytotoxicity and has been implicated gression remains to be determined (12). The two main families of in the paracrine activities of TNF-a in various tissues (6). In re- MMPs believed to be responsible for cartilage degradation are col- sponse to LPS and other stimuli, the 26-kDa form of proTNF-a is lagenases and proteoglycanases (12). proteolytically cleaved (by a metalloprotease referred to as TNF-a The synthesis of TNF is known to be regulated at transcrip- convertase) into a soluble 17-kDa polypeptide (6). TNF-a binds its tional, translational, and posttranslational levels (6). Three inde- cognate receptors (p55 and p75) as a bioactive trimer and triggers pendent groups have demonstrated that broad-spectrum inhibitors complex intracellular signaling pathways (6, 7). of MMPs can specifically inhibit the release of membrane pro- Studies in animal models of arthritis indicate that TNF-a may be TNF-a (but not IL-1b or IL-6) from various cell surfaces, includ- a pivotal cytokine involved in these disease processes. Injection of ing RA synovial cell cultures (13–17). This inhibitor of proTNF-a processing could protect mice against a lethal dose of endotoxin administered to them (14). The “TNF-a convertase” activity was *Department of Rheumatology and Medicine, and †Department of Orthopedic Sur- isolated using these inhibitors as ligands by affinity purification, gery, Hospital for Joint Diseases, New York, NY; ‡Skirball Institute of Biomolecular Medicine, Departments of §Medicine and ¶Pathology, and iKaplan Cancer Research which resulted in identification of an 80-kDa protein with the ca- Center, New York University Medical Center, New York, NY 10016. pacity to cleave the Gln-Ala-2-Val-Arg sequence of proTNF- Received for publication October 1, 1997. Accepted for publication January 6, 1998. a (15, 16). The costs of publication of this article were defrayed in part by the payment of page In the present study we report the following: a) the full-length charges. This article must therefore be hereby marked advertisement in accordance cDNA sequence of a snake venom-like protease from human ar- with 18 U.S.C. Section 1734 solely to indicate this fact. thritis-affected cartilage (cSVP) is identical to TACE cDNA (15, 1 The authors appreciate the generosity of the Abeles Fund and the Falk Fund in supporting these studies. The DNA sequence of cSVP (TACE) has been submitted to GenBank under accession number U92649. 4 Abbreviations used in this paper: MMP, matrix metalloprotease; cSVP, cartilage- 2 The first two authors have contributed equally to the paper. derived snake venom-like protease; OA, osteoarthritis; RA, rheumatoid arthritis; sIL- 3 Address correspondence and reprint requests to Dr. Ashok R. Amin, Department of 1R, soluble IL-1R; GST-proTNF-a, glutathione-S-transferase-proTNF-a; TNF-aR: Rheumatology, Room 1600, Hospital for Joint Diseases, 301 E. 17th St., New York, Fc, TNF-a receptor fused to IgG Fc fragment; TACE, TNF-a convertase enzyme; NY 10003. EGF, epidermal growth facor; RACE, rapid amplification of cDNA ends. Copyright © 1998 by The American Association of Immunologists 0022-1767/98/$02.00 The Journal of Immunology 4571 16); b) the functional expression of a truncated recombinant TACE branes were hybridized with 32P-labeled probes overnight at 65°C. After showing TNF-a convertase activity; c) the up-regulation of both hybridization, the membranes were washed at high stringency twice for 10 a min at 65°C. The blots were exposed to Kodak x-ray films (Kodak, Roch- TACE and proTNF- mRNA in OA- and RA-affected, but not in 2 a ester, NY) at 70°C. All methods were conducted according to Sambrook, normal cartilage; and d) the intraarticular TNF- expressed in OA- et al. (23). affected cartilage is sufficient to modulate the autocrine cartilage- a derived IL-8 production. We conclude from these data that TNF- , Colony hybridization which is induced in arthritis-affected cartilage, may be influenced by the up-regulated TNF-a convertase to promote cartilage cata- White colonies, including one positive control each for collagenase and ; bolic activities. stromelysin, were taken on grids on 150-mm plates ( 400 colonies per plate) and incubated overnight at 37°C. Colonies were transferred onto nitrocellulose membrane. The filters were then fixed with a UV Crosslinker Materials and Methods (Stratagene, La Jolla, CA). Treatment of membranes, prehybridization, hy- Procurement of human cartilage bridization, and washing conditions used were according to published pro- tocols (22). Membranes were exposed to an autoradiographic film at Cartilage slices were taken from the knees of patients with the diagnosis of 270°C. The collagenase1/stromelysin1 clones were excluded from the advanced OA or RA who were undergoing knee replacement surgery, and grids before sequencing the inserts of some of the other clones. from nonarthritic knees. The OA/RA patients were free of nonsteroidal anti-inflammatory drugs for at least 2 wk before surgery. Nonarthritic knee 9 9 cartilage was obtained within 12 h from accident victims who were un- Cloning of full-length cSVP (TACE) by 3 and 5 rapid dergoing knee amputation. Some of the samples were provided by the amplification of cDNA ends (RACE) National Disease Research Interchange (Philadelphia, PA). Downloaded from The 39 and 59 extensions of cSVP were cloned using the 39RACE and OA cartilage organ culture 59RACE methods according to manufacturer’s instructions (Life Technol- ogies).
Recommended publications
  • (12) United States Patent (10) Patent No.: US 6,395,889 B1 Robison (45) Date of Patent: May 28, 2002
    USOO6395889B1 (12) United States Patent (10) Patent No.: US 6,395,889 B1 Robison (45) Date of Patent: May 28, 2002 (54) NUCLEIC ACID MOLECULES ENCODING WO WO-98/56804 A1 * 12/1998 ........... CO7H/21/02 HUMAN PROTEASE HOMOLOGS WO WO-99/0785.0 A1 * 2/1999 ... C12N/15/12 WO WO-99/37660 A1 * 7/1999 ........... CO7H/21/04 (75) Inventor: fish E. Robison, Wilmington, MA OTHER PUBLICATIONS Vazquez, F., et al., 1999, “METH-1, a human ortholog of (73) Assignee: Millennium Pharmaceuticals, Inc., ADAMTS-1, and METH-2 are members of a new family of Cambridge, MA (US) proteins with angio-inhibitory activity', The Journal of c: - 0 Biological Chemistry, vol. 274, No. 33, pp. 23349–23357.* (*) Notice: Subject to any disclaimer, the term of this Descriptors of Protease Classes in Prosite and Pfam Data patent is extended or adjusted under 35 bases. U.S.C. 154(b) by 0 days. * cited by examiner (21) Appl. No.: 09/392, 184 Primary Examiner Ponnathapu Achutamurthy (22) Filed: Sep. 9, 1999 ASSistant Examiner William W. Moore (51) Int. Cl." C12N 15/57; C12N 15/12; (74) Attorney, Agent, or Firm-Alston & Bird LLP C12N 9/64; C12N 15/79 (57) ABSTRACT (52) U.S. Cl. .................... 536/23.2; 536/23.5; 435/69.1; 435/252.3; 435/320.1 The invention relates to polynucleotides encoding newly (58) Field of Search ............................... 536,232,235. identified protease homologs. The invention also relates to 435/6, 226, 69.1, 252.3 the proteases. The invention further relates to methods using s s s/ - - -us the protease polypeptides and polynucleotides as a target for (56) References Cited diagnosis and treatment in protease-mediated disorders.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Structural Basis of Mammalian Mucin Processing by the Human Gut O
    ARTICLE https://doi.org/10.1038/s41467-020-18696-y OPEN Structural basis of mammalian mucin processing by the human gut O-glycopeptidase OgpA from Akkermansia muciniphila ✉ ✉ Beatriz Trastoy 1,4, Andreas Naegeli2,4, Itxaso Anso 1,4, Jonathan Sjögren 2 & Marcelo E. Guerin 1,3 Akkermansia muciniphila is a mucin-degrading bacterium commonly found in the human gut that promotes a beneficial effect on health, likely based on the regulation of mucus thickness 1234567890():,; and gut barrier integrity, but also on the modulation of the immune system. In this work, we focus in OgpA from A. muciniphila,anO-glycopeptidase that exclusively hydrolyzes the peptide bond N-terminal to serine or threonine residues substituted with an O-glycan. We determine the high-resolution X-ray crystal structures of the unliganded form of OgpA, the complex with the glycodrosocin O-glycopeptide substrate and its product, providing a comprehensive set of snapshots of the enzyme along the catalytic cycle. In combination with O-glycopeptide chemistry, enzyme kinetics, and computational methods we unveil the molecular mechanism of O-glycan recognition and specificity for OgpA. The data also con- tribute to understanding how A. muciniphila processes mucins in the gut, as well as analysis of post-translational O-glycosylation events in proteins. 1 Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain. 2 Genovis AB, Box 790, 22007 Lund, Sweden. 3 IKERBASQUE, Basque Foundation for Science, 48013 ✉ Bilbao, Spain. 4These authors contributed equally: Beatriz Trastoy, Andreas Naegeli, Itxaso Anso.
    [Show full text]
  • Jararhagin ECD-Containing Disintegrin Domain: Expression in Escherichia Coli and Inhibition of the Platelet–Collagen Interaction
    Archives of Biochemistry and Biophysics Vol. 369, No. 2, September 15, pp. 295–301, 1999 Article ID abbi.1999.1372, available online at http://www.idealibrary.com on Jararhagin ECD-Containing Disintegrin Domain: Expression in Escherichia coli and Inhibition of the Platelet–Collagen Interaction Ana M. Moura-da-Silva,*,†,‡,1 Alex Lı´nica,* Maisa S. Della-Casa,* Aura S. Kamiguti,§ Paulo L. Ho,¶ Julian M. Crampton,† and R. David G. Theakston‡ *Laborato´rio de Imunopatologia and ¶Laborato´rio de Biotecnologia Molecular, Instituto Butantan, Av. Vital Brasil, 1500, 05503-900, Sa˜o Paulo, Brazil; §Department of Haematology, University of Liverpool, Prescot Street, Liverpool, L69 3BX, United Kingdom; and †Molecular Genetics Unit and ‡Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, United Kingdom Received May 17, 1999, and in revised form July 6, 1999 demonstrating that these antibodies recognize the Jararhagin, a hemorrhagin from Bothrops jararaca parent jararhagin molecule. Treatment of the fusion venom, is a soluble snake venom component compris- protein with enterokinase, followed by further cap- ing metalloproteinase and disintegrin cysteine-rich ture of the enzyme, resulted in a band of 30 kDa, the domains and, therefore, is structurally closely related expected size for jararhagin-C. Further purification of to the membrane-bound A Disintegrin And Metallo- the cleaved disintegrin using FPLC Mono-Q columns proteinase (ADAMs) protein family. Its hemorrhagic resulted in one fraction capable of efficiently inhibit- activity is associated with the effects of both metallo- ing collagen-induced platelet aggregation in a dose- proteinase and disintegrin domains; the metallopro- dependent manner (IC50 of 8.5 mg/ml).
    [Show full text]
  • Characterization of a Novel Metalloproteinase in Duvernoy's Gland of Rhabdophis Tigrinus Tigrinus
    The Journal of Toxicological Sciences, 157 Vol.31, No.2, 157-168, 2006 CHARACTERIZATION OF A NOVEL METALLOPROTEINASE IN DUVERNOY’S GLAND OF RHABDOPHIS TIGRINUS TIGRINUS Koji KOMORI1, Motomi KONISHI1, Yuji MARUTA1, Michihisa TORIBA2, Atsushi SAKAI2, Akira MATSUDA3, Takamitsu HORI3, Mitsuko NAKATANI4, Naoto MINAMINO4 and Toshifumi AKIZAWA1 1Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotogecho, Hirakata, Osaka 573-0101, Japan 2The Japan Snake Institute, 3318 Yabuzuka Ota, Gunma 379-2301, Japan 3Department of Biochemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan 4Department of Pharmacology, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan (Received January 31, 2006; Accepted February 20, 2006) ABSTRACT — During the characterization of hemorrhagic factor in venom of Rhabdophis tigrinus tigri- nus, so-called Yamakagashi in Japan, one of the Colubridae family, a novel metalloproteinase with molec- ular weight of 38 kDa in the Duvernoy’s gland of Yamakagashi was identified by gelatin zymography and by monitoring its proteolytic activity using a fluorescence peptide substrate, MOCAc-PLGLA2pr(Dnp)AR-NH2, which was developed for measuring the well-known matrix metalloproteinase (MMP) activity. After purification by gel filtration HPLC and/or column switch HPLC system consisting of an affin- ity column, which was immobilized with a synthetic BS-10 peptide (MQKPRCGVPD) originating from propeptide domain of MMP-7 and a reversed-phase column, the N-terminal amino acid sequence of the 38 kDa metalloproteinase was identified as FNTFPGDLK which shared a high homology to Xenopus MMP-9. The 38 kDa metalloproteinase required Zn2+ and Ca2+ ions for its proteolytic activity.
    [Show full text]
  • Structural Interaction of Natural and Synthetic Inhibitors with the Venom Metalloproteinase, Atrolysin C
    Proc. Nati. Acad. Sci. USA Vol. 91, pp. 8447-8451, August 1994 Biochemistry Structural interaction of natural and synthetic inhibitors with the venom metalloproteinase, atrolysin C (form d) (coilagenase/inhibltor complex/crystafography/metastasis) DACHUAN ZHANG*, ISTVAN BOTOS*, FRANZ-XAVER GOMIS-ROTHtt, RONALD DOLL§, CHRISTINE BLOOD§, F. GEORGE NJOROGE§, JAY W. Fox¶, WOLFRAM BODEt, AND EDGAR F. MEYER* 11 *Biographics Laboratory, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843; tMax Planck Institute of Biochemistry, D-82152 Martinsried, Germany; §Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033; IBiomolecular Research Facility, University of Virginia Health Sciences Center, Charlottesville, VA 22908 Communicated by Derek H. R. Barton, May 20, 1994 ABSTRACT The structure of the metalloproteinase and 80% sequence similarity to Ht-d) has been described (12), as hemorrhagic toxin atrolysin C form d (EC 3.4.24.42), from the was the native digestive MP, astacin (13). A high degree of venom ofthe western diamondback rattlesnake Crotalus atrox, tertiary structure conservation among the astacin, reprol- has been determined to atomic resolution by x-ray crystallo- ysin, serralysins, and the MMP subfamilies is observed (9, 14) graphic methods. This study illuminates the nature ofinhibitor at the active site, suggesting that the structural principles that binding with natural (<Glu-Asn-Trp, where <Glu is pyroglu- govern the interaction of substrates and inhibitors with tamic acid) and synthetic (SCH 47890) ligands. The primary members of these subfamilies are likely to be similar if not specificity pocket is exceptionally deep; the nature of inhibitor identical. Substrates and synthetic inhibitors of the MMPs and productive substrate binding is discussed.
    [Show full text]
  • Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases
    Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases Alan J. Barrett Neil D. Rawlings J. Fred Woessner Editor biographies xxi Contributors xxiii Preface xxxi Introduction ' Abbreviations xxxvii ASPARTIC PEPTIDASES Introduction 1 Aspartic peptidases and their clans 3 2 Catalytic pathway of aspartic peptidases 12 Clan AA Family Al 3 Pepsin A 19 4 Pepsin B 28 5 Chymosin 29 6 Cathepsin E 33 7 Gastricsin 38 8 Cathepsin D 43 9 Napsin A 52 10 Renin 54 11 Mouse submandibular renin 62 12 Memapsin 1 64 13 Memapsin 2 66 14 Plasmepsins 70 15 Plasmepsin II 73 16 Tick heme-binding aspartic proteinase 76 17 Phytepsin 77 18 Nepenthesin 85 19 Saccharopepsin 87 20 Neurosporapepsin 90 21 Acrocylindropepsin 9 1 22 Aspergillopepsin I 92 23 Penicillopepsin 99 24 Endothiapepsin 104 25 Rhizopuspepsin 108 26 Mucorpepsin 11 1 27 Polyporopepsin 113 28 Candidapepsin 115 29 Candiparapsin 120 30 Canditropsin 123 31 Syncephapepsin 125 32 Barrierpepsin 126 33 Yapsin 1 128 34 Yapsin 2 132 35 Yapsin A 133 36 Pregnancy-associated glycoproteins 135 37 Pepsin F 137 38 Rhodotorulapepsin 139 39 Cladosporopepsin 140 40 Pycnoporopepsin 141 Family A2 and others 41 Human immunodeficiency virus 1 retropepsin 144 42 Human immunodeficiency virus 2 retropepsin 154 43 Simian immunodeficiency virus retropepsin 158 44 Equine infectious anemia virus retropepsin 160 45 Rous sarcoma virus retropepsin and avian myeloblastosis virus retropepsin 163 46 Human T-cell leukemia virus type I (HTLV-I) retropepsin 166 47 Bovine leukemia virus retropepsin 169 48
    [Show full text]
  • Structural, Functional and Therapeutic Aspects of Snake Venom Metal- Loproteinases
    Send Orders for Reprints to [email protected] 28 Mini-Reviews in Organic Chemistry, 2014, 11, 28-44 Structural, Functional and Therapeutic Aspects of Snake Venom Metal- loproteinases P. Chellapandi* Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli-620024, Tamil Nadu, India Abstract: Snake venoms are rich sources of metalloproteinases that are of biological interest due to their diverse molecu- lar diversity and selective therapeutic applications. Snake venoms metalloproteinases (SVMPs) belong to the MEROPS peptidase family M12B or reprolysin subfamily, which are consisted of four major domains include a reprolysin catalytic domain, a disintegrin domain, a reprolysin family propeptide domain and a cysteine-rich domain. The appropriate struc- tural and massive sequences information have been available for SVMPs family of enzymes in the Protein Data Bank and National Center for Biotechnology Information, respectively. Functional essentiality of every domain and a crucial contri- bution of binding geometry, primary specificity site, and structural motifs have been studied in details, pointing the way for designing potential anti-coagulation, antitumor, anti-complementary and anti-inflammatory drugs or peptides. These enzymes have been reported to degrade fibrinogen, fibrin and collagens, and to prevent progression of clot formation. An- giotensin-converting enzyme activity, antibacterial properties, haemorrhagic activity and platelet aggregation response of SVMPs have been studied earlier. Structural information of these enzymes together with recombinant DNA technology would strongly promote the construction of many recombinant therapeutic peptides, particularly fibrinogenases and vac- cines. We have comprehensively reviewed the structure-function-evolution relationships of SVMPs family proteins and their advances in the promising target models for structure-based inhibitors and peptides design.
    [Show full text]
  • Genetic Basis for Variation of Metalloproteinase-Associated Biochemical Activity in Venom of the Mojave Rattlesnake (Crotalus Scutulatus Scutulatus)
    Hindawi Publishing Corporation Biochemistry Research International Volume 2013, Article ID 251474, 11 pages http://dx.doi.org/10.1155/2013/251474 Research Article Genetic Basis for Variation of Metalloproteinase-Associated Biochemical Activity in Venom of the Mojave Rattlesnake (Crotalus scutulatus scutulatus) Ruben K. Dagda,1 Sardar Gasanov,2 Ysidro De La OIII,3 Eppie D. Rael,3 and Carl S. Lieb3 1 Pharmacology Department, University of Nevada School of Medicine, Manville Building 19A, Reno, NV 89557, USA 2 Science Department, Tashkent Ulugbek International School, 5-A J. Shoshiy Street, 100100 Tashkent, Uzbekistan 3 Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA Correspondence should be addressed to Ruben K. Dagda; [email protected] Received 26 April 2013; Accepted 25 June 2013 AcademicEditor:R.J.Linhardt Copyright © 2013 Ruben K. Dagda et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The metalloproteinase composition and biochemical profiles of rattlesnake venom can be highly variable among rattlesnakes ofthe same species. We have previously shown that the neurotoxic properties of the Mojave rattlesnake (Crotalus scutulatus scutulatus) are associated with the presence of the Mojave toxin A subunit suggesting the existence of a genetic basis for rattlesnake venom composition. In this report, we hypothesized the existence of a genetic basis for intraspecies variation in metalloproteinase- associated biochemical properties of rattlesnake venom of the Mojave rattlesnake. To address this question, we PCR-amplified and compared the genomic DNA nucleotide sequences that code for the mature metalloproteinase domain of fourteen Mojave rattlesnakes captured from different geographical locations across the southwest region of the United States.
    [Show full text]
  • Albocollagenase, a Novel Recombinant P-III Snake Venom Metalloproteinase from Green Pit Viper (Cryptelytrops Albolabris), Digest
    Toxicon 57 (2011) 772–780 Contents lists available at ScienceDirect Toxicon journal homepage: www.elsevier.com/locate/toxicon Albocollagenase, a novel recombinant P-III snake venom metalloproteinase from green pit viper (Cryptelytrops albolabris), digests collagen and inhibits platelet aggregation Anuwat Pinyachat a,b, Ponlapat Rojnuckarin a,*, Chuanchom Muanpasitporn a, Pon Singhamatr a, Surang Nuchprayoon b a Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand b Department of Parasitology and Chulalongkorn Medical Research Center (Chula MRC), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand article info abstract Article history: Molecular cloning and functional characterization of P-III snake venom metalloproteinases Received 1 October 2010 (SVMPs) will give us deeper insights in the pathogenesis of viper bites. This may lead to Received in revised form 20 January 2011 novel therapy for venom-induced local tissue damages, the complication refractory to Accepted 9 February 2011 current antivenom. The aim of this study was to elucidate the in vitro activities of a new Available online 17 February 2011 SVMP from the green pit viper (GPV) using recombinant DNA technology. We report, here, a new cDNA clone from GPV (Cryptelytrops albolabris) venom glands encoding 614 amino Keywords: acid residues P-III SVMP, termed albocollagenase. The conceptually translated protein Green pit viper Albocollagenase comprised a signal peptide and prodomain, followed by a metalloproteinase domain Snake venom metalloproteinase (SVMP) containing a zinc-binding motifs, HEXGHXXGXXH-CIM and 9 cysteine residues. The dis- Cloning integrin-like and cysteine-rich domains possessed 24 cysteines and a DCD (Asp-Cys-Asp) Pichia motif. The albocollagenase deduced amino acid sequence alignments showed approxi- Collagen type IV mately 70% identity with other P-III SVMPs.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2004/0081648A1 Afeyan Et Al
    US 2004.008 1648A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0081648A1 Afeyan et al. (43) Pub. Date: Apr. 29, 2004 (54) ADZYMES AND USES THEREOF Publication Classification (76) Inventors: Noubar B. Afeyan, Lexington, MA (51) Int. Cl." ............................. A61K 38/48; C12N 9/64 (US); Frank D. Lee, Chestnut Hill, MA (52) U.S. Cl. ......................................... 424/94.63; 435/226 (US); Gordon G. Wong, Brookline, MA (US); Ruchira Das Gupta, Auburndale, MA (US); Brian Baynes, (57) ABSTRACT Somerville, MA (US) Disclosed is a family of novel protein constructs, useful as Correspondence Address: drugs and for other purposes, termed “adzymes, comprising ROPES & GRAY LLP an address moiety and a catalytic domain. In Some types of disclosed adzymes, the address binds with a binding site on ONE INTERNATIONAL PLACE or in functional proximity to a targeted biomolecule, e.g., an BOSTON, MA 02110-2624 (US) extracellular targeted biomolecule, and is disposed adjacent (21) Appl. No.: 10/650,592 the catalytic domain So that its affinity Serves to confer a new Specificity to the catalytic domain by increasing the effective (22) Filed: Aug. 27, 2003 local concentration of the target in the vicinity of the catalytic domain. The present invention also provides phar Related U.S. Application Data maceutical compositions comprising these adzymes, meth ods of making adzymes, DNA's encoding adzymes or parts (60) Provisional application No. 60/406,517, filed on Aug. thereof, and methods of using adzymes, Such as for treating 27, 2002. Provisional application No. 60/423,754, human Subjects Suffering from a disease, Such as a disease filed on Nov.
    [Show full text]
  • Arxiv:1212.4161V1 [Q-Bio.BM] 17 Dec 2012
    Comparing proteins by their internal dynamics: exploring structure-function relationships beyond static structural alignments Cristian Micheletti Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, Trieste, Italy; e-mail: [email protected] (Dated: October 30, 2018) The growing interest for comparing protein internal dynamics owes much to the realization that protein function can be accompanied or assisted by structural fluctuations and conformational changes. Analogously to the case of functional structural elements, those aspects of protein flexi- bility and dynamics that are functionally oriented should be subject to evolutionary conservation. Accordingly, dynamics-based protein comparisons or alignments could be used to detect protein relationships that are more elusive to sequence and structural alignments. Here we provide an ac- count of the progress that has been made in recent years towards developing and applying general methods for comparing proteins in terms of their internal dynamics and advance the understanding of the structure-function relationship. Link to published article in Physics of Live Reviews: http://dx.doi.org/10.1016/j.plrev.2012.10.009 PACS numbers: I. INTRODUCTION tend to conserve very precisely functional structural el- ements and the location of the active site where differ- Over the past decades enormous efforts have been ent amino acids can be recruited for different function[10, made to clarify the sequence ! structure ! function 28, 115, 123, 169]. More recently it has also emerged that relationships for proteins and enzymes. In particular specific features of protein internal dynamics that impact the sequence ! structure connection has been exten- biological activity and functionality can also be subject sively probed by dissecting the detailed physico-chemical to evolutionary conservation[21, 87, 137, 181, 182].
    [Show full text]