Abstracts (Sorted by Presenter)

Total Page:16

File Type:pdf, Size:1020Kb

Abstracts (Sorted by Presenter) Abstracts (sorted by presenter) 111th Annual Meeting of the German Zoological Society Greifswald, 10-15 September 2018 Main Meeting, FG Evolutionary Biology Oral Presentation A colourful mystery: Insights into the Cepaea nemoralis banding pattern mechanism Susanne Affenzeller; Klaus Wolkenstein; Nicolas Cerveau; Daniel J. Jackson Georg-August-Universität Göttingen, Göttingen, Germany E-mail: [email protected] The terrestrial gastropod species Cepaea nemoralis has been the focus of morphological, population genetic, molecular and evolutionary research for over 70 years. Scientists and collectors alike are interested in the different shell background colours ranging from light yellow over pink to brown. But it is the near Mendelian inheritance pattern of zero to five brown bands, which can be interrupted or merged, that initiated a new wave of research into the underlying molecular mechanisms. In the last years transcriptomic and proteomic approaches yielded first insights into the mechanisms patterning these gastropod shells. They verified the previously known supergene arrangement of loci responsible for shell background colour and banding pattern. Furthermore they revealed that the pigment used by C. nemoralis is not bound to a carrier protein like in juvenile Haliotis asinina. But the specific genes responsible for patterning C. nemoralis shells remained unknown. We here present an approach using transcriptome based differential gene expression between mantle regions with pigmented bands and background colour to gain candidate genes for shell pattering in C. nemoralis. The addition of in situ gene expression analyses (qPCR and slide in situ hybridisation) allows us to quantitatively and qualitatively validate these candidate genes. Additionally, analytical chemistry finally brings to light which pigments are responsible for the shell colours, further enhancing our understanding for banding and colouration mechanisms in C. nemoralis. 1 111th Annual Meeting of the German Zoological Society Greifswald, 10-15 September 2018 Symposium: 5th Meeting of the Arthropod Neuroscience Network Oral Presentation Input and output connections of the circadian clock of the Madeira cockroach Rhyparobia (Leucophaea) maderae with specific layers of lamina and medulla Thordis Arnold; Sebastian Korek; Azar Massah; David Eschstruth; Monika Stengl University of Kassel, Kassel, Germany E-mail: [email protected] The accessory medulla in the brain´s optic lobes is the circadian clock of the Madeira cockroach that controls sleep-wake rhythms. To examine input and output circuits of the clock we performed immunocytochemical and histochemical analysis of the neuroanatomy of optic lobe neuropils. Since previous studies determined that the compound eye only enables photic entrainment of the cockroach circadian clock, we examined the connections between the clock and photoreceptor axon termination sites in lamina and medulla. Furthermore, we specified the number of layers in lamina and medulla, as possible input and output regions of the circadian clock. Enzymatic staining with acetylcholinesterase histochemistry distinguished ten layers of the medulla and three layers of the lamina. Neurobiotin backfills from the contralateral optic stalk identified contralateral inputs. Antisera against the neurotransmitters histamine, GABA, and serotonin, and against the neuropeptides pigment-dispersing factor, corazonin, orcokinin, myoinhibitory peptides, FMRFamides, and allatotropin allowed to further define these layers. We found that only the neuropeptidergic anterior fiber fan connects the circadian clock to possible light input sites in the proximal lamina and the accessory laminae. In contrast, the GABAergic distal tract connects the clock to different layers in the medulla only. Strongest connectivity was observed between medulla layer 4 (ME4) and the clock. ME4 is innervated by neurobiotin backfills and contains all neuroactive substances tested. We conclude that ME4 serves as main input and output region of the cockroach circadian clock to control rhythms in physiology and behavior. [Supported by DFG grants STE531/18-2, 18-3 and STE 531/25-1 to MS] 2 111th Annual Meeting of the German Zoological Society Greifswald, 10-15 September 2018 Main Meeting, FG Behavioural Biology Poster: Behav 1 Discrimination of temporal patterns of electric communication signals in the weakly electric fish, Mormyrus rume proboscirostris Sebastian Bach; Sarah Pannhausen; Gerhard von der Emde University of Bonn, Bonn, Germany E-mail: [email protected] The weakly electrical mormyrid fish Mormyrus rume proboscirostris constantly emits series of electric pulses by discharging an electrical organ in its tail. These electric organ discharges (EODs) are used for active electrolocation and for electro-communication with conspecifics. While EOD waveform and amplitude stay constant, the inter-discharge intervals (IDI) can vary depending on the behavioural context. Natural IDI patterns are highly variable and fluctuate between 20 and several hundred ms. Here, we tested whether fish recognize certain temporal IDI patterns and can discriminate them from other patterns presented simultaneously. IDI patterns were pre-recorded from M. rume siblings, while they engaged in various defined behavioural contexts, e.g. feeding, resting or exploring. Four M. rume were trained to discriminate between two IDI-patterns emitted by two sender dipoles located at opposite ends of an aquarium. Fish were rewarded for approaching the dipole which played back an IDI pattern recorded from another fish during feeding (S+). The negative stimuli were regular, synthetic IDI-patterns starting with a low frequency of 5 Hz. In transfer tests, we test whether fish can discriminate between their S+ and various natural IDI patterns, and whether they can recognise feeding patterns recorded from different individuals. When two stimulus sequences were presented simultaneously, the fish could discriminate successfully between the S+ and the S-. We will present the results of further tests revealing whether fish can distinguish natural IDI sequences from different behaviours and whether they are able to recognize IDI patterns recorded in the same behavioural context but from different individuals. 3 111th Annual Meeting of the German Zoological Society Greifswald, 10-15 September 2018 Workshop: Animal Welfare Oral Presentation Animal experimentation under the requirements of biological safety levels BSL-3 and BSL-4 Anne Balkema-Buschmann1; Melanie Rissmann1; Charlotte Schröder2; Sandra Diederich1; Nils Kley1; Martin H. Groschup1 1Friedrich Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases; 2Friedrich Loeffler-Institut, Department of Experimental Animal Facilities and Biorisk Management, Greifswald - Insel Riems, Germany E-mail: [email protected] The Friedrich Loeffler-Institute, Federal Research Institute for Animal Health, performs in vitro and in vivo experiments to improve our understanding of viral and bacterial infections in animals and humans, and to evaluate possible candidates for future vaccines and therapeutics. Working with experimental animals using disease agents harboring a highly pathogenic zoonotic potential is regulated by the legal requirements regarding work safety, protection from infection, genetic engineering and animal welfare. This results in the critical evaluation of the partially diverse protection aims of these regulations, which is performed in close cooperation with the relevant authorities. In general, work in such facilities requires a specific and thorough training as well as a very cautious and reliable work style of all staff involved. This task is complicated by the fact that an increasing number of challenge experiments is not only performed in the so- called dead end host species but also in the putative reservoir hosts or even in endangered wildlife species. While farm or companion animals usually tolerate being handled by humans, putative reservoir hosts may include species that are more difficult to handle under experimental conditions. Nevertheless, adequate husbandry and proper handling of such animals is essential, and needs to be ensured by the building infrastructure and by the recruitment and development of specific expertise among the staff involved in this work. This presentation will highlight the aforementioned aspects by presenting different examples of our experimental animal work. 4 111th Annual Meeting of the German Zoological Society Greifswald, 10-15 September 2018 Main Meeting, FG Ecology Poster: Ecol 3 Stage-specific expression of blue-, UV- and long wavelength-sensitive opsins in the freshwater crustacean Daphnia Verena Bamberger; Ralph Tollrian; Linda C. Weiss Ruhr Universität Bochum, Bochum, Germany E-mail: [email protected] Light is one of the major abiotic factors, influencing the behaviour of diverse organisms. In the freshwater crustacean Daphnia, which is a zooplanktonic primary consumer serving as an important link between trophic levels, light plays a special role as the different species show a strong phototactic behaviour. Genome sequencing of D. pulex and D. magna revealed a vast repertoire of opsins. In D. pulex 48 and in D. magna 33 opsins were found and categorised as ciliary opsins group4-opsins, and rhabdomeric- opsins. These r-opsins are responsible for visual light perception: ultraviolet-sensitive (UVOP), blue sensitive (BLOP) and two long wavelength-sensitive opsins (LOPA and LOPB). We investigated the
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Two New Leaf-Beetles Species (Coleoptera: Chrysomelidae) for the Latvian Fauna
    Baltic J. Coleopterol. 9(2) 2009 ISSN 1407 - 8619 Two new leaf-beetles species (Coleoptera: Chrysomelidae) for the Latvian fauna Andris Bukejs Bukejs A. 2009. Two new leaf-beetles species (Coleoptera: Chrysomelidae) for the Latvian fauna. Baltic J. Coleopterol., 9(2): 155 – 160. The first records of the leaf-beetles, Cryptocephalus solivagus Leonardi & Sassi, 2001 and Chrysolina coerulans coerulans (Scriba, 1791) in the Latvian fauna are presented. General information on their distribution and ecology is given. The figures of the habitus and the sclerites of the endophallus of Cryptocephalus solivagus Leonardi & Sassi, 2001 are presented. Key words: Coleoptera, Chrysomelidae, Latvia, fauna. Andris Bukejs. Institute of Systematic Biology, Daugavpils University, Vienîbas 13, Daugavpils, LV-5401, Latvia. E-mail: [email protected] INTRODUCTION species are reported in Eastern Europe (Bieńkowski 2004). In Latvia, 35 species are Worldwide, the leaf-beetles are one of the largest known (Bukejs et al. 2007; Bukejs 2008). groups of the order Coleoptera, represented by 30000–50000 species (Bieńkowski 2004; Brovdij The genus Chrysolina Motschulsky, 1860 1985; Jolivet 1988; Mohr 1966). This family is contains 469 species and 251 subspecies abundant and rich in species also in the fauna of (Bieńkowski 2007). Most species are distributed Latvia and the Baltic States. The history of in Europe, Asia and Africa. A small number of investigation of leaf-beetles in Latvia is more than species inhabits North America (including 220 years old (Bukejs 2008). introduced European ones). Some species were introduced into Australia (Bieńkowski 2001). In the present paper faunistic data on two leaf- There are 49 species known from Eastern Europe beetles species, Cryptocephalus solivagus (Bieńkowski 2004).
    [Show full text]
  • Studies on the Hyaluronidase Enzyme Purified from the Venom of Chinese Red Scorpion Buthus Martensi Karsch
    STUDIES ON THE HYALURONIDASE ENZYME PURIFIED FROM THE VENOM OF CHINESE RED SCORPION BUTHUS MARTENSI KARSCH FENG LUO NATIONAL UNIVERSITY OF SINGAPORE 2010 STUDIES ON THE HYALURONIDASE ENZYME PURIFIED FROM THE VENOM OF CHINESE RED SCORPION BUTHUS MARTENSI KARSCH A thesis submitted by FENG LUO (B.Med., M.Med.) for the degree of DOCTOR OF PHILOSOPHY in the NATIONAL UNIVERSITY OF SINGAPORE Department of Anatomy Yong Loo Lin School of Medicine National University of Singapore 2010 Acknowledgements I would like to take this opportunity to express my sincere appreciation to my supervisor Prof. P. Gopalakrishnakone, Department of Anatomy, National University of Singapore. During my study in Anatomy, I owed much to his great patience, academic guidance and endlessly encouragement. It is my luck to study under his supervision. I’d also like to thank Prof. Bay Boon Huat, the head of Department of Anatomy, National University of Singapore, for his management to make the whole department as a big family and hence I could enjoy the stay in the department. I will not forget the great support from Dr. Gao Rong. I have learned much from him, from the understanding of the science to the techniques of the experiments. I felt so happy to meet such a big brother in the lab. I would also thank Dr. M.M.Thwin, the senior member of Venom and Toxin Research Programme, who helped me in writing the manuscript, patiently listened to my queries and unselfishly shared his experience. He was always available when I needed the help. I highly appreciate the kindly help of Mr.
    [Show full text]
  • Honeybee (Apis Mellifera) and Bumblebee (Bombus Terrestris) Venom: Analysis and Immunological Importance of the Proteome
    Department of Physiology (WE15) Laboratory of Zoophysiology Honeybee (Apis mellifera) and bumblebee (Bombus terrestris) venom: analysis and immunological importance of the proteome Het gif van de honingbij (Apis mellifera) en de aardhommel (Bombus terrestris): analyse en immunologisch belang van het proteoom Matthias Van Vaerenbergh Ghent University, 2013 Thesis submitted to obtain the academic degree of Doctor in Science: Biochemistry and Biotechnology Proefschrift voorgelegd tot het behalen van de graad van Doctor in de Wetenschappen, Biochemie en Biotechnologie Supervisors: Promotor: Prof. Dr. Dirk C. de Graaf Laboratory of Zoophysiology Department of Physiology Faculty of Sciences Ghent University Co-promotor: Prof. Dr. Bart Devreese Laboratory for Protein Biochemistry and Biomolecular Engineering Department of Biochemistry and Microbiology Faculty of Sciences Ghent University Reading Committee: Prof. Dr. Geert Baggerman (University of Antwerp) Dr. Simon Blank (University of Hamburg) Prof. Dr. Bart Braeckman (Ghent University) Prof. Dr. Didier Ebo (University of Antwerp) Examination Committee: Prof. Dr. Johan Grooten (Ghent University, chairman) Prof. Dr. Dirk C. de Graaf (Ghent University, promotor) Prof. Dr. Bart Devreese (Ghent University, co-promotor) Prof. Dr. Geert Baggerman (University of Antwerp) Dr. Simon Blank (University of Hamburg) Prof. Dr. Bart Braeckman (Ghent University) Prof. Dr. Didier Ebo (University of Antwerp) Dr. Maarten Aerts (Ghent University) Prof. Dr. Guy Smagghe (Ghent University) Dean: Prof. Dr. Herwig Dejonghe Rector: Prof. Dr. Anne De Paepe The author and the promotor give the permission to use this thesis for consultation and to copy parts of it for personal use. Every other use is subject to the copyright laws, more specifically the source must be extensively specified when using results from this thesis.
    [Show full text]
  • SEXUAL CONFLICT in ARACHNIDS Ph.D
    MASARYK UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF BOTANY AND ZOOLOGY SEXUAL CONFLICT IN ARACHNIDS Ph.D. Dissertation Lenka Sentenská Supervisor: prof. Mgr. Stanislav Pekár, Ph.D. Brno 2017 Bibliographic Entry Author Mgr. Lenka Sentenská Faculty of Science, Masaryk University Department of Botany and Zoology Title of Thesis: Sexual conflict in arachnids Degree programme: Biology Field of Study: Ecology Supervisor: prof. Mgr. Stanislav Pekár, Ph.D. Academic Year: 2016/2017 Number of Pages: 199 Keywords: Sexual selection; Spiders; Scorpions; Sexual cannibalism; Mating plugs; Genital morphology; Courtship Bibliografický záznam Autor: Mgr. Lenka Sentenská Přírodovědecká fakulta, Masarykova univerzita Ústav botaniky a zoologie Název práce: Konflikt mezi pohlavími u pavoukovců Studijní program: Biologie Studijní obor: Ekologie Vedoucí práce: prof. Mgr. Stanislav Pekár, Ph.D. Akademický rok: 2016/2017 Počet stran: 199 Klíčová slova: Pohlavní výběr; Pavouci; Štíři; Sexuální kanibalismus; Pohlavní zátky; Morfologie genitálií; Námluvy ABSTRACT Sexual conflict is pervasive in all sexually reproducing taxa and is especially intense in carnivorous species, because the interaction between males and females encompasses the danger of getting killed instead of mated. Carnivorous arachnids, such as spiders and scorpions, are notoriously known for their cannibalistic tendencies. Studies of the conflict between arachnid males and females focus mainly on spiders because of the frequent occurrence of sexual cannibalism and unique genital morphology of both sexes. The morphology, in combination with common polyandry, further promotes the sexual conflict in form of an intense sperm competition and male tactics to reduce or avoid it. Scorpion females usually mate only once per litter, but the conflict between sexes is also intense, as females can be very aggressive, and so males engage in complicated mating dances including various components considered to reduce female aggression and elicit her cooperation.
    [Show full text]
  • The First Data on the Fauna and Geographical Distribution of Medically Important Scorpions in Golestan Province, Northeast of Iran
    The First Data on the Fauna and Geographical Distribution of Medically Important Scorpions in Golestan Province, Northeast of Iran Aioub Sozadeh Golestan University of Medical Sciences and Health Services Ehsan Allah Kalteh Golestan University of Medical Sciences and Health Services Shahin Saeedi Golestan University of Medical Sciences and Health Services Mulood Mohammmadi Bavani ( [email protected] ) Department of Medical Entomology and Vector Control, School of Public Health, Urmia University of Medical Sciences Research note Keywords: Scorpion, fauna, spatial distribution, Iran, Golestan Posted Date: December 3rd, 2020 DOI: https://doi.org/10.21203/rs.3.rs-117232/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/14 Abstract Objectives: this study was conducted to determine the medically relevant scorpion’s species and produce their geographical distribution in Golestan Province for the rst time, to collect basic information to produce regional antivenom. Because for scorpion treatment a polyvalent antivenom is use in Iran, and some time it failed to treatment, for solve this problem govement decide to produce regional antivenom. Scorpions were captured at day and night time using ruck rolling and Ultra Violet methods during 2019. Then specimens transferred to a 75% alcohol-containing plastic bottle. Finally the specimens under a stereomicroscope using a valid identication key were identied. Distribution maps were introduced using GIS 10.4. Results: A total of 111 scorpion samples were captured from the province, all belonging to the Buthidae family, including Mesobuthus eupeus (97.3%), Orthochirus farzanpayi (0.9%) and Mesobuthus caucasicus (1.8%) species.
    [Show full text]
  • Sequence Analysis of Lysozyme C from the Scorpion Mesobuthus Eupeus Venom Glands Using Semi- Nested RT-PCR
    Iranian Red Crescent Medical Journal ORIGINAL ARTICLE Sequence Analysis of Lysozyme C from the Scorpion Mesobuthus Eupeus Venom Glands Using Semi- Nested RT-PCR M Baradaran1*, A Jolodar2, A Jalali3, Sh Navidpour4, F Kafilzadeh5 1Toxicology Research Center, Jundishapur University of Medical Sciences, Ahvaz, Iran; 2Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran; 3Department of Pharmacology and Toxi- cology, School of Pharmacy, Toxicology Research Center, Jundishapur University of Medical Sciences, Ahvaz, Iran; 4Veterinary Parasitology Department of Razi Vaccine and Serum Research Institute, Karaj, Iran; 5Azad Islamic University, Jahrom Branch, Jahrom , Iran Abstract Background: Lysozyme is an antimicrobial protein widely distributed among eukaryotes and prokaryotes and take part in protecting microbial infection. Here, we amplified cDNA of MesoLys-C, a c-type lysozyme from the most common scorpion in Khuzestan Province, Southern Iran. Methods: Scorpions of Mesobuthus eupeus were collected from the Khuzestan Province. Using RNXTM solu- tion, the total RNA was extracted from the twenty separated venom glands. cDNA was synthesized with extract- ed total RNA as template and modified oligo(dT) as primer. In order to amplify cDNA encoding a lysozyme C, semi-nested RT-PCR was done with the specific primers. Follow amplification, the fragment was sequenced. Results: Sequence determination of amplified fragment revealed that MesoLys-C cDNA had 438 bp, encoding for 144 aa residues peptide with molecular weight of 16.702 kDa and theoretical pI of 7.54. A putative 22-amino- acids signal peptide was identified. MesoLys-C protein was composed of one domain belonged to c-type lyso- syme/alphalactalbumin.
    [Show full text]
  • Is Ellipura Monophyletic? a Combined Analysis of Basal Hexapod
    ARTICLE IN PRESS Organisms, Diversity & Evolution 4 (2004) 319–340 www.elsevier.de/ode Is Ellipura monophyletic? A combined analysis of basal hexapod relationships with emphasis on the origin of insects Gonzalo Giribeta,Ã, Gregory D.Edgecombe b, James M.Carpenter c, Cyrille A.D’Haese d, Ward C.Wheeler c aDepartment of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA bAustralian Museum, 6 College Street, Sydney, New South Wales 2010, Australia cDivision of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA dFRE 2695 CNRS, De´partement Syste´matique et Evolution, Muse´um National d’Histoire Naturelle, 45 rue Buffon, F-75005 Paris, France Received 27 February 2004; accepted 18 May 2004 Abstract Hexapoda includes 33 commonly recognized orders, most of them insects.Ongoing controversy concerns the grouping of Protura and Collembola as a taxon Ellipura, the monophyly of Diplura, a single or multiple origins of entognathy, and the monophyly or paraphyly of the silverfish (Lepidotrichidae and Zygentoma s.s.) with respect to other dicondylous insects.Here we analyze relationships among basal hexapod orders via a cladistic analysis of sequence data for five molecular markers and 189 morphological characters in a simultaneous analysis framework using myriapod and crustacean outgroups.Using a sensitivity analysis approach and testing for stability, the most congruent parameters resolve Tricholepidion as sister group to the remaining Dicondylia, whereas most suboptimal parameter sets group Tricholepidion with Zygentoma.Stable hypotheses include the monophyly of Diplura, and a sister group relationship between Diplura and Protura, contradicting the Ellipura hypothesis.Hexapod monophyly is contradicted by an alliance between Collembola, Crustacea and Ectognatha (i.e., exclusive of Diplura and Protura) in molecular and combined analyses.
    [Show full text]
  • Brouci Z Čeledi Mandelinkovitých (Coleoptera: Chrysomelidae) Lokality Hůrka V Hluboké Nad Vltavou
    STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST Brouci z čeledi mandelinkovitých (Coleoptera: Chrysomelidae) lokality Hůrka v Hluboké nad Vltavou Albert Damaška Praha 2012 STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST OBOR SOČ: 08 – Ochrana a tvorba životního prostředí Brouci z čeledi mandelinkovitých (Coleoptera: Chrysomelidae) lokality Hůrka v Hluboké nad Vltavou Leaf beetles (Coleoptera, Chrysomelidae) of the locality „Hůrka“ in Hluboká nad Vltavou Autor: Albert Damaška Škola: Gymnázium Jana Nerudy, Hellichova 3, Praha 1 Konzultant: Michael Mikát Praha 2012 1 Prohlášení Prohlašuji, že jsem svou práci vypracoval samostatně pod vedením Michaela Mikáta, použil jsem pouze podklady (literaturu, SW atd.) uvedené v přiloženém seznamu a postup při zpracování a dalším nakládání s prací je v souladu se zákonem č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon) v platném znění. V ………… dne ………………… podpis: …………………………… 2 Poděkování Rád bych na tomto místě poděkoval především svému konzultantovi Michaelu Mikátovi za pomoc při psaní textu práce, tvorbě grafů a výpočtech. Dále patří dík Mgr. Pavlu Špryňarovi a RNDr. Jaromíru Strejčkovi za determinaci některých jedinců a za cenné rady a zkušenosti k práci v terénu, které jsem mimo jiné užil i při sběru dat pro tuto práci. Děkuji i Mgr. Lýdii Černé za korekturu anglického jazyka v anotaci. V neposlední řadě patří dík i mým rodičům za obětavou pomoc v mnoha situacích a za pomoc při dopravě na lokalitu. 3 Anotace Mandelinkovití brouci (Chrysomelidae) jsou velmi vhodnými bioindikátory vzhledem k jejich vazbě na rostliny. Cílem práce bylo provedení faunistického průzkumu brouků čeledi mandelinkovitých na lokalitě Hůrka v Hluboké nad Vltavou na Českobudějovicku a zjištěné výsledky aplikovat v ochraně lokality.
    [Show full text]
  • Comparative Neuroanatomy of Mollusks and Nemerteans in the Context of Deep Metazoan Phylogeny
    Comparative Neuroanatomy of Mollusks and Nemerteans in the Context of Deep Metazoan Phylogeny Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades einer Doktorin der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom-Biologin Simone Faller aus Frankfurt am Main Berichter: Privatdozent Dr. Rudolf Loesel Universitätsprofessor Dr. Peter Bräunig Tag der mündlichen Prüfung: 09. März 2012 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. Contents 1 General Introduction 1 Deep Metazoan Phylogeny 1 Neurophylogeny 2 Mollusca 5 Nemertea 6 Aim of the thesis 7 2 Neuroanatomy of Minor Mollusca 9 Introduction 9 Material and Methods 10 Results 12 Caudofoveata 12 Scutopus ventrolineatus 12 Falcidens crossotus 16 Solenogastres 16 Dorymenia sarsii 16 Polyplacophora 20 Lepidochitona cinerea 20 Acanthochitona crinita 20 Scaphopoda 22 Antalis entalis 22 Entalina quinquangularis 24 Discussion 25 Structure of the brain and nerve cords 25 Caudofoveata 25 Solenogastres 26 Polyplacophora 27 Scaphopoda 27 i CONTENTS Evolutionary considerations 28 Relationship among non-conchiferan molluscan taxa 28 Position of the Scaphopoda within Conchifera 29 Position of Mollusca within Protostomia 30 3 Neuroanatomy of Nemertea 33 Introduction 33 Material and Methods 34 Results 35 Brain 35 Cerebral organ 38 Nerve cords and peripheral nervous system 38 Discussion 38 Peripheral nervous system 40 Central nervous system 40 In search for the urbilaterian brain 42 4 General Discussion 45 Evolution of higher brain centers 46 Neuroanatomical glossary and data matrix – Essential steps toward a cladistic analysis of neuroanatomical data 49 5 Summary 53 6 Zusammenfassung 57 7 References 61 Danksagung 75 Lebenslauf 79 ii iii 1 General Introduction Deep Metazoan Phylogeny The concept of phylogeny follows directly from the theory of evolution as published by Charles Darwin in The origin of species (1859).
    [Show full text]
  • ANT DIVERSITY in WADALI FOREST PARK and UPPER WARDHA of AMRAVATI REGION Jayashree Deepak Dhote Associate Professor, Shri Shivaji Science College, Amravati
    ANT DIVERSITY IN WADALI FOREST PARK AND UPPER WARDHA OF AMRAVATI REGION Jayashree Deepak Dhote Associate Professor, Shri Shivaji Science College, Amravati Abstract: of Polynesia and the Hawaiian Islands lack The distribution of ants diversity was native ant species.(Jones and Alice S. 2008; decided to study in two locations i.e. Wadali Thomas and Philip 2007). Ants occupy a wide garden and Upper Wardha dam forest area range of ecological niches, and are able to of Amravati region. This Wadali forest park exploit a wide range of food resources either as region is located Amravati region and upper direct or indirect herbivores, predators, and Wardha dam is near Simbhora village in scavengers. Most species are omnivorous Morshi taluka in Amravati district in the generalists, but a few are specialist feeders. Indian state of Maharashtra. In this region Their ecological dominance may be measured we identified different types of Formicidae by their biomass and estimates in different ants. In this study we tried to explore the environments suggest that they contribute 15– distribution of ants in Wadali and upper 20% (on average and nearly 25% in the tropics) Wardha forest area. In this area, three of the total terrestrial animal biomass, which species of antes with three genera were exceeds that of the vertebrates (Schultz T.R identified Three species namely Red 2000). imported fire ant, Solenopsisinvicta , Ants are important components of Carpenter ant, Camponotus and Pharaoh ecosystems notonly because they constitute a ant, Monomoriumpharaonis were observed. great part of the animal biomass but also Out of these Carpenter ant and Red because they act as ecosystem engineers.
    [Show full text]
  • Some Results of Breeding a Predatory Stink Bug of Perillus Bioculatus F. (Hemiptera, Pentatomidae) in the Republic of Moldova
    BIO Web of Conferences 21, 00024 (2020) https://doi.org/10.1051/bioconf/20202100024 XI International Scientific and Practical Conference “Biological Plant Protection is the Basis of Agroecosystems Stabilization” Some results of breeding a predatory stink bug of Perillus bioculatus F. (Hemiptera, Pentatomidae) in the Republic of Moldova Dina Elisovetcaia1*, Valeriu Derjanschi1, Irina Agas'eva 2, and Mariya Nefedova2 1Institute of Zoology, Republic of Moldova, Chisinau 2All-Russian Research Institute of Biological Plant Protection, Russia, Krasnodar-39, 350039 Abstract. The impact of insect artificial diet on the egg production of females was examined for L29 consequently generations of laboratory populations Perillus bioculatus (F.) (Hemiptera: Pentatomidae, Asopinae). Particular attention is paid to the overwintered generation, which plays a key role in the rehabilitation of the predator populations after hibernation. It was shown that with an increase in the number of laboratory generations of a predator (from L13 to L29), egg production of P. bioculatus females significantly decreases – from 16.4-35.7 to 15.0-27.5 eggs / female in terms of the total number of females in the laboratory populations. The proportion of eggs laid by females of winter generation was the lowest when feeding on Galleria mellonella larvae. Was established food preferences among the assortment of native for Republic of Moldova leaf beetles: Entomoscelis adonidis Pallas 1771, Chrysolina herbacea (Duftschmid, 1825) and C. coerulans (Scriba, 1791). P. bioculatus imago overwintered generation refused to feed on E. suturalis larvae and imago, probably because of the isoquinoline alkalods contained in the hemolymph of the leaf beetle. Studies have shown that supplementary feeding with imago of E.
    [Show full text]