Glacial Ocean Circulation and Stratification Explained by Reduced

Total Page:16

File Type:pdf, Size:1020Kb

Glacial Ocean Circulation and Stratification Explained by Reduced Glacial ocean circulation and stratification explained by reduced atmospheric temperature Malte F. Jansena,1 aDepartment of the Geophysical Sciences, The University of Chicago, Chicago, IL 60637 Edited by Mark H. Thiemens, University of California, San Diego, La Jolla, CA, and approved November 7, 2016 (received for review June 27, 2016) Earth’s climate has undergone dramatic shifts between glacial and We test the connection between atmospheric temperature interglacial time periods, with high-latitude temperature changes and ocean circulation and stratification changes, using idealized on the order of 5–10 ◦C. These climatic shifts have been asso- numerical simulations, which allow us to isolate the proposed ciated with major rearrangements in the deep ocean circulation mechanism. We use a coupled ocean–sea-ice model, with atmo- and stratification, which have likely played an important role in spheric temperature, winds, and evaporation–precipitation pre- the observed atmospheric carbon dioxide swings by affecting the scribed as boundary conditions (Materials and Methods). The partitioning of carbon between the atmosphere and the ocean. model uses an idealized continental configuration resembling the The mechanisms by which the deep ocean circulation changed, Atlantic and Southern Oceans, where the most elemental circu- however, are still unclear and represent a major challenge to our lation changes have been inferred (3, 5, 6, 12). understanding of glacial climates. This study shows that vari- ous inferred changes in the deep ocean circulation and stratifica- Results tion between glacial and interglacial climates can be interpreted We first focus on the model’s ability to reproduce key features as a direct consequence of atmospheric temperature differences. of the modern (interglacial) ocean state and circulation. Fig. 1A Colder atmospheric temperatures lead to increased sea ice cover shows the sea surface temperature (SST) over the simu- and formation rate around Antarctica. The associated enhanced lated domain, with boundary conditions resembling present-day brine rejection leads to a strongly increased deep ocean strati- atmospheric forcing. The chosen forcing gives SSTs in broad fication, consistent with high abyssal salinities inferred for the agreement with observations, varying from about 28◦C in the last glacial maximum. The increased stratification goes together tropics to the freezing point (∼ −2 ◦C) around Antarctica, where with a weakening and shoaling of the interhemispheric over- sea ice forms (Fig. 1A, white contours). The North Atlantic is turning circulation, again consistent with proxy evidence for the somewhat warmer and ice free. Fig. 2 shows zonally averaged last glacial. The shallower interhemispheric overturning circula- depth–latitude sections of potential temperature (Fig. 2A) and tion makes room for slowly moving water of Antarctic origin, salinity (Fig. 2C), which reproduce the basic features observed which explains the observed middepth radiocarbon age maximum in the present-day Atlantic. In particular, we see a tongue of and may play an important role in ocean carbon storage. salty water at middepth, penetrating southward into the South- ern Ocean and leading to a reversal of the salinity stratifica- LGM j AMOC j stratification j cooling j sea-ice tion in the abyss (2). The associated overturning streamfunc- tion (Fig. 3A) reveals that this salty tongue is associated with NADW that flows southward as part of the Atlantic meridional he deep ocean today is ventilated mainly by two water overturning circulation (AMOC). Below the clockwise AMOC masses. North Atlantic deep water (NADW) is formed in T cell lies an anticlockwise abyssal cell, representing the pathway the North Atlantic before flowing southward at a depth of about of AABW. The peak overturning transports of +17.5 Sverdrup 2–3 km and eventually rising back up to the surface in the Southern Ocean. Antarctic bottom water (AABW) is formed Significance around Antarctica and spreads northward into the abyssal basins. EARTH, ATMOSPHERIC, The AABW that makes it into the Atlantic then slowly upwells AND PLANETARY SCIENCES into the lower NADW before returning southward and resur- To understand climatic swings between glacial and interglacial facing again around Antarctica (1, 2). The glacial equivalent climates we need to explain the observed fluctuations in of NADW was likely confined to shallower depths, leaving atmospheric carbon dioxide (CO2), which in turn are most more of the deep Atlantic filled with water masses originat- likely driven by changes in the deep ocean circulation. This ing primarily from around Antarctica (3–5). Moreover, the two study presents a model for differences in the deep ocean water masses appear more distinct, with less mixing between circulation between glacial and interglacial climates consis- them (6). tent with both our physical understanding and various proxy Multiple studies have pointed toward the potential impor- observations. The results suggest that observed changes in tance of sea ice and surface buoyancy fluxes around Antarc- ocean circulation and stratification are caused directly by tica in controlling changes in the deep ocean stratification and atmospheric cooling or warming, which has important impli- circulation between the present and Last Glacial Maximum cations for our interpretation of glacial–interglacial transi- (LGM) (7–11). Specifically, we recently showed that enhanced tions. In particular, the direct link between atmospheric tem- buoyancy loss around Antarctica is expected to lead to an perature and ocean circulation changes supports the notion of increase in the abyssal stratification, an upward shift of NADW, a positive feedback loop between atmospheric temperature, and a clearer separation between NADW and southward-flowing ocean circulation, and atmospheric CO2. AABW (11)—all in agreement with inferences made for differ- ences in circulation and stratification between the present and Author contributions: M.F.J. designed research, performed research, analyzed data, and LGM (3, 6, 12, 13). This gives rise to the hypothesis that strong wrote the paper. cooling around Antarctica led to an increased net freezing rate. The author declares no conflict of interest. The resulting net salt flux into the ocean amounts to an increased This article is a PNAS Direct Submission. buoyancy loss, which then led to the observed changes in deep 1Email: [email protected]. ocean stratification and circulation. This hypothesis is tested in This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. this study. 1073/pnas.1610438113/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1610438113 PNAS j January 3, 2017 j vol. 114 j no. 1 j 45–50 Downloaded by guest on September 23, 2021 proxy data for the LGM, the prescribed atmospheric cooling is polar amplified, ranging from 2◦C in the tropics to 6◦C around Antarctica (14, 15). All other boundary conditions are held fixed. The reduction in atmospheric temperature leads to a reduction in ocean surface temperature and an expansion of sea ice around Antarctica, as well as the appearance of sea ice in the North Atlantic (Fig. 1B). Moreover, the model suggests a cooling and salinification of AABW, leading to a strong salt stratification in the deep ocean, which replaces the reversed salinity stratifica- tion observed with present-day forcing (Fig. 2B). The strong salt stratification is consistent with pore-fluid data for the LGM (12). (To compare the absolute salinity values here to those inferred for the LGM, one needs to account for the increased bulk ocean salinity resulting from the eustatic drop in sea level, which is not included in the simulations and would add around 1 g/kg glob- ally.) The AMOC cell weakens and shoals (Fig. 3B), again consis- tent with inferences for the LGM (3–5). The abyssal cell slightly strengthens and becomes somewhat more confined to the abyss, leading to an increased separation between the two overturning cells, which may have played an important role in the increased ocean carbon storage (6). Fig. 1. (A and B) Sea surface temperature (colors) and sea-ice concentration In the real ocean the abyssal overturning cell is distributed (white contours), for simulations with boundary conditions representing over multiple basins and currently overlaps in depth and density present-day conditions (A) and LGM conditions with reduced atmospheric with the AMOC cell, leading to a continuous exchange of water temperature (B). Contour interval for sea-ice concentration is 20%. between the two cells in the Southern Ocean (1, 2). Whereas this interbasin overlap between the present-day overturning cells cannot be modeled in a single-basin model, the simulated con- (SV) and −5.2 SV are roughly consistent with the observed rate traction of both the AMOC and abyssal cells is likely to be of NADW formation and the transport of AABW into the North robust (11). In a multibasin configuration, this contraction of Atlantic (1, 2). both cells is expected to remove or reduce the overlap between We now analyze the response of the model’s equilibrium solu- the two cells, thus generating a more isolated abyssal water mass. tion to a reduction in atmospheric temperature. Consistent with The rearrangement of the overturning circulation would likely Fig. 2. (A–D) Zonal mean temperature (A and B) and salinity (C and D) for simulations with boundary conditions representing present-day forcing (A and C) and simulations with reduced atmospheric temperature resembling LGM conditions (B and D). Contour intervals are 1◦C in A and B and 0:05 g/kg in C and D. Note that the colorbar ranges have been cropped to focus on the deep ocean. 46 j www.pnas.org/cgi/doi/10.1073/pnas.1610438113 Jansen Downloaded by guest on September 23, 2021 Fig. 3. (A and B) Meridional overturning streamfunction (colors) and potential density referenced to 2 km depth (black lines), for simulations with boundary conditions representing present-day forcing (A) and LGM conditions with reduced atmospheric temperature (B). The overturning streamfunction is computed from the sum of the Eulerian zonal mean velocity and the parameterized eddy-induced bolus velocity.
Recommended publications
  • Fronts in the World Ocean's Large Marine Ecosystems. ICES CM 2007
    - 1 - This paper can be freely cited without prior reference to the authors International Council ICES CM 2007/D:21 for the Exploration Theme Session D: Comparative Marine Ecosystem of the Sea (ICES) Structure and Function: Descriptors and Characteristics Fronts in the World Ocean’s Large Marine Ecosystems Igor M. Belkin and Peter C. Cornillon Abstract. Oceanic fronts shape marine ecosystems; therefore front mapping and characterization is one of the most important aspects of physical oceanography. Here we report on the first effort to map and describe all major fronts in the World Ocean’s Large Marine Ecosystems (LMEs). Apart from a geographical review, these fronts are classified according to their origin and physical mechanisms that maintain them. This first-ever zero-order pattern of the LME fronts is based on a unique global frontal data base assembled at the University of Rhode Island. Thermal fronts were automatically derived from 12 years (1985-1996) of twice-daily satellite 9-km resolution global AVHRR SST fields with the Cayula-Cornillon front detection algorithm. These frontal maps serve as guidance in using hydrographic data to explore subsurface thermohaline fronts, whose surface thermal signatures have been mapped from space. Our most recent study of chlorophyll fronts in the Northwest Atlantic from high-resolution 1-km data (Belkin and O’Reilly, 2007) revealed a close spatial association between chlorophyll fronts and SST fronts, suggesting causative links between these two types of fronts. Keywords: Fronts; Large Marine Ecosystems; World Ocean; sea surface temperature. Igor M. Belkin: Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, Rhode Island 02882, USA [tel.: +1 401 874 6533, fax: +1 874 6728, email: [email protected]].
    [Show full text]
  • A Destabilizing Thermohaline Circulation–Atmosphere–Sea Ice
    642 JOURNAL OF CLIMATE VOLUME 12 NOTES AND CORRESPONDENCE A Destabilizing Thermohaline Circulation±Atmosphere±Sea Ice Feedback STEVEN R. JAYNE MIT±WHOI Joint Program in Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts JOCHEM MAROTZKE Center for Global Change Science, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 18 November 1996 and 9 March 1998 ABSTRACT Some of the interactions and feedbacks between the atmosphere, thermohaline circulation, and sea ice are illustrated using a simple process model. A simpli®ed version of the annual-mean coupled ocean±atmosphere box model of Nakamura, Stone, and Marotzke is modi®ed to include a parameterization of sea ice. The model includes the thermodynamic effects of sea ice and allows for variable coverage. It is found that the addition of sea ice introduces feedbacks that have a destabilizing in¯uence on the thermohaline circulation: Sea ice insulates the ocean from the atmosphere, creating colder air temperatures at high latitudes, which cause larger atmospheric eddy heat and moisture transports and weaker oceanic heat transports. These in turn lead to thicker ice coverage and hence establish a positive feedback. The results indicate that generally in colder climates, the presence of sea ice may lead to a signi®cant destabilization of the thermohaline circulation. Brine rejection by sea ice plays no important role in this model's dynamics. The net destabilizing effect of sea ice in this model is the result of two positive feedbacks and one negative feedback and is shown to be model dependent. To date, the destabilizing feedback between atmospheric and oceanic heat ¯uxes, mediated by sea ice, has largely been neglected in conceptual studies of thermohaline circulation stability, but it warrants further investigation in more realistic models.
    [Show full text]
  • Ice Production in Ross Ice Shelf Polynyas During 2017–2018 from Sentinel–1 SAR Images
    remote sensing Article Ice Production in Ross Ice Shelf Polynyas during 2017–2018 from Sentinel–1 SAR Images Liyun Dai 1,2, Hongjie Xie 2,3,* , Stephen F. Ackley 2,3 and Alberto M. Mestas-Nuñez 2,3 1 Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China; [email protected] 2 Laboratory for Remote Sensing and Geoinformatics, Department of Geological Sciences, University of Texas at San Antonio, San Antonio, TX 78249, USA; [email protected] (S.F.A.); [email protected] (A.M.M.-N.) 3 Center for Advanced Measurements in Extreme Environments, University of Texas at San Antonio, San Antonio, TX 78249, USA * Correspondence: [email protected]; Tel.: +1-210-4585445 Received: 21 April 2020; Accepted: 5 May 2020; Published: 7 May 2020 Abstract: High sea ice production (SIP) generates high-salinity water, thus, influencing the global thermohaline circulation. Estimation from passive microwave data and heat flux models have indicated that the Ross Ice Shelf polynya (RISP) may be the highest SIP region in the Southern Oceans. However, the coarse spatial resolution of passive microwave data limited the accuracy of these estimates. The Sentinel-1 Synthetic Aperture Radar dataset with high spatial and temporal resolution provides an unprecedented opportunity to more accurately distinguish both polynya area/extent and occurrence. In this study, the SIPs of RISP and McMurdo Sound polynya (MSP) from 1 March–30 November 2017 and 2018 are calculated based on Sentinel-1 SAR data (for area/extent) and AMSR2 data (for ice thickness).
    [Show full text]
  • Antarctic Sea Ice Control on Ocean Circulation in Present and Glacial Climates
    Antarctic sea ice control on ocean circulation in present and glacial climates Raffaele Ferraria,1, Malte F. Jansenb, Jess F. Adkinsc, Andrea Burkec, Andrew L. Stewartc, and Andrew F. Thompsonc aDepartment of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; bAtmospheric and Oceanic Sciences Program, Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08544; and cDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 Edited* by Edward A. Boyle, Massachusetts Institute of Technology, Cambridge, MA, and approved April 16, 2014 (received for review December 31, 2013) In the modern climate, the ocean below 2 km is mainly filled by waters possibly associated with an equatorward shift of the Southern sinking into the abyss around Antarctica and in the North Atlantic. Hemisphere westerlies (11–13), (ii) an increase in abyssal stratifi- Paleoproxies indicate that waters of North Atlantic origin were instead cation acting as a lid to deep carbon (14), (iii)anexpansionofseaice absent below 2 km at the Last Glacial Maximum, resulting in an that reduced the CO2 outgassing over the Southern Ocean (15), and expansion of the volume occupied by Antarctic origin waters. In this (iv) a reduction in the mixing between waters of Antarctic and Arctic study we show that this rearrangement of deep water masses is origin, which is a major leak of abyssal carbon in the modern climate dynamically linked to the expansion of summer sea ice around (16). Current understanding is that some combination of all of these Antarctica. A simple theory further suggests that these deep waters feedbacks, together with a reorganization of the biological and only came to the surface under sea ice, which insulated them from carbonate pumps, is required to explain the observed glacial drop in atmospheric forcing, and were weakly mixed with overlying waters, atmospheric CO2 (17).
    [Show full text]
  • Chapter 7 Arctic Oceanography; the Path of North Atlantic Deep Water
    Chapter 7 Arctic oceanography; the path of North Atlantic Deep Water The importance of the Southern Ocean for the formation of the water masses of the world ocean poses the question whether similar conditions are found in the Arctic. We therefore postpone the discussion of the temperate and tropical oceans again and have a look at the oceanography of the Arctic Seas. It does not take much to realize that the impact of the Arctic region on the circulation and water masses of the World Ocean differs substantially from that of the Southern Ocean. The major reason is found in the topography. The Arctic Seas belong to a class of ocean basins known as mediterranean seas (Dietrich et al., 1980). A mediterranean sea is defined as a part of the world ocean which has only limited communication with the major ocean basins (these being the Pacific, Atlantic, and Indian Oceans) and where the circulation is dominated by thermohaline forcing. What this means is that, in contrast to the dynamics of the major ocean basins where most currents are driven by the wind and modified by thermohaline effects, currents in mediterranean seas are driven by temperature and salinity differences (the salinity effect usually dominates) and modified by wind action. The reason for the dominance of thermohaline forcing is the topography: Mediterranean Seas are separated from the major ocean basins by sills, which limit the exchange of deeper waters. Fig. 7.1. Schematic illustration of the circulation in mediterranean seas; (a) with negative precipitation - evaporation balance, (b) with positive precipitation - evaporation balance.
    [Show full text]
  • Tidal Modulation of Antarctic Ice Shelf Melting Ole Richter1,2, David E
    Tidal Modulation of Antarctic Ice Shelf Melting Ole Richter1,2, David E. Gwyther1, Matt A. King2, and Benjamin K. Galton-Fenzi3 1Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, TAS, 7001, Australia. 2Geography & Spatial Sciences, School of Technology, Environments and Design, University of Tasmania, Hobart, TAS, 7001, Australia. 3Australian Antarctic Division, Kingston, TAS, 7050, Australia. Correspondence: Ole Richter ([email protected]) This is a non-peer reviewed preprint submitted to EarthArXiv. This preprint has also been submitted to The Cryosphere for peer review. 1 Abstract. Tides influence basal melting of individual Antarctic ice shelves, but their net impact on Antarctic-wide ice-ocean interaction has yet to be constrained. Here we quantify the impact of tides on ice shelf melting and the continental shelf seas 5 by means of a 4 km resolution circum-Antarctic ocean model. Activating tides in the model increases the total basal mass loss by 57 Gt/yr (4 %), while decreasing continental shelf temperatures by 0.04 ◦C, indicating a slightly more efficient conversion of ocean heat into ice shelf melting. Regional variations can be larger, with melt rate modulations exceeding 500 % and temperatures changing by more than 0.5 ◦C, highlighting the importance of capturing tides for robust modelling of glacier systems and coastal oceans. Tide-induced changes around the Antarctic Peninsula have a dipolar distribution with decreased 10 ocean temperatures and reduced melting towards the Bellingshausen Sea and warming along the continental shelf break on the Weddell Sea side. This warming extends under the Ronne Ice Shelf, which also features one of the highest increases in area-averaged basal melting (150 %) when tides are included.
    [Show full text]
  • DESALINATION: Balancing the Socioeconomic Benefits and Environmental Costs
    DESALINATION: Balancing the Socioeconomic Benefits and Environmental Costs www.research.natixis.com https://gsh.cib.natixis.com executive summary Chapter 1 Making sense of desalination: technological, financial and economic aspects of desalination assets Chapter 2 Sustainability assessment of desalination assets: recognizing the socioeconomic benefits and mitigating environmental costs of desalination Chapter 3 Desalination sustainability performance scorecard acknowledgements appendix biblioghraphy TABLE OF CONTENTS OF TABLE 1. Making sense of desalination: technological, financial and economic aspects of desalination assets 1. DESALINATION TECHNOLOGIES 2. FINANCIAL AND ECONOMIC ASPECTS OF DESALINATION ASSETS 1.1. AN OVERVIEW OF DESALINATION TECHNOLOGIES 2.1.THE DEVELOPMENT AND FINANCING OF DESALINATION ASSETS Thermal desalination: Multistage Flash Distillation and Multieffect Distillation Building and operating desalination assets: complex and evolving value chain Membrane desalination: Reverse Osmosis Project development models: fine-tuning Hybridization of thermal and the appropriate risk-sharing model membrane desalination Bringing capital to desalination assets: A set of parameters to assess the performance an increasingly strategic issue and efficiency of desalination assets Case study of desalination in Israel: innovative 1.2. A BRIEF HISTORY AND financing schemes achieving some of the GEOGRAPHICAL DISTRIBUTION OF lowest desalinated water costs worldwide DESALINATION TECHNOLOGIES Case study of desalination in Singapore: The market
    [Show full text]
  • Strategies for the Simulation of Sea Ice Organic Chemistry: Arctic Tests and Development
    geosciences Article Strategies for the Simulation of Sea Ice Organic Chemistry: Arctic Tests and Development Scott Elliott 1,*, Nicole Jeffery 1, Elizabeth Hunke 1, Clara Deal 2, Meibing Jin 2 ID , Shanlin Wang 1, Emma Elliott Smith 3 and Samantha Oestreicher 4 1 Climate Ocean Sea Ice Modeling (COSIM), Los Alamos National Laboratory, Los Alamos, NM 87545, USA; [email protected] (N.J.); [email protected] (E.H.); [email protected] (S.W.) 2 International Arctic Research Center and University of Alaska, Fairbanks, AK 99775, USA; [email protected] (C.D.), [email protected] (M.J.) 3 Biology Department, University of New Mexico, Albuquerque, NM 87131, USA; [email protected] 4 Applied Mathematics, University of Minnesota, Minneapolis, MN 55455, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-505-606-0118 Received: 11 April 2017; Accepted: 21 June 2017; Published: 14 July 2017 Abstract: A numerical mechanism connecting ice algal ecodynamics with the buildup of organic macromolecules is tested within modeled pan-Arctic brine channels. The simulations take place offline in a reduced representation of sea ice geochemistry. Physical driver quantities derive from the global sea ice code CICE, including snow cover, thickness and internal temperature. The framework is averaged over ten boreal biogeographic zones. Computed nutrient-light-salt limited algal growth supports grazing, mortality and carbon flow. Vertical transport is diffusive but responds to pore structure. Simulated bottom layer chlorophyll maxima are reasonable, though delayed by about a month relative to observations due to uncertainties in snow variability. Upper level biota arise intermittently during flooding events.
    [Show full text]
  • Distribution and Abundance of Select Trace Metals in Chukchi and Beaufort Sea Ice
    Distribution and Abundance of Select Trace Metals in Chukchi and Beaufort Sea Ice Principal Investigators Robert Rember1 Ana M. Aguilar-Islas2 Graduate Student Vincent Domena2 1International Arctic Research Center, University of Alaska Fairbanks 2College of Fisheries and Ocean Sciences, University of Alaska Fairbanks FINAL REPORT December 2016 OCS Study BOEM 2016-079 Contact Information: email: [email protected] phone: 907.474.6782 fax: 907.474.7204 Coastal Marine Institute College of Fisheries and Ocean Sciences University of Alaska Fairbanks P. O. Box 757220 Fairbanks, AK 99775-7220 This study was funded in part by the U.S. Department of the Interior, Bureau of Ocean Energy Management (BOEM) through Cooperative Agreement M13AC00002 between BOEM, Alaska Outer Continental Shelf Region, and the University of Alaska Fairbanks. This report, OCS Study BOEM 2016-079, is available through the Coastal Marine Institute, select federal depository libraries and can be accessed electronically at http://www.boem.gov/Alaska-Scientific-Publications. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Government. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Government. TABLE OF CONTENTS LIST OF FIGURES ..................................................................................................................................... iii LIST OF TABLES ......................................................................................................................................
    [Show full text]
  • This Manuscript Has Been Submitted for Publication in Scientific Reports
    This manuscript has been submitted for publication in Scientific Reports. Please not that, despite having undergone peer-review, the manuscript has yet to be formally accepted for publication. Subsequent versions of the manuscript may have slightly different content. If accepted, the final version of this manuscript will be available via the “Peer-reviewed Publication DOI” link on the EarthArXiv webpage. Please feel free to contact any of the authors; we welcome feedback. 1 Ventilation of the abyss in the Atlantic sector of the 2 Southern Ocean 1,* 1 2,3 3 Camille Hayatte Akhoudas , Jean-Baptiste Sallee´ , F. Alexander Haumann , Michael P. 3 4 1 4 5 4 Meredith , Alberto Naveira Garabato , Gilles Reverdin , Lo¨ıcJullion , Giovanni Aloisi , 6 7,8 7 5 Marion Benetti , Melanie J. Leng , and Carol Arrowsmith 1 6 Sorbonne Universite,´ CNRS/IRD/MNHN, Laboratoire d’Oceanographie´ et du Climat - Experimentations´ et 7 Approches Numeriques,´ Paris, France 2 8 Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, United States 3 9 British Antarctic Survey, Cambridge, United Kingdom 4 10 School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, United 11 Kingdom 5 12 Institut de Physique du Globe de Paris, Sorbonne Paris Cite,´ Universite´ Paris Diderot, UMR 7154 CNRS, Paris, 13 France 6 14 Institute of Earth Sciences, University of Iceland, Reykjavik, Iceland 7 15 NERC Isotope Geosciences Laboratory, British Geological Survey, Nottingham, United Kingdom 8 16 Centre for Environmental Geochemistry, University of Nottingham, United Kingdom * 17 [email protected] 18 ABSTRACT The Atlantic sector of the Southern Ocean is the world’s main production site of Antarctic Bottom Water, a water-mass that is ventilated at the ocean surface before sinking and entraining older water-masses – ultimately replenishing the abyssal global ocean.
    [Show full text]
  • Effects of Drake Passage on a Strongly Eddying Global Ocean
    PALEOCEANOGRAPHY, VOL. ???, XXXX, DOI:10.1029/, Effects of Drake Passage on a strongly eddying global ocean Jan P. Viebahn,1 Anna S. von der Heydt,1 Dewi Le Bars,1 and Henk A. Dijkstra1 1Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands. arXiv:1510.04141v1 [physics.ao-ph] 14 Oct 2015 D R A F T October 15, 2018, 2:47pm D R A F T X - 2 VIEBAHN ET AL.: DRAKE PASSAGE IN AN EDDYING GLOBAL OCEAN The climate impact of ocean gateway openings during the Eocene-Oligocene transition is still under debate. Previous model studies employed grid res- olutions at which the impact of mesoscale eddies has to be parameterized. We present results of a state-of-the-art eddy-resolving global ocean model with a closed Drake Passage, and compare with results of the same model at non-eddying resolution. An analysis of the pathways of heat by decom- posing the meridional heat transport into eddy, horizontal, and overturning circulation components indicates that the model behavior on the large scale is qualitatively similar at both resolutions. Closing Drake Passage induces (i) sea surface warming around Antarctica due to changes in the horizon- tal circulation of the Southern Ocean, (ii) the collapse of the overturning cir- culation related to North Atlantic Deep Water formation leading to surface cooling in the North Atlantic, (iii) significant equatorward eddy heat trans- port near Antarctica. However, quantitative details significantly depend on the chosen resolution. The warming around Antarctica is substantially larger for the non-eddying configuration (∼5:5◦C) than for the eddying configura- tion (∼2:5◦C).
    [Show full text]
  • Lecture 4: OCEANS (Outline)
    LectureLecture 44 :: OCEANSOCEANS (Outline)(Outline) Basic Structures and Dynamics Ekman transport Geostrophic currents Surface Ocean Circulation Subtropicl gyre Boundary current Deep Ocean Circulation Thermohaline conveyor belt ESS200A Prof. Jin -Yi Yu BasicBasic OceanOcean StructuresStructures Warm up by sunlight! Upper Ocean (~100 m) Shallow, warm upper layer where light is abundant and where most marine life can be found. Deep Ocean Cold, dark, deep ocean where plenty supplies of nutrients and carbon exist. ESS200A No sunlight! Prof. Jin -Yi Yu BasicBasic OceanOcean CurrentCurrent SystemsSystems Upper Ocean surface circulation Deep Ocean deep ocean circulation ESS200A (from “Is The Temperature Rising?”) Prof. Jin -Yi Yu TheThe StateState ofof OceansOceans Temperature warm on the upper ocean, cold in the deeper ocean. Salinity variations determined by evaporation, precipitation, sea-ice formation and melt, and river runoff. Density small in the upper ocean, large in the deeper ocean. ESS200A Prof. Jin -Yi Yu PotentialPotential TemperatureTemperature Potential temperature is very close to temperature in the ocean. The average temperature of the world ocean is about 3.6°C. ESS200A (from Global Physical Climatology ) Prof. Jin -Yi Yu SalinitySalinity E < P Sea-ice formation and melting E > P Salinity is the mass of dissolved salts in a kilogram of seawater. Unit: ‰ (part per thousand; per mil). The average salinity of the world ocean is 34.7‰. Four major factors that affect salinity: evaporation, precipitation, inflow of river water, and sea-ice formation and melting. (from Global Physical Climatology ) ESS200A Prof. Jin -Yi Yu Low density due to absorption of solar energy near the surface. DensityDensity Seawater is almost incompressible, so the density of seawater is always very close to 1000 kg/m 3.
    [Show full text]