Distribution and Abundance of Select Trace Metals in Chukchi and Beaufort Sea Ice

Total Page:16

File Type:pdf, Size:1020Kb

Distribution and Abundance of Select Trace Metals in Chukchi and Beaufort Sea Ice Distribution and Abundance of Select Trace Metals in Chukchi and Beaufort Sea Ice Principal Investigators Robert Rember1 Ana M. Aguilar-Islas2 Graduate Student Vincent Domena2 1International Arctic Research Center, University of Alaska Fairbanks 2College of Fisheries and Ocean Sciences, University of Alaska Fairbanks FINAL REPORT December 2016 OCS Study BOEM 2016-079 Contact Information: email: [email protected] phone: 907.474.6782 fax: 907.474.7204 Coastal Marine Institute College of Fisheries and Ocean Sciences University of Alaska Fairbanks P. O. Box 757220 Fairbanks, AK 99775-7220 This study was funded in part by the U.S. Department of the Interior, Bureau of Ocean Energy Management (BOEM) through Cooperative Agreement M13AC00002 between BOEM, Alaska Outer Continental Shelf Region, and the University of Alaska Fairbanks. This report, OCS Study BOEM 2016-079, is available through the Coastal Marine Institute, select federal depository libraries and can be accessed electronically at http://www.boem.gov/Alaska-Scientific-Publications. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Government. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Government. TABLE OF CONTENTS LIST OF FIGURES ..................................................................................................................................... iii LIST OF TABLES ....................................................................................................................................... iii ABSTRACT. ................................................................................................................................................ iv INTRODUCTION ........................................................................................................................................ 1 Overview ................................................................................................................................................ 1 Objectives ............................................................................................................................................... 3 Study Area ............................................................................................................................................. 3 METHODS .................................................................................................................................................. 6 Field Sampling ....................................................................................................................................... 6 Sample Processing .................................................................................................................................. 7 Laboratory Analyses ............................................................................................................................... 8 Trace metals in suspended sediments ........................................................................................... 8 Dissolved trace metals in seawater, snow, and sea ice ................................................................ 9 Quality Assurance and Quality Control ................................................................................................. 9 Instrument calibration ................................................................................................................... 9 Quality control measurements for analysis ................................................................................... 9 RESULTS ................................................................................................................................................... 10 2013 Chukchi Sea Water Column ........................................................................................................ 10 Sea Ice Tank Experiments .................................................................................................................... 16 Sea Ice Field Sampling ......................................................................................................................... 18 DISCUSSION. ............................................................................................................................................ 25 Chukchi Sea Trace Metal Distributions ............................................................................................... 25 Sea Ice Tank Experiments .................................................................................................................... 29 Field Samples ....................................................................................................................................... 32 Dissolved trance metals in seawater ........................................................................................... 32 Trace metals in sea ice ................................................................................................................ 34 PROJECT OUTREACH ............................................................................................................................. 36 ACKNOWLEDGEMENTS ........................................................................................................................ 37 STUDY PRODUCTS ................................................................................................................................. 37 REFERENCES ........................................................................................................................................... 38 APPENDIX ................................................................................................................................................. 41 ii LIST OF FIGURES Figure 1. Map detailing the trace metal stations off Oliktok Point, and location of Colville River delta ..... 4 Figure 2. Map detailing the trace metal stations and circulation in the Chukchi Sea and southern Beaufort Sea ……... ..................................................................................................................................................... 5 Figure 3. Diagram describing the sampling scheme for sea ice at stations off Oliktok Point ...................... 7 Figure 4. Custom-made chambers for melting sea ice cores ........................................................................ 8 Figure 5. Density and transmission data on the transect from Bering Strait to the northern Chukchi Sea along 168W . ............................................................................................................................................... 11 Figure 6. Concentrations of dissolved, leachable particulate, and refractory particulate Fe and Mn for Stations along the Chukchi Shelf. ............................................................................................................... 12 Figure 7. Dissolved oxygen, beam transmission and density data collected from CTD profiles ............... 13 Figure 8. Dissolved, leachable, and refractory Fe and Mn data collected during an extended occupation of a single station in the northern Chukchi Sea ............................................................................................... 14 Figure 9. Profiles of dissolved metals for the southern Canada Basin collected in 2010 and 2013 ........... 15 Figure 10. Filtered seawater from the Gulf of Alaska frozen in a large polyethylene tank in the cold room of the UAF Geophysical Institute. .............................................................................................................. 16 Figure 11. Select results from the ice tank experiments conducted in 2014 .............................................. 17 Figure 12. Salinity and temperature profiles collected at the five stations occupied during May 2015 off Oliktok Point. .............................................................................................................................................. 19 Figure 13. Concentrations of select dissolved metals at the five stations occupied during May 2015. ..... 20 Figure 14. Concentration of total suspendid solids in sea ice cores collected during spring 2015 ............ 21 Figure 15. Metal to Al ratios in sea ice cores collected May 2015 from the Colville River Delta ............ 24 Figure 16. Graduate student Vincent Domena lectures to students during Bering Sea Day’s on St. Paul Island in October 2016.. .............................................................................................................................. 36 LIST OF TABLES Table 1. Station locations for stations occupied during May 2015 ............................................................. 18 Table 2. Concentrations of dissolved trace metals in the seawater collected below the ice at stations occupied during spring 2015 near the mouth of the Colville River ............................................................ 21 Table 3. Concentrations of dissolved trace metals in the sea ice collected at stations occupied during spring 2015 near the mouth of the Colville River ....................................................................................... 23 Table 4. Metal to Al ratios for particulate trace metals in the sea ice cores collected at stations occupied during spring 2015 near the mouth of the Colville River ..........................................................................
Recommended publications
  • Beaufort Sea Monitoring Program
    Outer Continental Shelf Environmental Assessment Program Beaufort Sea Monitoring Program: Proceedings of a Workshop and Sampling Design Recommendations Beaufort Sea Monitoring Program: Proceedings of a Workshop (September 1983) and Sampling Design Recommendations ; Prepared for the Outer Continental Shelf Environmental Assessment Program Juneau, Alaska by J. P. Houghton Dames & Moore 155 N.E. lOOth Street Seattle, WA 98125 with D. A Segar J. E. Zeh SEAM Ocean Inc. Department of Statistics Po. Box 1627 University of Washington Wheaton, MD 20902 Seattle, WA 98195 April 1984 UNITED STATES UNITED STATES DEPARTMENT OF COMMERCE DEPARTMENT OF THE INTERIOR Malcolm Baldridge, Secretary William P Clark, Secretary NATIONAL OCEANIC AND MINERALS MANAGEMENT SERVICE ATMOSPHERIC ADMINISTRATION William D. Bettenberg, Director John V. Byrne, Administrator r. NOTICES i? I This report has been reviewed by the US. Department of Commerce, National Oceanic and Atmospheric Administration's Outer Continental Shelf Environmental Assessment Program office, and approved for publication. The interpretation of data and opinions expressed in this document are those of the authors and workshop participants. Approval does not necessarily signify that the contents reflect the views and policies of the Department of Commerce or those of the Department of the Interior. The National Oceanic and Atmospheric Administration (NOAA) does not approve, recommend, or endorse any proprietary product or proprietary material mentioned in this publica­ tion. No reference shall be made to NOAA or to this publication in any advertising or sales promotion which would indicate or imply that NOAA approves, recommends, or endorses any proprietary'product or proprietary material mentioned herein, or which has as its purpose an intent to cause directly or indirectly the advertised product to be used or purchas'ed because of this publication.
    [Show full text]
  • Fronts in the World Ocean's Large Marine Ecosystems. ICES CM 2007
    - 1 - This paper can be freely cited without prior reference to the authors International Council ICES CM 2007/D:21 for the Exploration Theme Session D: Comparative Marine Ecosystem of the Sea (ICES) Structure and Function: Descriptors and Characteristics Fronts in the World Ocean’s Large Marine Ecosystems Igor M. Belkin and Peter C. Cornillon Abstract. Oceanic fronts shape marine ecosystems; therefore front mapping and characterization is one of the most important aspects of physical oceanography. Here we report on the first effort to map and describe all major fronts in the World Ocean’s Large Marine Ecosystems (LMEs). Apart from a geographical review, these fronts are classified according to their origin and physical mechanisms that maintain them. This first-ever zero-order pattern of the LME fronts is based on a unique global frontal data base assembled at the University of Rhode Island. Thermal fronts were automatically derived from 12 years (1985-1996) of twice-daily satellite 9-km resolution global AVHRR SST fields with the Cayula-Cornillon front detection algorithm. These frontal maps serve as guidance in using hydrographic data to explore subsurface thermohaline fronts, whose surface thermal signatures have been mapped from space. Our most recent study of chlorophyll fronts in the Northwest Atlantic from high-resolution 1-km data (Belkin and O’Reilly, 2007) revealed a close spatial association between chlorophyll fronts and SST fronts, suggesting causative links between these two types of fronts. Keywords: Fronts; Large Marine Ecosystems; World Ocean; sea surface temperature. Igor M. Belkin: Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, Rhode Island 02882, USA [tel.: +1 401 874 6533, fax: +1 874 6728, email: [email protected]].
    [Show full text]
  • Recent Declines in Warming and Vegetation Greening Trends Over Pan-Arctic Tundra
    Remote Sens. 2013, 5, 4229-4254; doi:10.3390/rs5094229 OPEN ACCESS Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Recent Declines in Warming and Vegetation Greening Trends over Pan-Arctic Tundra Uma S. Bhatt 1,*, Donald A. Walker 2, Martha K. Raynolds 2, Peter A. Bieniek 1,3, Howard E. Epstein 4, Josefino C. Comiso 5, Jorge E. Pinzon 6, Compton J. Tucker 6 and Igor V. Polyakov 3 1 Geophysical Institute, Department of Atmospheric Sciences, College of Natural Science and Mathematics, University of Alaska Fairbanks, 903 Koyukuk Dr., Fairbanks, AK 99775, USA; E-Mail: [email protected] 2 Institute of Arctic Biology, Department of Biology and Wildlife, College of Natural Science and Mathematics, University of Alaska, Fairbanks, P.O. Box 757000, Fairbanks, AK 99775, USA; E-Mails: [email protected] (D.A.W.); [email protected] (M.K.R.) 3 International Arctic Research Center, Department of Atmospheric Sciences, College of Natural Science and Mathematics, 930 Koyukuk Dr., Fairbanks, AK 99775, USA; E-Mail: [email protected] 4 Department of Environmental Sciences, University of Virginia, 291 McCormick Rd., Charlottesville, VA 22904, USA; E-Mail: [email protected] 5 Cryospheric Sciences Branch, NASA Goddard Space Flight Center, Code 614.1, Greenbelt, MD 20771, USA; E-Mail: [email protected] 6 Biospheric Science Branch, NASA Goddard Space Flight Center, Code 614.1, Greenbelt, MD 20771, USA; E-Mails: [email protected] (J.E.P.); [email protected] (C.J.T.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-907-474-2662; Fax: +1-907-474-2473.
    [Show full text]
  • A Destabilizing Thermohaline Circulation–Atmosphere–Sea Ice
    642 JOURNAL OF CLIMATE VOLUME 12 NOTES AND CORRESPONDENCE A Destabilizing Thermohaline Circulation±Atmosphere±Sea Ice Feedback STEVEN R. JAYNE MIT±WHOI Joint Program in Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts JOCHEM MAROTZKE Center for Global Change Science, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 18 November 1996 and 9 March 1998 ABSTRACT Some of the interactions and feedbacks between the atmosphere, thermohaline circulation, and sea ice are illustrated using a simple process model. A simpli®ed version of the annual-mean coupled ocean±atmosphere box model of Nakamura, Stone, and Marotzke is modi®ed to include a parameterization of sea ice. The model includes the thermodynamic effects of sea ice and allows for variable coverage. It is found that the addition of sea ice introduces feedbacks that have a destabilizing in¯uence on the thermohaline circulation: Sea ice insulates the ocean from the atmosphere, creating colder air temperatures at high latitudes, which cause larger atmospheric eddy heat and moisture transports and weaker oceanic heat transports. These in turn lead to thicker ice coverage and hence establish a positive feedback. The results indicate that generally in colder climates, the presence of sea ice may lead to a signi®cant destabilization of the thermohaline circulation. Brine rejection by sea ice plays no important role in this model's dynamics. The net destabilizing effect of sea ice in this model is the result of two positive feedbacks and one negative feedback and is shown to be model dependent. To date, the destabilizing feedback between atmospheric and oceanic heat ¯uxes, mediated by sea ice, has largely been neglected in conceptual studies of thermohaline circulation stability, but it warrants further investigation in more realistic models.
    [Show full text]
  • Archaeology Resources
    Archaeology Resources Page Intentionally Left Blank Archaeological Resources Background Archaeological Resources are defined as “any prehistoric or historic district, site, building, structure, or object [including shipwrecks]…Such term includes artifacts, records, and remains which are related to such a district, site, building, structure, or object” (National Historic Preservation Act, Sec. 301 (5) as amended, 16 USC 470w(5)). Archaeological resources are either historic or prehistoric and generally include properties that are 50 years old or older and are any of the following: • Associated with events that have made a significant contribution to the broad patterns of our history • Associated with the lives of persons significant in the past • Embody the distinctive characteristics of a type, period, or method of construction • Represent the work of a master • Possess high artistic values • Present a significant and distinguishable entity whose components may lack individual distinction • Have yielded, or may be likely to yield, information important in history These resources represent the material culture of past generations of a region’s prehistoric and historic inhabitants, and are basic to our understanding of the knowledge, beliefs, art, customs, property systems, and other aspects of the nonmaterial culture. Further, they are subject to National Historic Preservation Act (NHPA) review if they are historic properties, meaning those that are on, or eligible for placement on, the National Register of Historic Places (NRHP). These sites are referred to as historic properties. Section 106 requires agencies to make a reasonable and good faith efforts to identify historic properties. Archaeological resources may be found in the Proposed Project Area both offshore and onshore.
    [Show full text]
  • Beaufort Sea
    160°W 159°W 158°W 157°W 156°W 155°W 154°W 153°W 152°W 151°W 150°W 149°W 148°W 147°W 146°W 145°W 144°W 143°W 142°W 141°W 140°W Beaufort Sea !Barrow N ° N 1 ° 14 7 1 7 15 13 12 !Wainwright 16 11 Prudhoe 17 Bay 10 Camden N 9 ° N Bay Kaktovik 0 ° 8 7 !Kaktovik Nuiqsut 7 0 ! 7 6 5 4 3 2 1 N ational P e C troleum Reserv e - Alaska a U n a . S d . a N - ° N - 9 ° A 6 9 s s Y 6 n e d e r l W i l a u s k k o a Index Map 1 of 3 n U.S./Canada Border to Wainwright ife Refuge Final Designation ic National Wildl of Critical Barrier Islands and Arct Denning Habitat Maps N ° N 8 ° 6 8 6 0 10 20 30 40 50 60 70 80 90 100 miles 0 10 20 30 40 50 60 70 80 90 100 km Map N ° N 7 ° Area 6 7 Pacific Ocean 6 158°W 157°W 156°W 155°W 154°W 153°W 152°W 151°W 150°W 149°W 148°W 147°W 146°W 145°W 144°W 143°W 142°W 99-0136 142°20'W 142°10'W 142°W 141°50'W 141°40'W 141°30'W 141°20'W 141°10'W 141°W Beaufort Sea N N ' ' 0 0 5 5 ° ° 9 9 6 6 r e v i R k a sr ak Eg N N ' ' 0 0 4 r Demarcation 4 ° ° 9 e 9 6 v 6 i Bay R t u k a g n o K N N ' ' 0 0 3 3 ° ° 9 9 6 6 C U a n .
    [Show full text]
  • Natural Variability of the Arctic Ocean Sea Ice During the Present Interglacial
    Natural variability of the Arctic Ocean sea ice during the present interglacial Anne de Vernala,1, Claude Hillaire-Marcela, Cynthia Le Duca, Philippe Robergea, Camille Bricea, Jens Matthiessenb, Robert F. Spielhagenc, and Ruediger Steinb,d aGeotop-Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada; bGeosciences/Marine Geology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27568 Bremerhaven, Germany; cOcean Circulation and Climate Dynamics Division, GEOMAR Helmholtz Centre for Ocean Research, 24148 Kiel, Germany; and dMARUM Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, 28334 Bremen, Germany Edited by Thomas M. Cronin, U.S. Geological Survey, Reston, VA, and accepted by Editorial Board Member Jean Jouzel August 26, 2020 (received for review May 6, 2020) The impact of the ongoing anthropogenic warming on the Arctic such an extrapolation. Moreover, the past 1,400 y only encom- Ocean sea ice is ascertained and closely monitored. However, its pass a small fraction of the climate variations that occurred long-term fate remains an open question as its natural variability during the Cenozoic (7, 8), even during the present interglacial, on centennial to millennial timescales is not well documented. i.e., the Holocene (9), which began ∼11,700 y ago. To assess Here, we use marine sedimentary records to reconstruct Arctic Arctic sea-ice instabilities further back in time, the analyses of sea-ice fluctuations. Cores collected along the Lomonosov Ridge sedimentary archives is required but represents a challenge (10, that extends across the Arctic Ocean from northern Greenland to 11). Suitable sedimentary sequences with a reliable chronology the Laptev Sea were radiocarbon dated and analyzed for their and biogenic content allowing oceanographical reconstructions micropaleontological and palynological contents, both bearing in- can be recovered from Arctic Ocean shelves, but they rarely formation on the past sea-ice cover.
    [Show full text]
  • Glacial Ocean Circulation and Stratification Explained by Reduced
    Glacial ocean circulation and stratification explained by reduced atmospheric temperature Malte F. Jansena,1 aDepartment of the Geophysical Sciences, The University of Chicago, Chicago, IL 60637 Edited by Mark H. Thiemens, University of California, San Diego, La Jolla, CA, and approved November 7, 2016 (received for review June 27, 2016) Earth’s climate has undergone dramatic shifts between glacial and We test the connection between atmospheric temperature interglacial time periods, with high-latitude temperature changes and ocean circulation and stratification changes, using idealized on the order of 5–10 ◦C. These climatic shifts have been asso- numerical simulations, which allow us to isolate the proposed ciated with major rearrangements in the deep ocean circulation mechanism. We use a coupled ocean–sea-ice model, with atmo- and stratification, which have likely played an important role in spheric temperature, winds, and evaporation–precipitation pre- the observed atmospheric carbon dioxide swings by affecting the scribed as boundary conditions (Materials and Methods). The partitioning of carbon between the atmosphere and the ocean. model uses an idealized continental configuration resembling the The mechanisms by which the deep ocean circulation changed, Atlantic and Southern Oceans, where the most elemental circu- however, are still unclear and represent a major challenge to our lation changes have been inferred (3, 5, 6, 12). understanding of glacial climates. This study shows that vari- ous inferred changes in the deep ocean circulation and stratifica- Results tion between glacial and interglacial climates can be interpreted We first focus on the model’s ability to reproduce key features as a direct consequence of atmospheric temperature differences.
    [Show full text]
  • Ice Production in Ross Ice Shelf Polynyas During 2017–2018 from Sentinel–1 SAR Images
    remote sensing Article Ice Production in Ross Ice Shelf Polynyas during 2017–2018 from Sentinel–1 SAR Images Liyun Dai 1,2, Hongjie Xie 2,3,* , Stephen F. Ackley 2,3 and Alberto M. Mestas-Nuñez 2,3 1 Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China; [email protected] 2 Laboratory for Remote Sensing and Geoinformatics, Department of Geological Sciences, University of Texas at San Antonio, San Antonio, TX 78249, USA; [email protected] (S.F.A.); [email protected] (A.M.M.-N.) 3 Center for Advanced Measurements in Extreme Environments, University of Texas at San Antonio, San Antonio, TX 78249, USA * Correspondence: [email protected]; Tel.: +1-210-4585445 Received: 21 April 2020; Accepted: 5 May 2020; Published: 7 May 2020 Abstract: High sea ice production (SIP) generates high-salinity water, thus, influencing the global thermohaline circulation. Estimation from passive microwave data and heat flux models have indicated that the Ross Ice Shelf polynya (RISP) may be the highest SIP region in the Southern Oceans. However, the coarse spatial resolution of passive microwave data limited the accuracy of these estimates. The Sentinel-1 Synthetic Aperture Radar dataset with high spatial and temporal resolution provides an unprecedented opportunity to more accurately distinguish both polynya area/extent and occurrence. In this study, the SIPs of RISP and McMurdo Sound polynya (MSP) from 1 March–30 November 2017 and 2018 are calculated based on Sentinel-1 SAR data (for area/extent) and AMSR2 data (for ice thickness).
    [Show full text]
  • Antarctic Sea Ice Control on Ocean Circulation in Present and Glacial Climates
    Antarctic sea ice control on ocean circulation in present and glacial climates Raffaele Ferraria,1, Malte F. Jansenb, Jess F. Adkinsc, Andrea Burkec, Andrew L. Stewartc, and Andrew F. Thompsonc aDepartment of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; bAtmospheric and Oceanic Sciences Program, Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08544; and cDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 Edited* by Edward A. Boyle, Massachusetts Institute of Technology, Cambridge, MA, and approved April 16, 2014 (received for review December 31, 2013) In the modern climate, the ocean below 2 km is mainly filled by waters possibly associated with an equatorward shift of the Southern sinking into the abyss around Antarctica and in the North Atlantic. Hemisphere westerlies (11–13), (ii) an increase in abyssal stratifi- Paleoproxies indicate that waters of North Atlantic origin were instead cation acting as a lid to deep carbon (14), (iii)anexpansionofseaice absent below 2 km at the Last Glacial Maximum, resulting in an that reduced the CO2 outgassing over the Southern Ocean (15), and expansion of the volume occupied by Antarctic origin waters. In this (iv) a reduction in the mixing between waters of Antarctic and Arctic study we show that this rearrangement of deep water masses is origin, which is a major leak of abyssal carbon in the modern climate dynamically linked to the expansion of summer sea ice around (16). Current understanding is that some combination of all of these Antarctica. A simple theory further suggests that these deep waters feedbacks, together with a reorganization of the biological and only came to the surface under sea ice, which insulated them from carbonate pumps, is required to explain the observed glacial drop in atmospheric forcing, and were weakly mixed with overlying waters, atmospheric CO2 (17).
    [Show full text]
  • Beaufort Seas Coastal and Ocean Zones Strategic
    166° 164° 162° 160° 158° 156° 154° 152° 150° 148° 146° 144° 142° 140° 138° LEGEND North Slope Planning Area Conservation System Unit (Offset for display) Barrow B Trans-Alaska Pipeline ea !. eau hi S fort kc Se 1 Chuc a Subsistence Resource Use (Top Frame) Caribou C h i Wainwright er p Non Salmon Fish Species !. Riv p 70° e R Mead r i Topagoruk River e v v e i r R k u Teshekpuk Lake p Moose ik p !. k Atqasuk I Kaktovik !. Seals and Sea Lions 70° !. Nuiqsut !. Prudhoe Bay 1 r Subsistence Resource Use (Bottom Frame) e iv R k u Brown Bear r a p Point Lay !. Sagavanirktok River u K r e Birds and Eggs v i R g n i n n a C Whales NOTES er iv 1(Bering, Chukchi, and Beaufort Seas Coastal and Ocean Zones Strategic e R ll A lvi Assessment: Data Atlas, National Oceanic and Atmospheric Administration, Co n a November 1988) k It t k u il v l ik u k R R i v i e v r e r 68° er iv R r le d n a h Arctic Village C !. 68° 164° 162° 160° 158° 156° 154° 152° 150° 148° 146° 144° 142° 140° 166° 164° 162° 160° 158° 156° 154° 152° 150° 148° 146° 144° 142° 140° 138° Barrow .! Be Sea au DISCLAIMER hi for This atlas is a graphical representation of digital data from multiple sources. Not ckc t Sea all features indicated on this map have been constructed or physically located.
    [Show full text]
  • DESALINATION: Balancing the Socioeconomic Benefits and Environmental Costs
    DESALINATION: Balancing the Socioeconomic Benefits and Environmental Costs www.research.natixis.com https://gsh.cib.natixis.com executive summary Chapter 1 Making sense of desalination: technological, financial and economic aspects of desalination assets Chapter 2 Sustainability assessment of desalination assets: recognizing the socioeconomic benefits and mitigating environmental costs of desalination Chapter 3 Desalination sustainability performance scorecard acknowledgements appendix biblioghraphy TABLE OF CONTENTS OF TABLE 1. Making sense of desalination: technological, financial and economic aspects of desalination assets 1. DESALINATION TECHNOLOGIES 2. FINANCIAL AND ECONOMIC ASPECTS OF DESALINATION ASSETS 1.1. AN OVERVIEW OF DESALINATION TECHNOLOGIES 2.1.THE DEVELOPMENT AND FINANCING OF DESALINATION ASSETS Thermal desalination: Multistage Flash Distillation and Multieffect Distillation Building and operating desalination assets: complex and evolving value chain Membrane desalination: Reverse Osmosis Project development models: fine-tuning Hybridization of thermal and the appropriate risk-sharing model membrane desalination Bringing capital to desalination assets: A set of parameters to assess the performance an increasingly strategic issue and efficiency of desalination assets Case study of desalination in Israel: innovative 1.2. A BRIEF HISTORY AND financing schemes achieving some of the GEOGRAPHICAL DISTRIBUTION OF lowest desalinated water costs worldwide DESALINATION TECHNOLOGIES Case study of desalination in Singapore: The market
    [Show full text]