Tile Based Games
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alvar Aalto's Associative Geometries
Alvar Aalto Researchers’ Network Seminar – Why Aalto? 9-10 June 2017, Jyväskylä, Finland Alvar Aalto’s associative geometries Holger Hoffmann Prof. Dipl.-Ing., Architekt BDA Fay Jones School of Architecture and Design Why Aalto?, 3rd Alvar Aalto Researchers Network Seminar, Jyväskylä 2017 Prof. Holger Hoffmann, Bergische Universität Wuppertal, April 30th, 2017 Paper Proposal ALVAR AALTO‘S ASSOCIATIVE GEOMETRIES This paper, written from a practitioner’s point of view, aims at describing Alvar Aalto’s use of associative geometries as an inspiration for contemporary computational design techniques and his potential influence on a place-specific version of today’s digital modernism. In architecture the introduction of digital design and communication techniques during the 1990s has established a global discourse on complexity and the relation between the universal and the specific. And however the great potential of computer technology lies in the differentiation and specification of architectural solutions, ‘place’ and especially ‘place-form’ has not been of greatest interest since. Therefore I will try to build a narrative that describes the possibilities of Aalto’s “elastic standardization” as a method of well-structured differentiation in relation to historical and contemporary methods of constructing complexity. I will then use a brief geometrical analysis of Aalto’s “Neue Vahr”-building to hint at a potential relation of his work to the concept of ‘difference and repetition’ that is one of the cornerstones of contemporary ‘parametric design’. With the help of two projects (one academic, one professional) I will furthermore try to show the capability of such an approach to open the merely generic formal vocabulary of so-called “parametricism” to contextual or regional necessities in a ‘beyond-digital’ way. -
An Analytical Introduction to Descriptive Geometry
An analytical introduction to Descriptive Geometry Adrian B. Biran, Technion { Faculty of Mechanical Engineering Ruben Lopez-Pulido, CEHINAV, Polytechnic University of Madrid, Model Basin, and Spanish Association of Naval Architects Avraham Banai Technion { Faculty of Mathematics Prepared for Elsevier (Butterworth-Heinemann), Oxford, UK Samples - August 2005 Contents Preface x 1 Geometric constructions 1 1.1 Introduction . 2 1.2 Drawing instruments . 2 1.3 A few geometric constructions . 2 1.3.1 Drawing parallels . 2 1.3.2 Dividing a segment into two . 2 1.3.3 Bisecting an angle . 2 1.3.4 Raising a perpendicular on a given segment . 2 1.3.5 Drawing a triangle given its three sides . 2 1.4 The intersection of two lines . 2 1.4.1 Introduction . 2 1.4.2 Examples from practice . 2 1.4.3 Situations to avoid . 2 1.5 Manual drawing and computer-aided drawing . 2 i ii CONTENTS 1.6 Exercises . 2 Notations 1 2 Introduction 3 2.1 How we see an object . 3 2.2 Central projection . 4 2.2.1 De¯nition . 4 2.2.2 Properties . 5 2.2.3 Vanishing points . 17 2.2.4 Conclusions . 20 2.3 Parallel projection . 23 2.3.1 De¯nition . 23 2.3.2 A few properties . 24 2.3.3 The concept of scale . 25 2.4 Orthographic projection . 27 2.4.1 De¯nition . 27 2.4.2 The projection of a right angle . 28 2.5 The two-sheet method of Monge . 36 2.6 Summary . 39 2.7 Examples . 43 2.8 Exercises . -
Viewing in 3D
Viewing in 3D Viewing in 3D Foley & Van Dam, Chapter 6 • Transformation Pipeline • Viewing Plane • Viewing Coordinate System • Projections • Orthographic • Perspective OpenGL Transformation Pipeline Viewing Coordinate System Homogeneous coordinates in World System zw world yw ModelViewModelView Matrix Matrix xw Tractor Viewing System Viewer Coordinates System ProjectionProjection Matrix Matrix Clip y Coordinates v Front- xv ClippingClipping Wheel System P0 zv ViewportViewport Transformation Transformation ne pla ing Window Coordinates View Specifying the Viewing Coordinates Specifying the Viewing Coordinates • Viewing Coordinates system, [xv, yv, zv], describes 3D objects with respect to a viewer zw y v P v xv •A viewing plane (projection plane) is set up N P0 zv perpendicular to zv and aligned with (xv,yv) yw xw ne pla ing • In order to specify a viewing plane we have View to specify: •P0=(x0,y0,z0) is the point where a camera is located •a vector N normal to the plane • P is a point to look-at •N=(P-P)/|P -P| is the view-plane normal vector •a viewing-up vector V 0 0 •V=zw is the view up vector, whose projection onto • a point on the viewing plane the view-plane is directed up Viewing Coordinate System Projections V u N z N ; x ; y z u x • Viewing 3D objects on a 2D display requires a v v V u N v v v mapping from 3D to 2D • The transformation M, from world-coordinate into viewing-coordinates is: • A projection is formed by the intersection of certain lines (projectors) with the view plane 1 2 3 ª x v x v x v 0 º ª 1 0 0 x 0 º « » « -
On El Lissitzky's Representations of Space
Online Journal of Art and Design volume 3, issue 3, 2015 Scissors versus T-square: on El Lissitzky’s Representations of Space Acalya Allmer Dokuz Eylül University, Turkey [email protected] ABSTRACT The first exhibition of Russian art since the Revolution was held in Berlin at the Van Diemen Gallery in the spring of 1922. In Camilla Gray’s terms it was ‘the most important and the only comprehensive exhibition of Russian abstract art to be seen in the West’ (Gray, 1962:315). The exhibition was organized and arranged by Russian architect El Lissitzky who acted as a link between the Russian avant-garde and that of the west. He played a seminal role especially in Germany, where he had lived before the war and where he was a constant visitor between 1922 and 1928. The diversity of El Lissitzky’s talents in many fields of art including graphic design, painting, and photography made him known as ‘travelling salesman for the avant-garde.’ However, what makes the theoretical and visual works of Lissitzky discontinuous and divergent is that they include apparently contradictory domains. Through his short life by shifting different modes of representations - perspective, axonometry, photomontage - Lissitzky sometimes presented us a number of problems in his irrational way of using the techniques. This article concentrates on his contradictory arguments on representation of space especially between 1920 and 1924, by re-reading his theoretical texts published in the avant-garde magazines of the period and looking through his well-preserved visual works. Keywords: El Lissitzky, representation, space, axonometry, photography, avant-garde 1. -
Squaring the Circle in Panoramas
Squaring the Circle in Panoramas Lihi Zelnik-Manor1 Gabriele Peters2 Pietro Perona1 1. Department of Electrical Engineering 2. Informatik VII (Graphische Systeme) California Institute of Technology Universitat Dortmund Pasadena, CA 91125, USA Dortmund, Germany http://www.vision.caltech.edu/lihi/SquarePanorama.html Abstract and conveying the vivid visual impression of large panora- mas. Such mosaics are superior to panoramic pictures taken Pictures taken by a rotating camera cover the viewing with conventional fish-eye lenses in many respects: they sphere surrounding the center of rotation. Having a set of may span wider fields of view, they have unlimited reso- images registered and blended on the sphere what is left to lution, they make use of cheaper optics and they are not be done, in order to obtain a flat panorama, is projecting restricted to the projection geometry imposed by the lens. the spherical image onto a picture plane. This step is unfor- The geometry of single view point panoramas has long tunately not obvious – the surface of the sphere may not be been well understood [12, 21]. This has been used for mo- flattened onto a page without some form of distortion. The saicing of video sequences (e.g., [13, 20]) as well as for ob- objective of this paper is discussing the difficulties and op- taining super-resolution images (e.g., [6, 23]). By contrast portunities that are connected to the projection from view- when the point of view changes the mosaic is ‘impossible’ ing sphere to image plane. We first explore a number of al- unless the structure of the scene is very special. -
The Agency of Mapping: Speculation, Critique and Invention
IO The Agency of Mapping: Speculation, Critique and Invention JAMES CORNER Mapping is a fantastic cultural project, creating and building the world as much as measuring and describing it. Long affiliated with the planning and design of cities, landscapes and buildings, mapping is particularly instrumental in the construing and constructing of lived space. In this active sense, the function of mapping is less to mirror reality than to engender the re-shaping of the worlds in which people live. While there are countless examples of authoritarian, simplistic, erroneous and coer cive acts of mapping, with reductive effects upon both individuals and environments, I focus in this essay upon more optimistic revisions of mapping practices. 1 These revisions situate mapping as a collective enabling enterprise, a project that both reveals and realizes hidden poten tial. Hence, in describing the 'agency' of mapping, I do not mean to invoke agendas of imperialist technocracy and control but rather to sug gest ways in which mapping acts may emancipate potentials, enrich expe riences aJd diversify worlds. We have been adequately cautioned about mapping as a means of projecting power-knowledge, but what about mapping as a productive and liberating instrument, a world-enriching agent, especially in the design and planning arts? As a creative practice, mapping precipitates its most productive effects through a finding that is also a founding; its agency lies in neither repro duction nor imposition but rather in uncovering realities previously unseen or unimagined, even across seemingly exhausted grounds. Thus, mapping unfolds potential; it re-makes territory over and over again, each time with new and diverse consequences. -
CS 4204 Computer Graphics 3D Views and Projection
CS 4204 Computer Graphics 3D views and projection Adapted from notes by Yong Cao 1 Overview of 3D rendering Modeling: * Topic we’ve already discussed • *Define object in local coordinates • *Place object in world coordinates (modeling transformation) Viewing: • Define camera parameters • Find object location in camera coordinates (viewing transformation) Projection: project object to the viewplane Clipping: clip object to the view volume *Viewport transformation *Rasterization: rasterize object Simple teapot demo 3D rendering pipeline Vertices as input Series of operations/transformations to obtain 2D vertices in screen coordinates These can then be rasterized 3D rendering pipeline We’ve already discussed: • Viewport transformation • 3D modeling transformations We’ll talk about remaining topics in reverse order: • 3D clipping (simple extension of 2D clipping) • 3D projection • 3D viewing Clipping: 3D Cohen-Sutherland Use 6-bit outcodes When needed, clip line segment against planes Viewing and Projection Camera Analogy: 1. Set up your tripod and point the camera at the scene (viewing transformation). 2. Arrange the scene to be photographed into the desired composition (modeling transformation). 3. Choose a camera lens or adjust the zoom (projection transformation). 4. Determine how large you want the final photograph to be - for example, you might want it enlarged (viewport transformation). Projection transformations Introduction to Projection Transformations Mapping: f : Rn Rm Projection: n > m Planar Projection: Projection on a plane. -
Perspective Projection
Transform 3D objects on to a 2D plane using projections 2 types of projections Perspective Parallel In parallel projection, coordinate positions are transformed to the view plane along parallel lines. In perspective projection, object position are transformed to the view plane along lines that converge to a point called projection reference point (center of projection) 2 Perspective Projection 3 Parallel Projection 4 PROJECTIONS PARALLEL PERSPECTIVE (parallel projectors) (converging projectors) One point Oblique Orthographic (one principal (projectors perpendicular (projectors not perpendicular to vanishing point) to view plane) view plane) Two point General (Two principal Multiview Axonometric vanishing point) (view plane parallel (view plane not parallel to Cavalier principal planes) to principal planes) Three point (Three principal Cabinet vanishing point) Isometric Dimetric Trimetric 5 Perspective v Parallel • Perspective: – visual effect is similar to human visual system... – has 'perspective foreshortening' • size of object varies inversely with distance from the center of projection. Projection of a distant object are smaller than the projection of objects of the same size that are closer to the projection plane. • Parallel: It preserves relative proportion of object. – less realistic view because of no foreshortening – however, parallel lines remain parallel. 6 Perspective Projections • Characteristics: • Center of Projection (CP) is a finite distance from object • Projectors are rays (i.e., non-parallel) • Vanishing points • Objects appear smaller as distance from CP (eye of observer) increases • Difficult to determine exact size and shape of object • Most realistic, difficult to execute 7 • When a 3D object is projected onto view plane using perspective transformation equations, any set of parallel lines in the object that are not parallel to the projection plane, converge at a vanishing point. -
Maps and Meanings: Urban Cartography and Urban Design
Maps and Meanings: Urban Cartography and Urban Design Julie Nichols A thesis submitted in fulfilment of the requirements of the degree of Doctor of Philosophy The University of Adelaide School of Architecture, Landscape Architecture and Urban Design Centre for Asian and Middle Eastern Architecture (CAMEA) Adelaide, 20 December 2012 1 CONTENTS CONTENTS.............................................................................................................................. 2 ABSTRACT .............................................................................................................................. 4 ACKNOWLEDGEMENT ....................................................................................................... 6 LIST OF FIGURES ................................................................................................................. 7 INTRODUCTION: AIMS AND METHOD ........................................................................ 11 Aims and Definitions ............................................................................................ 12 Research Parameters: Space and Time ................................................................. 17 Method .................................................................................................................. 21 Limitations and Contributions .............................................................................. 26 Thesis Layout ....................................................................................................... 28 -
189 09 Aju 03 Bryon 8/1/10 07:25 Página 31
189_09 aju 03 Bryon 8/1/10 07:25 Página 31 Measuring the qualities of Choisy’s oblique and axonometric projections Hilary Bryon Auguste Choisy is renowned for his «axonometric» representations, particularly those illustrating his Histoire de l’architecture (1899). Yet, «axonometric» is a misnomer if uniformly applied to describe Choisy’s pictorial parallel projections. The nomenclature of parallel projection is often ambiguous and confusing. Yet, the actual history of parallel projection reveals a drawing system delineated by oblique and axonometric projections which relate to inherent spatial differences. By clarifying the intrinsic demarcations between these two forms of parallel pro- jection, one can discern that Choisy not only used the two spatial classes of pictor- ial parallel projection, the oblique and the orthographic axonometric, but in fact manipulated their inherent differences to communicate his theory of architecture. Parallel projection is a form of pictorial representation in which the projectors are parallel. Unlike perspective projection, in which the projectors meet at a fixed point in space, parallel projectors are said to meet at infinity. Oblique and axonometric projections are differentiated by the directions of their parallel pro- jectors. Oblique projection is delineated by projectors oblique to the plane of pro- jection, whereas the orthographic axonometric projection is defined by projectors perpendicular to the plane of projection. Axonometric projection is differentiated relative to its angles of rotation to the picture plane. When all three axes are ro- tated so that each is equally inclined to the plane of projection, the axonometric projection is isometric; all three axes are foreshortened and scaled equally. -
Smart Sketch System for 3D Reconstruction Based Modeling
Smart Sketch System for 3D Reconstruction Based Modeling Ferran Naya1, Julián Conesa2, Manuel Contero1, Pedro Company3, Joaquim Jorge4 1 DEGI - ETSII, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain {fernasan, mcontero}@degi.upv.es 2 DEG, Universidad Politécnica de Cartagena, C/ Dr. Fleming 30202 Cartagena, Spain [email protected] 3 Departamento de Tecnología, Universitat Jaume I de Castellón, Campus Riu Sec 12071 Castellón, Spain [email protected] 4 Engª. Informática, IST, Av.Rovisco Pais 1049-001 Lisboa, Portugal [email protected] Abstract. Current user interfaces of CAD systems are still not suited to the ini- tial stages of product development, where freehand drawings are used by engi- neers and designers to express their visual thinking. In order to exploit these sketching skills, we present a sketch based modeling system, which provides a reduced instruction set calligraphic interface to create orthogonal polyhedra, and an extension of them we named quasi-normalons. Our system allows users to draw lines on free-hand axonometric-like drawings, which are automatically tidied and beautified. These line drawings are then converted into a three- dimensional model in real time because we implemented a fast reconstruction process, suited for quasi-normalon objects and so-called axonometric inflation method, providing in this way an innovative integrated 2D sketching and 3D view visualization work environment. 1 Introduction User interfaces of most CAD applications are based on the WIMP (Windows, Icons, Menus and Pointing) paradigm, that is not enough flexible to support sketching activi- ties in the conceptual design phase. Recently, work on sketch-based modeling has looked at a paradigm shift to change the way geometric modeling applications are built, in order to focus on user-centric systems rather than systems that are organized around the details of geometry representation. -
Axonometry New Practical Graphical Methods for Determining System Parameters
PSYCHOLOGY AND EDUCATION (2021) 58(2): 5710-5718 ISSN: 00333077 Axonometry New Practical Graphical Methods For Determining System Parameters Malikov Kozim Gafurovich Senior Lecturer, Department of Engineering Graphics and Teaching Methods, Tashkent State Pedagogical University named after Nizami Abstract Some practical graphical method of determining the coefficients of variation and angles between them, which are the main parameters of the axonometric system, first describes the development of a model for generating axonometric projections and using it to determine the basic parameters of axonometry graphically. Key words: Axonometry, isometry, projection, transformation, parallel, plane, perpendicular, horizontal, bisector plane. Article Received: 18 October 2020, Revised: 3 November 2020, Accepted: 24 December 2020 Introduction. shortened, the angular values between them do not The practical graphical method of determining the change, and the triangle of traces is an equilateral coefficients of variation of the axes of the triangle, as noted above, described in the Q plane axonometric system and the angles between them in their true magnitude. has not been raised as a problem until now [1]. Therefore, all elements of isometry, i.e. Because the results obtained were graphic works axonometric axes, are reduced to a theoretically performed manually, they were approximately 0.5- determined coefficient of variation of 81.6496 mm 1 mm accurate. Therefore, graphical methods were and the angular values between them are described of great importance