DESALINATION: Balancing the Socioeconomic Benefits and Environmental Costs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fronts in the World Ocean's Large Marine Ecosystems. ICES CM 2007
- 1 - This paper can be freely cited without prior reference to the authors International Council ICES CM 2007/D:21 for the Exploration Theme Session D: Comparative Marine Ecosystem of the Sea (ICES) Structure and Function: Descriptors and Characteristics Fronts in the World Ocean’s Large Marine Ecosystems Igor M. Belkin and Peter C. Cornillon Abstract. Oceanic fronts shape marine ecosystems; therefore front mapping and characterization is one of the most important aspects of physical oceanography. Here we report on the first effort to map and describe all major fronts in the World Ocean’s Large Marine Ecosystems (LMEs). Apart from a geographical review, these fronts are classified according to their origin and physical mechanisms that maintain them. This first-ever zero-order pattern of the LME fronts is based on a unique global frontal data base assembled at the University of Rhode Island. Thermal fronts were automatically derived from 12 years (1985-1996) of twice-daily satellite 9-km resolution global AVHRR SST fields with the Cayula-Cornillon front detection algorithm. These frontal maps serve as guidance in using hydrographic data to explore subsurface thermohaline fronts, whose surface thermal signatures have been mapped from space. Our most recent study of chlorophyll fronts in the Northwest Atlantic from high-resolution 1-km data (Belkin and O’Reilly, 2007) revealed a close spatial association between chlorophyll fronts and SST fronts, suggesting causative links between these two types of fronts. Keywords: Fronts; Large Marine Ecosystems; World Ocean; sea surface temperature. Igor M. Belkin: Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, Rhode Island 02882, USA [tel.: +1 401 874 6533, fax: +1 874 6728, email: [email protected]]. -
A Destabilizing Thermohaline Circulation–Atmosphere–Sea Ice
642 JOURNAL OF CLIMATE VOLUME 12 NOTES AND CORRESPONDENCE A Destabilizing Thermohaline Circulation±Atmosphere±Sea Ice Feedback STEVEN R. JAYNE MIT±WHOI Joint Program in Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts JOCHEM MAROTZKE Center for Global Change Science, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 18 November 1996 and 9 March 1998 ABSTRACT Some of the interactions and feedbacks between the atmosphere, thermohaline circulation, and sea ice are illustrated using a simple process model. A simpli®ed version of the annual-mean coupled ocean±atmosphere box model of Nakamura, Stone, and Marotzke is modi®ed to include a parameterization of sea ice. The model includes the thermodynamic effects of sea ice and allows for variable coverage. It is found that the addition of sea ice introduces feedbacks that have a destabilizing in¯uence on the thermohaline circulation: Sea ice insulates the ocean from the atmosphere, creating colder air temperatures at high latitudes, which cause larger atmospheric eddy heat and moisture transports and weaker oceanic heat transports. These in turn lead to thicker ice coverage and hence establish a positive feedback. The results indicate that generally in colder climates, the presence of sea ice may lead to a signi®cant destabilization of the thermohaline circulation. Brine rejection by sea ice plays no important role in this model's dynamics. The net destabilizing effect of sea ice in this model is the result of two positive feedbacks and one negative feedback and is shown to be model dependent. To date, the destabilizing feedback between atmospheric and oceanic heat ¯uxes, mediated by sea ice, has largely been neglected in conceptual studies of thermohaline circulation stability, but it warrants further investigation in more realistic models. -
Glacial Ocean Circulation and Stratification Explained by Reduced
Glacial ocean circulation and stratification explained by reduced atmospheric temperature Malte F. Jansena,1 aDepartment of the Geophysical Sciences, The University of Chicago, Chicago, IL 60637 Edited by Mark H. Thiemens, University of California, San Diego, La Jolla, CA, and approved November 7, 2016 (received for review June 27, 2016) Earth’s climate has undergone dramatic shifts between glacial and We test the connection between atmospheric temperature interglacial time periods, with high-latitude temperature changes and ocean circulation and stratification changes, using idealized on the order of 5–10 ◦C. These climatic shifts have been asso- numerical simulations, which allow us to isolate the proposed ciated with major rearrangements in the deep ocean circulation mechanism. We use a coupled ocean–sea-ice model, with atmo- and stratification, which have likely played an important role in spheric temperature, winds, and evaporation–precipitation pre- the observed atmospheric carbon dioxide swings by affecting the scribed as boundary conditions (Materials and Methods). The partitioning of carbon between the atmosphere and the ocean. model uses an idealized continental configuration resembling the The mechanisms by which the deep ocean circulation changed, Atlantic and Southern Oceans, where the most elemental circu- however, are still unclear and represent a major challenge to our lation changes have been inferred (3, 5, 6, 12). understanding of glacial climates. This study shows that vari- ous inferred changes in the deep ocean circulation and stratifica- Results tion between glacial and interglacial climates can be interpreted We first focus on the model’s ability to reproduce key features as a direct consequence of atmospheric temperature differences. -
Ice Production in Ross Ice Shelf Polynyas During 2017–2018 from Sentinel–1 SAR Images
remote sensing Article Ice Production in Ross Ice Shelf Polynyas during 2017–2018 from Sentinel–1 SAR Images Liyun Dai 1,2, Hongjie Xie 2,3,* , Stephen F. Ackley 2,3 and Alberto M. Mestas-Nuñez 2,3 1 Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China; [email protected] 2 Laboratory for Remote Sensing and Geoinformatics, Department of Geological Sciences, University of Texas at San Antonio, San Antonio, TX 78249, USA; [email protected] (S.F.A.); [email protected] (A.M.M.-N.) 3 Center for Advanced Measurements in Extreme Environments, University of Texas at San Antonio, San Antonio, TX 78249, USA * Correspondence: [email protected]; Tel.: +1-210-4585445 Received: 21 April 2020; Accepted: 5 May 2020; Published: 7 May 2020 Abstract: High sea ice production (SIP) generates high-salinity water, thus, influencing the global thermohaline circulation. Estimation from passive microwave data and heat flux models have indicated that the Ross Ice Shelf polynya (RISP) may be the highest SIP region in the Southern Oceans. However, the coarse spatial resolution of passive microwave data limited the accuracy of these estimates. The Sentinel-1 Synthetic Aperture Radar dataset with high spatial and temporal resolution provides an unprecedented opportunity to more accurately distinguish both polynya area/extent and occurrence. In this study, the SIPs of RISP and McMurdo Sound polynya (MSP) from 1 March–30 November 2017 and 2018 are calculated based on Sentinel-1 SAR data (for area/extent) and AMSR2 data (for ice thickness). -
Irrigation Management with Saline Water
IRRIGATION MANAGEMENT WITH SALINE WATER Dana O. Porter, P.E. Thomas Marek, P.E. Associate Professor and Extension Senior Research Engineer & Agricultural Engineering Specialist Superintendent, North Research Field, Texas Cooperative Extension and Etter Texas Agricultural Experiment Station Texas Agricultural Experiment Station Texas A&M University Agricultural Texas A&M University Agricultural Research and Extension Center Research and Extension Center 1102 E. FM 1294 6500 Amarillo Blvd W. Lubbock, Texas 79403 Amarillo, TX 79106 Voice: 806-746-6101 Voice: (806) 677-5600 Fax: 806-746-4057 Fax: (806) 677-5644 E-mail: [email protected] E-mail: [email protected] INTRODUCTION One of the most common water quality concerns for irrigated agriculture is salinity. Recommendations for effective management of irrigation water salinity depend upon local soil properties, climate, and water quality; options of crops and rotations; and irrigation and farm management capabilities. What Is Salinity? All major irrigation water sources contain dissolved salts. These salts include a variety of natural occurring dissolved minerals, which can vary with location, time, and water source. Many of these mineral salts are micronutrients, having beneficial effects. However, excessive total salt concentration or excessive levels of some potentially toxic elements can have detrimental effects on plant health and/or soil conditions. The term “salinity” is used to describe the concentration of (ionic) salt species, generally including: calcium (Ca2+ ), magnesium (Mg2+ ), sodium (Na+ ), potassium + - - 2- 2- (K ), chloride (Cl ), bicarbonate (HCO3 ), carbonate(CO3 ), sulfate (SO4 ) and others. Salinity is expressed in terms of electrical conductivity (EC), in units of millimhos per centimeter (mmhos/cm), micromhos per centimeter (µmhos/cm), or deciSiemens per meter (dS/m). -
Antarctic Sea Ice Control on Ocean Circulation in Present and Glacial Climates
Antarctic sea ice control on ocean circulation in present and glacial climates Raffaele Ferraria,1, Malte F. Jansenb, Jess F. Adkinsc, Andrea Burkec, Andrew L. Stewartc, and Andrew F. Thompsonc aDepartment of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; bAtmospheric and Oceanic Sciences Program, Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08544; and cDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 Edited* by Edward A. Boyle, Massachusetts Institute of Technology, Cambridge, MA, and approved April 16, 2014 (received for review December 31, 2013) In the modern climate, the ocean below 2 km is mainly filled by waters possibly associated with an equatorward shift of the Southern sinking into the abyss around Antarctica and in the North Atlantic. Hemisphere westerlies (11–13), (ii) an increase in abyssal stratifi- Paleoproxies indicate that waters of North Atlantic origin were instead cation acting as a lid to deep carbon (14), (iii)anexpansionofseaice absent below 2 km at the Last Glacial Maximum, resulting in an that reduced the CO2 outgassing over the Southern Ocean (15), and expansion of the volume occupied by Antarctic origin waters. In this (iv) a reduction in the mixing between waters of Antarctic and Arctic study we show that this rearrangement of deep water masses is origin, which is a major leak of abyssal carbon in the modern climate dynamically linked to the expansion of summer sea ice around (16). Current understanding is that some combination of all of these Antarctica. A simple theory further suggests that these deep waters feedbacks, together with a reorganization of the biological and only came to the surface under sea ice, which insulated them from carbonate pumps, is required to explain the observed glacial drop in atmospheric forcing, and were weakly mixed with overlying waters, atmospheric CO2 (17). -
Salinity Distribution and Variation with Freshwater Inflow and Tide, And
Salinity Distribution and Variation with Freshwater Inflow and Tide, and Potential Changes in Salinity due to Altered Freshwater Inflow in the Charlotte Harbor Estuarine System, Florida By Yvonne E. Stoker U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 92-4062 Prepared in cooperation with the FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION Tallahassee, Florida 1992 U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY DALLAS L. PECK, Director For additional information, Copies of this report may be write to: purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Books and Open-File Reports Section Suite 3015 Federal Center 227 North Bronough Street Box 25425 Tallahassee, Florida 32301 Denver, Colorado 80225 CONTENTS Abstract 1 Introduction 1 Purpose and scope 3 Previous studies 4 Acknowledgments 4 Description of the study area and factors affecting salinity variation Freshwater inflow 4 Tide 7 Water density 8 Study methods 8 Salinity distribution in Charlotte Harbor 9 Salinity variations with freshwater inflow and tide 13 Variations with freshwater inflow 14 Tidal Caloosahatchee River 14 Upper Charlotte Harbor 17 Lower Charlotte Harbor 23 Variations with tide 23 Potential salinity changes due to altered freshwater inflow 24 Summary and conclusions 28 Selected references 29 Figure 1. Map showing study area and drainage basins 2 2. Map showing Charlotte Harbor and subarea boundaries 3 3. Map showing depth of the Charlotte Harbor estuarine system 5 4. Graphs showing daily mean discharge and monthly rainfall in the Peace, Myakka, and Caloosahatchee River basins, June 1982 to May 1987 6 5. Sketch showing generalization of highly stratified, partially mixed, and well-mixed salinity patterns in an estuary 8 6. -
Soil Salinity in Agricultural Systems: the Basics
Soil Salinity in Agricultural Systems: The Basics Jeffrey L. Ullman Agricultural & Biological Engineering University of Florida Strategies for Minimizing Salinity Problems and Optimizing Crop Production In-Service Training, Hastings, FL March 26, 2013 What is salt? What is Salt? . Salts are more than just sodium chloride (NaCl) . Salts consist of anions and cations . In terms of soil and irrigation water these generally include: Cations Anions Sodium Na+ Chlorides Cl- 2+ 2- Magnesium Mg Sulfates SO4 2+ 2- Calcium Ca Carbonates CO3 - Bicarbonates HCO3 What is Salt? . Other salts in agriculture + Potassium (K ) - Nitrate (NO3 ) Boron (B) • Often as boric acid (H3BO3, often written as B(OH)3) • Can form salts such as sodium borate (borax; Na2B4O7) Photo: Georgia Agriculture What is Salt? H O(l) NaCl(s) 2 Na+(aq) + Cl-(aq) (aq) indicates that Na+ and Cl- are hydrated ions Sodium sulfate Magnesium carbonate Source: Averill and Eldredge (2007) Types of Salts Some common salts NaCl Sodium chloride Table salt (halite) CO 2- 3 KCl Potassium chloride Muriate of potash Na+ 2- NaHCO3 Sodium bicarbonate Baking soda (nahcolite) SO4 - Cl CaSO4 Calcium sulfate Gypsum + K CaCO3 Calcium carbonate Calcite 2+ Ca MgSO Magnesium sulfate Epsom salt (epsomite) Mg2+ 4 K2SO4 Potassium sulfate Sulfate of potash (arcanite) HCO - 3 Glauber’s salt (thenardite Na SO Sodium sulfate 2 4 and mirabilite) Gypsum Calcite Thenardite Sources of Salt . Dissolution of parent rock material . Irrigation water . Saline groundwater . Fertilizers . Manure . Seawater intrusion Photo: J. Ullman Saline Soils . Accumulation of salts known as salination . Can occur in diverse types of soil with different physical, chemical and hydrologic properties Photo: USDA-NRCS Saline Soils . -
Effects of Saline Water and Exogenous Application of Hydrogen Peroxide (H2O2) on Soursop (Annona Muricata L.) at Vegetative Stage
AJCS 13(03):472-479 (2019) ISSN:1835-2707 doi: 10.21475/ajcs.19.13.03.p1583 Effects of saline water and exogenous application of hydrogen peroxide (H2O2) on Soursop (Annona muricata L.) at vegetative stage Luana Lucas de Sá Almeida Veloso1, Carlos Alberto Vieira de Azevedo1, André Alisson Rodrigues da Silva1, Geovani Soares de Lima1*, Hans Raj Gheyi2, Raul Araújo da Nóbrega1, Francisco Wesley Alves Pinheiro1, Rômulo Carantino Moreira Lucena1 1Federal University of Campina Grande, Academic Unit of Agricultural Engineering, Campina Grande, 58.109-970, Paraíba, Brazil 2Federal University of Recôncavo of Bahia, Nucleus of Soil and Water Engineering, Cruz das Almas, 44.380-000, Bahia, Brazil *Corresponding author: [email protected] Abstract Soursop is a fruit of great socioeconomic importance for the northeastern region of Brazil. However, the quantitative and qualitative limitation of the water resources of this region has reduced its production. The objective of this study was to evaluate the growth of ‘Morada Nova’ soursop plants irrigated with saline water and subjected to exogenous application of hydrogen peroxide through seed immersion and foliar spray. The study was conducted in plastic pots adapted as lysimeters, using a eutrophic Regolithic Neosol with sandy loam texture under greenhouse conditions. Treatments were distributed in randomized blocks, in a 4 x 4 factorial arrangement, corresponding to four levels of irrigation water electrical conductivity – ECw (0.7; 1.7; 2.7 and 3.7 dS m-1) and four concentrations of hydrogen peroxide – H2O2 (0, 25, 50 and 75 µM), with three replicates and one plant per plot. Foliar applications of H2O2 began 15 days after transplanting (DAT) and were carried out every 15 days at 17:00 h, after the sunset, by manually spraying the H2O2 solutions with a sprayer in such a way to completely wet the leaves (spraying the abaxial and adaxial faces). -
Anguelova, M.D. and Huq, P., 2018. Effects of Salinity on Bubble Cloud
Journal of Marine Science and Engineering Article Effects of Salinity on Bubble Cloud Characteristics Magdalena D. Anguelova 1,* ID and Pablo Huq 2 1 Remote Sensing Division, Naval Research Laboratory, Washington, DC 20375, USA 2 College of Earth, Ocean, and Environment, University of Delaware, Newark, DE 19716, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-202-404-6342 Received: 13 November 2017; Accepted: 26 December 2017; Published: 29 December 2017 Abstract: A laboratory experiment investigates the influence of salinity on the characteristics of bubble clouds in varying saline solutions. Bubble clouds were generated with a water jet. Salinity, surface tension, and water temperature were monitored. Measured bubble cloud parameters include the number of bubbles, the void fraction, the penetration depth, and the cloud shape. The number of large (above 0.5 mm diameter) bubbles within a cloud increases by a factor of three from fresh to saline water of 20 psu (practical salinity units), and attains a maximum value for salinity of 12–25 psu. The void fraction also has maximum value in the range 12–25 psu. The results thus show that both the number of bubbles and the void fraction vary nonmonotonically with increasing salinity. The lateral shape of the bubble cloud does not change with increasing salinity; however, the lowest point of the cloud penetrates deeper as smaller bubbles are generated. Keywords: bubbles; bubble clouds; seawater salinity; surface tension; whitecaps; breaking waves; plunging water jet; air entrapment; gas exchange; energy dissipation 1. Introduction Bubble clouds arising from waves breaking at the ocean surface play an important role in the transport of momentum and scalars between the atmosphere and the ocean [1,2]. -
Strategies for the Simulation of Sea Ice Organic Chemistry: Arctic Tests and Development
geosciences Article Strategies for the Simulation of Sea Ice Organic Chemistry: Arctic Tests and Development Scott Elliott 1,*, Nicole Jeffery 1, Elizabeth Hunke 1, Clara Deal 2, Meibing Jin 2 ID , Shanlin Wang 1, Emma Elliott Smith 3 and Samantha Oestreicher 4 1 Climate Ocean Sea Ice Modeling (COSIM), Los Alamos National Laboratory, Los Alamos, NM 87545, USA; [email protected] (N.J.); [email protected] (E.H.); [email protected] (S.W.) 2 International Arctic Research Center and University of Alaska, Fairbanks, AK 99775, USA; [email protected] (C.D.), [email protected] (M.J.) 3 Biology Department, University of New Mexico, Albuquerque, NM 87131, USA; [email protected] 4 Applied Mathematics, University of Minnesota, Minneapolis, MN 55455, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-505-606-0118 Received: 11 April 2017; Accepted: 21 June 2017; Published: 14 July 2017 Abstract: A numerical mechanism connecting ice algal ecodynamics with the buildup of organic macromolecules is tested within modeled pan-Arctic brine channels. The simulations take place offline in a reduced representation of sea ice geochemistry. Physical driver quantities derive from the global sea ice code CICE, including snow cover, thickness and internal temperature. The framework is averaged over ten boreal biogeographic zones. Computed nutrient-light-salt limited algal growth supports grazing, mortality and carbon flow. Vertical transport is diffusive but responds to pore structure. Simulated bottom layer chlorophyll maxima are reasonable, though delayed by about a month relative to observations due to uncertainties in snow variability. Upper level biota arise intermittently during flooding events. -
Distribution and Abundance of Select Trace Metals in Chukchi and Beaufort Sea Ice
Distribution and Abundance of Select Trace Metals in Chukchi and Beaufort Sea Ice Principal Investigators Robert Rember1 Ana M. Aguilar-Islas2 Graduate Student Vincent Domena2 1International Arctic Research Center, University of Alaska Fairbanks 2College of Fisheries and Ocean Sciences, University of Alaska Fairbanks FINAL REPORT December 2016 OCS Study BOEM 2016-079 Contact Information: email: [email protected] phone: 907.474.6782 fax: 907.474.7204 Coastal Marine Institute College of Fisheries and Ocean Sciences University of Alaska Fairbanks P. O. Box 757220 Fairbanks, AK 99775-7220 This study was funded in part by the U.S. Department of the Interior, Bureau of Ocean Energy Management (BOEM) through Cooperative Agreement M13AC00002 between BOEM, Alaska Outer Continental Shelf Region, and the University of Alaska Fairbanks. This report, OCS Study BOEM 2016-079, is available through the Coastal Marine Institute, select federal depository libraries and can be accessed electronically at http://www.boem.gov/Alaska-Scientific-Publications. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Government. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Government. TABLE OF CONTENTS LIST OF FIGURES ..................................................................................................................................... iii LIST OF TABLES ......................................................................................................................................