Insight Into Insect Trypanosomatid Biology Via Whole Genome Sequencing

Total Page:16

File Type:pdf, Size:1020Kb

Insight Into Insect Trypanosomatid Biology Via Whole Genome Sequencing School of Doctoral Studies in Biological Sciences UNIVERSITY OF SOUTH BOHEMIA, FACULTY OF SCIENCE Insight into insect trypanosomatid biology via whole genome sequencing Ph.D. Thesis RNDr. Tomáš Skalický Supervisor: Prof. RNDr. Julius Lukeš, CSc. Biology Centre CAS, Institute of Parasitology České Budějovice 2017 This thesis should be cited as: Skalický T (2017) Insight to insect trypanosomatid diversity via whole genome sequencing. Ph. D. Thesis. Uniccersity of South Bohemia, Faculty of Science, School of Doctoral Studies in Biological Science, České Budějovice, Czech Republic, 94 pp. Annotation This thesis is composed of two topics both concerning diverse and obligatory trypanosomatid parasites. First part deals with identification of new Trypanosoma species identified in blood meal of tsetse flies caught in Dzanga-Sangha Protected Areas, Central African Republic, and identification of feeding preferences of tsetse flies. The second part concerns extraordinary monoxenous trypanosomatid Paratrypanosoma confusum which constitutes the most basal branch between free-living Bodo saltans and parasitic trypanosomatids. This thesis helped to elucidate morphology and biology of this deep branching trypanosomatid. Using genome and transcriptome sequencing and comparative bioinformatics approaches enabled search for ancestral genes shared with free-living bodonids and confirmed genome streamlining in trypanosomatids. Declaration [in Czech] Prohlašuji, že svoji disertační práci jsem vypracoval samostatně pouze s použitím pramenů a literatury uvedených v seznamu citované literatury. Prohlašuji, že v souladu s § 47b zákona č. 111/1998 Sb. v platném znění souhlasím se zveřejněním své disertační práce, a to v nezkrácené podobě elektronickou cestou ve veřejně přístupné části databáze STAG provozované Jihočeskou univerzitou v Českých Budějovicích na jejích internetových stránkách, a to se zachováním mého autorského práva k odevzdanému textu této kvalifikační práce. Souhlasím dále s tím, aby toutéž elektronickou cestou byly v souladu s uvedeným ustanovením zákona č. 111/1998 Sb. zveřejněny posudky školitele a oponentů práce i záznam o průběhu a výsledku obhajoby kvalifikační práce. Rovněž souhlasím s porovnáním textu mé kvalifikační práce s databází kvalifikačních prací Theses.cz provozovanou Národním registrem vysokoškolských kvalifikačních prací a systémem na odhalování plagiátů. České Budějovice, 06.07.2017 ............................................... Tomáš Skalický This thesis originated from a partnership of Faculty of Science, University of South Bohemia, and Institute of Parasitology, Biology Centre of the CAS, supporting doctoral studies in the Molecular and Cell Biology and Genetics study programme. Financial support This work was supported by: ERC CZ, grant LL1205 The Czech Science Foundation, grant 14-23986S, The Praemium Academiae 2009 award to Julius Lukeš The Grant Agency of the University of South Bohemia, grant 108/2013/P Acknowledgements Foremost, I would like to express my sincere gratitude to my supervisor Julius Lukeš for giving me the opportunity to join his team, his patient guidance, motivation and continuous support of my research during all the years. His enthusiasm and passion for science was always contagious and brought me where I stand now. I would also like to thank all the people from the institutes that I had the opportunity to work with during the years, especially those from Jula’s, Alča’s and Parda’s lab, both former and present. They have created a pleasant and stimulating working environment throughout my PhD studies. I would also like to thank David Wildridge and Carmen Priscila Pena Diaz for proofreading. In addition, my thanks go to all my friends, whom I had the chance to get to know over the years spent in South Bohemia. Thanks to all of them, my studies on Faculty of Sciences were both happy and pleasurable. Finally, my special thanks go to my beloved Zuzka and my family for their never-ending support, help and constant faith in me. List of papers and author’s contribution The thesis is based on the following papers (listed chronologically): I. Flegontov P*, Votýpka J*, Skalický T*, Logacheva MD, Penin AA, Tanifuji G, Onodera NT, Kondrashov AS, Volf P, Archibald JM, Lukeš J (2013) Paratrypanosoma is a novel early-branching trypanosomatid. Current Biology 23(18):1787-93 (IF = 9.733). Tomáš Skalický participated in study design, experimental data generation, data analysis and interpretation and draft editing of the manuscript. II. Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V (2014) Evolution of parasitism in kinetoplastid flagellates. Molecular and Biochemical Parasitology 195(2):115- 122 (IF = 2.068). Tomáš Skalický performed analysis and interpretation of the data, prepared figures and contributed to writing of the manuscript. III. Votýpka J*, Rádrová J*, Skalický T*, Jirků M, Jirsová D, Mihalca AD, D'Amico G, Petrželková KJ, Modrý D, Lukeš J (2015) A tsetse and tabanid fly survey of African great apes habitats reveals the presence of a novel trypanosome lineage but the absence of Trypanosoma brucei. International Journal of Parasitology 45(12):741-8 (IF = 4.242). Tomáš Skalický participated in experimental procedures, designed, prepared and sequenced amplicon DNA library, analyzed the results, performed recombinant detection and contributed to writing of the manuscript. IV. Skalický T*, Dobáková E*, Wheeler R*, Tesařová M, Flegontov P, Jirsová D, Votýpka J, Yurchenko V, Ayala FJ, Lukeš J (submitted manuscript) Extensive flagellar remodeling during the complex life cycle of Paratrypanosoma, an early- branching trypanosomatid. Tomáš Skalický participated in study design, experimental data generation, genome assembly and annotation, data analysis and interpretation and contributed to writing of the manuscript. * These authors contributed equally Co-author agreement Julius Lukeš, the supervisor of this Ph.D. thesis and co-author of all presented papers, fully acknowledges the contribution of Tomáš Skalický. …………………………………………. Prof. RNDr. Julius Lukeš, CSc. Contents 1 Introduction.................................................................................................................... 1 1.1 Kinetoplastea .......................................................................................................... 1 1.2 Trypanosomatida .................................................................................................... 2 1.2.1 Trypanosomatid systematics and phylogeny .................................................. 3 1.2.2 Trypanosomatid diversity ................................................................................ 5 1.2.3 Evolution of parasitism in trypanosomatids.................................................. 10 1.2.4 Trypanosomatid nuclear genomes ................................................................ 13 1.2.5 RNA interference ........................................................................................... 16 2 Research objectives ...................................................................................................... 19 3 Summary of results and discussion .............................................................................. 19 3.1 Survey of new trypanosomes transmitted by tsetse fly ....................................... 20 3.2 Paratrypanosoma confusum, a unique trypanosomatid ...................................... 21 4 REFERENCES ................................................................................................................. 27 5 Original publications .................................................................................................... 36 5.1 PAPER I .................................................................................................................... 36 5.2 PAPER II ................................................................................................................... 55 5.3 PAPER III .................................................................................................................. 64 5.4 MANUSCRIPT I ........................................................................................................... 73 6 Curriculum vitae ........................................................................................................... 89 1 Introduction 1.1 Kinetoplastea Kinetoplastids represent one of the putatively most ancestral eukaryotic lineages (Cavalier-Smith, 2010). This widespread and extremely speciose group of eukaryotic protists, sometimes called microeukaryotes, belongs to the Euglenozoa, supergroup Excavata (Adl et al., 2012). Together with three sister groups Euglenida, Symbiontida and Diplonemea, Kinetoplastid flagellates are characterized by specific features including polycistronic transcription and trans-splicing of nuclear genes or a large mitochondrion with discoidal cristae containing a prominent mitochondrial DNA termed kinetoplast, which gave the group its name. Phylogenetic analyses support division of the class Kinetoplastea into subclasses Prokinetoplastina and Metakinetoplastina (Adl et al., 2012; d'Avila-Levy et al., 2015), with the former clade containing only two known representatives: Ichthyobodo – an ectoparasite of fish with two flagella and Perkinsela – an aflagellar endosymbiont of amoebozoans of the genus Paramoeba parasitizing on gills of fish (Dykova et al., 2008; Young et al., 2014). Perkinsela, which according to the Giemsa staining has more DNA in its mitochondrion than in its nucleus, is
Recommended publications
  • The Morphology, Ultrastructure and Molecular Phylogeny of a New Freshwater Heterolobose Amoeba Parafumarolamoeba Stagnalis N. Sp
    diversity Article The Morphology, Ultrastructure and Molecular Phylogeny of a New Freshwater Heterolobose Amoeba Parafumarolamoeba stagnalis n. sp. (Vahlkampfiidae; Heterolobosea) Anastasia S. Borodina 1,2, Alexander P. Mylnikov 1,†, Jan Janouškovec 3 , Patrick J. Keeling 4 and Denis V. Tikhonenkov 1,5,* 1 Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia; [email protected] 2 Department of Zoology and Parasitology, Voronezh State University, Universitetskaya Ploshad 1, 394036 Voronezh, Russia 3 Centre Algatech, Laboratory of Photosynthesis, Institute of Microbiology, Czech Academy of Sciences, Opatovický Mlýn, 37981 Tˇreboˇn,Czech Republic; [email protected] 4 Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T1Z4, Canada; [email protected] 5 AquaBioSafe Laboratory, University of Tyumen, 625003 Tyumen, Russia * Correspondence: [email protected]; Tel.: +7-485-472-4533 † Alexander P. Mylnikov is deceased. http://zoobank.org/References/e543a49a-16c1-4b7c-afdb-0bc56b632ef0 Abstract: Heterolobose amoebae are important members of marine, freshwater, and soil microbial Citation: Borodina, A.S.; Mylnikov, communities, but their diversity remains under-explored. We studied the diversity of Vahlkampfiidae A.P.; Janouškovec, J.; Keeling, P.J.; to improve our understanding of heterolobosean relationships and their representation in aquatic Tikhonenkov, D.V. The Morphology, benthos. Using light and electron microscopy, and molecular phylogenies based on the SSU rRNA Ultrastructure and Molecular and ITS loci, we describe the fine morphology and evolutionary relationships of a new heterolobosean Phylogeny of a New Freshwater Parafumarolamoeba stagnalis n. sp. from a small pond in European Russia. Cells of P. stagnalis possess Heterolobose Amoeba a clearly distinguishable anterior hyaline pseudopodium, eruptive movement, several thin and Parafumarolamoeba stagnalis n.
    [Show full text]
  • Dourine (Trypanosoma Equiperdium Infection): a Review with Special Attention to Ethiopia
    European Journal of Biological Sciences 9 (2): 93-100, 2017 ISSN 2079-2085 © IDOSI Publications, 2017 DOI: 10.5829/idosi.ejbs.2017.93.100 Dourine (Trypanosoma equiperdium Infection): a Review with Special Attention to Ethiopia Nesradin Yune, Gemechis Biratu and Getu Asefa Jimma University College of Agriculture and Veterinary Medicine, School of Veterinary Medicine, P.O. Box: 307, Jimma, Ethiopia Abstract: Dourine is a parasitic disease of breeding equids that is transmitted directly from animal to animal during coitus. The causative agent of dourine is Trypanosoma equiperdum which is protozoan parasite of family Trypanosomatidie. This organism presents in both genital secretion of male and female equids. Trypanosoma equiperdum differs from other trpanosoma in that it’s rarely detected in blood rather primary in tissue. Dourine is the only trypanosomal disease which can not be transmitted by biological vectors or which can mostly transmitted venerally. Some times the disease can also transmitted to foals by ingestion of infected colostrum or milk. Historically, dourine has been present in Europe, Asia, Africa and North America. In Ethiopia dourine is restricted to only Arsi-Bale zone of highland area. Depending on virulence of the infecting strain, the nutritional status of the horse and stress factor, the course and clinical signs of dourine are highly variable in manifestation and severity. The disease is characterized mainly by swelling of the genitalia, cutaneous plaques and neurological signs and chronic emaciation. It’s difficult to diagnosis this disease as the organism found in tissue parasitism and is also extremely difficult to find and differentiate microscopically from T. evansi.
    [Show full text]
  • Sex Is a Ubiquitous, Ancient, and Inherent Attribute of Eukaryotic Life
    PAPER Sex is a ubiquitous, ancient, and inherent attribute of COLLOQUIUM eukaryotic life Dave Speijera,1, Julius Lukešb,c, and Marek Eliášd,1 aDepartment of Medical Biochemistry, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands; bInstitute of Parasitology, Biology Centre, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, 370 05 Ceské Budejovice, Czech Republic; cCanadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8; and dDepartment of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic Edited by John C. Avise, University of California, Irvine, CA, and approved April 8, 2015 (received for review February 14, 2015) Sexual reproduction and clonality in eukaryotes are mostly Sex in Eukaryotic Microorganisms: More Voyeurs Needed seen as exclusive, the latter being rather exceptional. This view Whereas absence of sex is considered as something scandalous for might be biased by focusing almost exclusively on metazoans. a zoologist, scientists studying protists, which represent the ma- We analyze and discuss reproduction in the context of extant jority of extant eukaryotic diversity (2), are much more ready to eukaryotic diversity, paying special attention to protists. We accept that a particular eukaryotic group has not shown any evi- present results of phylogenetically extended searches for ho- dence of sexual processes. Although sex is very well documented mologs of two proteins functioning in cell and nuclear fusion, in many protist groups, and members of some taxa, such as ciliates respectively (HAP2 and GEX1), providing indirect evidence for (Alveolata), diatoms (Stramenopiles), or green algae (Chlor- these processes in several eukaryotic lineages where sex has oplastida), even serve as models to study various aspects of sex- – not been observed yet.
    [Show full text]
  • Omar Ariel Espinosa Domínguez
    Omar Ariel Espinosa Domínguez DIVERSIDADE, TAXONOMIA E FILOGENIA DE TRIPANOSSOMATÍDEOS DA SUBFAMÍLIA LEISHMANIINAE Tese apresentada ao Programa de Pós- Graduação em Biologia da Relação Patógeno –Hospedeiro do Instituto de Ciências Biomédicas da Universidade de São Paulo, para a obtenção do título de Doutor em Ciências. Área de concentração: Biologia da Relação Patógeno-Hospedeiro. Orientadora: Profa. Dra. Marta Maria Geraldes Teixeira Versão original São Paulo 2015 RESUMO Domínguez OAE. Diversidade, Taxonomia e Filogenia de Tripanossomatídeos da Subfamília Leishmaniinae. [Tese (Doutorado em Parasitologia)]. São Paulo: Instituto de Ciências Biomédicas, Universidade de São Paulo; 2015. Os parasitas da subfamília Leishmaniinae são tripanossomatídeos exclusivos de insetos, classificados como Crithidia e Leptomonas, ou de vertebrados e insetos, dos gêneros Leishmania e Endotrypanum. Análises filogenéticas posicionaram espécies de Crithidia e Leptomonas em vários clados, corroborando sua polifilia. Além disso, o gênero Endotrypanum (tripanossomatídeos de preguiças e flebotomíneos) tem sido questionado devido às suas relações com algumas espécies neotropicais "enigmáticas" de leishmânias (a maioria de animais selvagens). Portanto, Crithidia, Leptomonas e Endotrypanum precisam ser revisados taxonomicamente. Com o objetivo de melhor compreender as relações filogenéticas dos táxons dentro de Leishmaniinae, os principais objetivos deste estudo foram: a) caracterizar um grande número de isolados de Leishmaniinae e b) avaliar a adequação de diferentes
    [Show full text]
  • Euhirudinea: Arhynchobdellida) in Danum Valley Rainforest (Borneo, Sabah)
    @@B D9+82;7+*8 doi: 8+87788E9+82+*8 http://folia.paru.cas.cz Research Article Feeding strategies and competition between terrestrial Haemadipsa leeches (Euhirudinea: Arhynchobdellida) in Danum Valley rainforest (Borneo, Sabah) =andb !"#$3& F!!$GH!$ $G!G!!%![J- ography and taxonomy. We undertook research on two species inhabiting lowland dipterocarp forest, Haemadipsa picta K8'9' and Haemadipsa subagilis MK8'9'N!&PMN!ƽ!G G&ƽ-R=MGNG!J-[R=MN-[ GƽG!$$!RS!&!H. picta is more G!ƽ-$&!!=!J&! plant height. Haemadipsa subagilis &U!G!VG&[ G&!MNJ-H. pictaM!&![N= (ii) habitat specialisation of H. subagilis. Moreover, we provide new observations on their foraging behaviour. ectoparasites, foraging behaviour, Haemadipsidae, haematophagy, parasitism HB!->!G$- $ [ !& $ !-!!F- G!ƽ M>!!!GN &!! !GPB- $1+Z!! G ! [ $ ! ! -!HaemadipsaH81<'M brown leech species complex (former H. zeylanica sensu B9++79+8+BH%9++1NH!! latoB9+8+NP- fauna of the Oriental region has received much attention mary tropical rainforest, whereas more disturbed environ- !&KM8'9'8'*<8'*1N ments are dominated by conspicuously coloured H. picta. The tiger leech H. picta K 8'9' & G& !- coloured species, namely H. subagilis MK8'9'N gies of hematophagous leeches, have not been examined H. sumatrana MF 811*N & - G\! !& mortality and, therefore, their abundance in an ecosystem MB&8'19$!9++7N MK8'21NF&$G Many ecological aspects of the life history of haemad- simply apply this theory to ectoparasites, such as leeches, ipsid species remain unresolved, including establishing &!!!!B an average life span for each species and species habitat GG&!UM DM8'1<N G8';;N!-U$- important studies on the feeding habits of species of Hae- $ $G P- madipsa, and until now this was the only paper containing G!!G&-[ detailed data on growth after feeding and the length of time competition and niche partitioning.
    [Show full text]
  • The Intestinal Protozoa
    The Intestinal Protozoa A. Introduction 1. The Phylum Protozoa is classified into four major subdivisions according to the methods of locomotion and reproduction. a. The amoebae (Superclass Sarcodina, Class Rhizopodea move by means of pseudopodia and reproduce exclusively by asexual binary division. b. The flagellates (Superclass Mastigophora, Class Zoomasitgophorea) typically move by long, whiplike flagella and reproduce by binary fission. c. The ciliates (Subphylum Ciliophora, Class Ciliata) are propelled by rows of cilia that beat with a synchronized wavelike motion. d. The sporozoans (Subphylum Sporozoa) lack specialized organelles of motility but have a unique type of life cycle, alternating between sexual and asexual reproductive cycles (alternation of generations). e. Number of species - there are about 45,000 protozoan species; around 8000 are parasitic, and around 25 species are important to humans. 2. Diagnosis - must learn to differentiate between the harmless and the medically important. This is most often based upon the morphology of respective organisms. 3. Transmission - mostly person-to-person, via fecal-oral route; fecally contaminated food or water important (organisms remain viable for around 30 days in cool moist environment with few bacteria; other means of transmission include sexual, insects, animals (zoonoses). B. Structures 1. trophozoite - the motile vegetative stage; multiplies via binary fission; colonizes host. 2. cyst - the inactive, non-motile, infective stage; survives the environment due to the presence of a cyst wall. 3. nuclear structure - important in the identification of organisms and species differentiation. 4. diagnostic features a. size - helpful in identifying organisms; must have calibrated objectives on the microscope in order to measure accurately.
    [Show full text]
  • (2016) Prevalence and Associations of Trypanosoma Spp. and Sodalis Glossinidius with Intrinsic Factors of Tsetse Flies
    Wongserepipatana, Manun (2016) Prevalence and associations of Trypanosoma spp. and Sodalis glossinidius with intrinsic factors of tsetse flies. PhD thesis. http://theses.gla.ac.uk/7537/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] Prevalence and associations of Trypanosoma spp. and Sodalis glossinidius with intrinsic factors of tsetse flies Manun Wongserepipatana This thesis is submitted in part fulfilment of the requirements for the Degree of Doctor of Philosophy. Institute of Biodiversity, Animal Health and Comparative Medicine College of Medical, Veterinary and Life Sciences University of Glasgow August 2016 Abstract Trypanosomiasis has been identified as a neglected tropical disease in both humans and animals in many regions of sub-Saharan Africa. Whilst assessments of the biology of trypanosomes, vectors, vertebrate hosts and the environment have provided useful information about life cycles, transmission, and pathogenesis of the parasites that could be used for treatment and control, less information is available about the effects of interactions among multiple intrinsic factors on trypanosome presence in tsetse flies from different sites. It is known that multiple species of tsetse flies can transmit trypanosomes but differences in their vector competence has normally been studied in relation to individual factors in isolation, such as: intrinsic factors of the flies (e.g.
    [Show full text]
  • The Life Cycle of Trypanosoma (Nannomonas) Congolense in the Tsetse Fly Lori Peacock1,2, Simon Cook2,3, Vanessa Ferris1,2, Mick Bailey2 and Wendy Gibson1*
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Peacock et al. Parasites & Vectors 2012, 5:109 http://www.parasitesandvectors.com/content/5/1/109 RESEARCH Open Access The life cycle of Trypanosoma (Nannomonas) congolense in the tsetse fly Lori Peacock1,2, Simon Cook2,3, Vanessa Ferris1,2, Mick Bailey2 and Wendy Gibson1* Abstract Background: The tsetse-transmitted African trypanosomes cause diseases of importance to the health of both humans and livestock. The life cycles of these trypanosomes in the fly were described in the last century, but comparatively few details are available for Trypanosoma (Nannomonas) congolense, despite the fact that it is probably the most prevalent and widespread pathogenic species for livestock in tropical Africa. When the fly takes up bloodstream form trypanosomes, the initial establishment of midgut infection and invasion of the proventriculus is much the same in T. congolense and T. brucei. However, the developmental pathways subsequently diverge, with production of infective metacyclics in the proboscis for T. congolense and in the salivary glands for T. brucei. Whereas events during migration from the proventriculus are understood for T. brucei, knowledge of the corresponding developmental pathway in T. congolense is rudimentary. The recent publication of the genome sequence makes it timely to re-investigate the life cycle of T. congolense. Methods: Experimental tsetse flies were fed an initial bloodmeal containing T. congolense strain 1/148 and dissected 2 to 78 days later. Trypanosomes recovered from the midgut, proventriculus, proboscis and cibarium were fixed and stained for digital image analysis.
    [Show full text]
  • Insights Into the Genome Sequence of a Free-Living Kinetoplastid: Bodo Saltans (Kinetoplastida: Euglenozoa) Andrew P Jackson*, Michael a Quail and Matthew Berriman
    BMC Genomics BioMed Central Research article Open Access Insights into the genome sequence of a free-living Kinetoplastid: Bodo saltans (Kinetoplastida: Euglenozoa) Andrew P Jackson*, Michael A Quail and Matthew Berriman Address: Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK Email: Andrew P Jackson* - [email protected]; Michael A Quail - [email protected]; Matthew Berriman - [email protected] * Corresponding author Published: 9 December 2008 Received: 4 September 2008 Accepted: 9 December 2008 BMC Genomics 2008, 9:594 doi:10.1186/1471-2164-9-594 This article is available from: http://www.biomedcentral.com/1471-2164/9/594 © 2008 Jackson et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Bodo saltans is a free-living kinetoplastid and among the closest relatives of the trypanosomatid parasites, which cause such human diseases as African sleeping sickness, leishmaniasis and Chagas disease. A B. saltans genome sequence will provide a free-living comparison with parasitic genomes necessary for comparative analyses of existing and future trypanosomatid genomic resources. Various coding regions were sequenced to provide a preliminary insight into the bodonid genome sequence, relative to trypanosomatid sequences. Results: 0.4 Mbp of B. saltans genome was sequenced from 12 distinct regions and contained 178 coding sequences. As in trypanosomatids, introns were absent and %GC was elevated in coding regions, greatly assisting in gene finding.
    [Show full text]
  • Haemadipsa Rjukjuana Oka, 1910 (Hirudinida: Arhynchobdellida: Haemadipsidae) in Korea
    �보 문� 韓國土壤動物學會誌 17(1-2) : 14~18 (2013) Korean Journal of Soil Zoology First Record of Blood-Feeding Terrestrial Leech, Haemadipsa rjukjuana Oka, 1910 (Hirudinida: Arhynchobdellida: Haemadipsidae) in Korea Hong-yul Seo, Ye Eun, Tae-seo Park, Ki-gyoung Kim, So-hyun Won1, Baek-jun Kim1, Hye-won Kim1, Joon-seok Chae1 and Takafumi Nakano2,* (Animal Resources Division, National Institute of Biological Resources, Korea 1College of Veterinary Medicine, Seoul National University, Korea 2Department of Zoology, Graduate School of Science, Kyoto University, Japan) 국내 미기록인 흡혈성 산거머리 Haemadipsa rjukjuana Oka, 1910 보고 서홍렬∙은 예∙박태서∙김기경∙원소현1∙김백준1∙김혜원1∙채준석1∙Takafumi Nakano2,* (국립생물자원관 동물자원과, 1서울대학교 수의과대학, 2교토대학교 대학원 동물학과) ABSTRACT The terrestrial leeches from the peripheral island of the Korean Peninsula were identified as Haemadipsa rjukjuana Oka, 1910. The arhynchobdellid family Haemadipsidae and H. rjukjuana are newly added into the Korean leech fauna. This species is blood-feeding leech that attacks birds and medium or large sized mammals primarily, including human. The sequence of mitochondrial cytochrome c subunit I (COI), and the additional biology for this species are presented. This is the first study of terrestrial blood-feeding leeches in Korea. Key words : Hirudinida, Haemadipsidae, Terrestrial leech, Haemadipsa rjukjuana, First record, Korea INTRODUCTION and aquatic environments. Blanchard (1896) established Hae- madipsidae to distinguish blood-feeding terrestrial leeches from Leeches are carnivorous animals of clitellates with a constant their
    [Show full text]
  • Morphological Discordance of the New Trypanosomatid Species Phylogenetically Associated with the Genus Crithidia
    ARTICLE IN PRESS Protist, Vol. 159, 99—114, January 2008 http://www.elsevier.de/protis Published online date 4 October 2007 ORIGINAL PAPER Morphological Discordance of the New Trypanosomatid Species Phylogenetically Associated with the Genus Crithidia Vyacheslav Y. Yurchenkoa, Julius Lukesˇ b, Martina Tesarˇova´ b, Milan Jirku˚ b, and Dmitri A. Maslovc,1 aAlbert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA bBiology Center, Institute of Parasitology, Czech Academy of Sciences, and Faculty of Biology, University of South Bohemia, 37005 Cˇ eske´ Budeˇ jovice (Budweis), Czech Republic cDepartment of Biology, University of California — Riverside, 3401 Watkins Drive, Riverside, CA 92521, USA Submitted April 19, 2007; Accepted July 14, 2007 Monitoring Editor: Michael Melkonian Three new species of monoxenous parasites from the Neotropical Heteroptera are described on the basis of the ultrastructure of cells in culture, as well as gene sequences of Spliced Leader (SL) RNA, glyceraldehyde phosphate dehydrogenase (GAPDH) and small subunit (SSU) rRNA. The results have highlighted a striking discrepancy between the morphological (dis)similarities and the phylogenetic affinities among the insect trypanosomatids. Although each of the new species is characterized by a distinct set of morphological characters, based on the predominant promastigotes observed in culture, each of them has been provisionally assigned to the genus Leptomonas pending the future revision of this genus. Yet, instead of the phylogenetic affinity with the other members of this polyphyletic genus, the new species are most closely related to Crithidia species. Thus, the extremely long promastigotes of Leptomonas acus sp. n. and the unique morphological features found in Leptomonas bifurcata sp.
    [Show full text]
  • INSIGHTS INTO RELATIONSHIPS AMONG RODENT LINEAGES BASED on MITOCHONDRIAL GENOME SEQUENCE DATA a Dissertation by LAURENCE JOHN FR
    INSIGHTS INTO RELATIONSHIPS AMONG RODENT LINEAGES BASED ON MITOCHONDRIAL GENOME SEQUENCE DATA A Dissertation by LAURENCE JOHN FRABOTTA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2005 Major Subject: Zoology INSIGHTS INTO RELATIONSHIPS AMONG RODENT LINEAGES BASED ON MITOCHONDRIAL GENOME SEQUENCE DATA A Dissertation by LAURENCE JOHN FRABOTTA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Rodney L. Honeycutt Committee Members, James B. Woolley John W. Bickham James R. Manhart Head of Department, Vincent M. Cassone December 2005 Major Subject: Zoology iii ABSTRACT Insights into Relationships among Rodent Lineages Based on Mitochondrial Genome Sequence Data. (December 2005) Laurence John Frabotta, B.S.; M.S., California State University, Long Beach Chair of Advisory Committee: Dr. Rodney L. Honeycutt This dissertation has two major sections. In Chapter II, complete mitochondrial (mt DNA) genome sequences were used to construct a hypothesis for affinities of most major lineages of rodents that arose quickly in the Eocene and were well established by the end of the Oligocene. Determining the relationships among extant members of such old lineages can be difficult. Two traditional schemes on subordinal classification of rodents have persisted for over a century, dividing rodents into either two or three suborders, with relationships among families or superfamilies remaining problematic. The mtDNA sequences for four new rodent taxa (Aplodontia, Cratogeomys, Erethizon, and Hystrix), along with previously published Euarchontoglires taxa, were analyzed under parsimony, likelihood, and Bayesian criteria.
    [Show full text]