Axonometry New Practical Graphical Methods for Determining System Parameters

Total Page:16

File Type:pdf, Size:1020Kb

Axonometry New Practical Graphical Methods for Determining System Parameters PSYCHOLOGY AND EDUCATION (2021) 58(2): 5710-5718 ISSN: 00333077 Axonometry New Practical Graphical Methods For Determining System Parameters Malikov Kozim Gafurovich Senior Lecturer, Department of Engineering Graphics and Teaching Methods, Tashkent State Pedagogical University named after Nizami Abstract Some practical graphical method of determining the coefficients of variation and angles between them, which are the main parameters of the axonometric system, first describes the development of a model for generating axonometric projections and using it to determine the basic parameters of axonometry graphically. Key words: Axonometry, isometry, projection, transformation, parallel, plane, perpendicular, horizontal, bisector plane. Article Received: 18 October 2020, Revised: 3 November 2020, Accepted: 24 December 2020 Introduction. shortened, the angular values between them do not The practical graphical method of determining the change, and the triangle of traces is an equilateral coefficients of variation of the axes of the triangle, as noted above, described in the Q plane axonometric system and the angles between them in their true magnitude. has not been raised as a problem until now [1]. Therefore, all elements of isometry, i.e. Because the results obtained were graphic works axonometric axes, are reduced to a theoretically performed manually, they were approximately 0.5- determined coefficient of variation of 81.6496 mm 1 mm accurate. Therefore, graphical methods were and the angular values between them are described of great importance in their time, although they as 1200. The triangle of traces is also depicted in could not compete with analytical methods for real terms with sides of 141.4214 mm. high-precision results. Figure 2 shows a dimetric representation of the In one of his collections, Monge compared his Cartesian coordinate system when the axonometric creative research and applied stereometry to Y axis is at an angle of 61 52'28 '' to the plane of planametry, telling his colleague Oliver: I would the axonometric projection plane Q, and its tip suggest that the solution of these examples be done touches Q [2]. by means of graphical constructions. Students In this case, the trace triangle of the Cartesian would be amazed to see the accuracy and ease of system is depicted at an angle of 26 46'42 '' to the the second column's solutions and proofs. ” plane Q. For now, in the development of science and The analysis of the elements of dimetry formed by technology, we will consider the graphical the applied graphical method showed that they are definition of the above problem, as the creation of equivalent to the parameters determined by the graphics using information and computer theoretical analytical method. The coefficients of technology, for example, in Auto CAD provides variation were 0.9428 along the X and Z axes and very high accuracy (0.00000001-one hundred 0.4714 along the Y axis, and the angles between million). the axes were ∠XOZ = ∠YOZ = 131 25'36 '' and In Fig. 1, the plane of axonometric projections Q ∠XOY = 97 10'54 ''. And the trace triangle and the coordinates in space are 100 mm long and showed that the length of the base of an equilateral intersect at a homogeneous angle 35 15'52 '', the triangle is 141.4214 mm and the length of the sides Cartesian coordinate plane system intersects to of an equilateral triangle is 131.6197 mm. form a triangle of Gaussian traces. The resulting Figure 3 shows a triangle of traces formed by the axonometric projection is isometry, in which the intersection of the plane of axonometric axonometric axes from one point-coordinates are projections Q with the Cartesian system in space. 5710 www.psychologyandeducation.net PSYCHOLOGY AND EDUCATION (2021) 58(2): 5710-5718 ISSN: 00333077 It was observed that all the parameters of the the Y axis was visible, and the equilateral sides of dimetry did not change and the upper right part of the triangle of traces formed were 106.9341 mm. Figure 1 Figure 2 Figure 3 Thus, the Auto CAD program, which is a modern graphics program, has sufficient right-angled projections of objects. Such attempts capabilities to determine the coefficients of have been made by many scientists and variation of the axes of the axonometric system researchers. Of particular importance is the and the angles between them in a practical construction of standard axonometrics in the graphical way. method of additional right-angled projection, The main part developed by Kolotov. In determining the standard axonometric The first essence of this method is that the parameters using the auxiliary right-angled projections of geometric figures given in an projection method, we obtained the Moon axis at arbitrary situation are intended to construct and an angle of 35 15'52 'and 61 52'28' 'to the bring to a point their true appearance or length or axonometric plane, respectively, in the graphical size by depicting them in a new projection determination of the basic parameters of the direction at right angles to an imaginary plane standard isometry and dimetry. parallel or perpendicular to them in thought space. We consider that the above standard axonometric parameters can also be determined directly using Figure 4 In this case, the new projection Also, the second essence of this method direction s is obtained perpendicular to the is the indirect representation - transformation of imaginary plane R bounded by the dashed lines: all points of the thought plane R and the figures s ⊥ R. lying in it to the V plane. In this case, the plane R is located on the plane V as R1 - it merges. 5711 www.psychologyandeducation.net PSYCHOLOGY AND EDUCATION (2021) 58(2): 5710-5718 ISSN: 00333077 To understand the content and essence frontal position. The frontal projections of the of this method, let’s take an AV cut in an intersection ends intersect with the connecting arbitrary situation and take a creative approach lines passing through A1 'and V1' and the arcs of to determining its true length, Figure 4. Some radius RXA 'and RXV' passing through the A and sources have shown that this problem can be B ends of the section in space to form the frontal solved using the auxiliary right-angled projections A1 "and V1". In the plane V, the projection method. Since this method is rare in projections of these arcs are straight lines A "A1" most publications published in recent years, we and V "V1" parallel to s ''. will consider it in a clear picture and drawing 2. Since the plane R is a horizontal [3,3,4]. projection, for indirect projection-transformation of the AV section is carried out with R and V and This problem is solved by the following using the bisector plane (Qbis) of the planes R1, algorithm based on the content and essence of which are expected to be placed on V as follows: this method: 2.1. The trace of the bisector plane is 1. According to the property of parallel drawn by dividing QbisN by R and the angle projections, if the AV cross-section is projected between the horizontal traces of the planes R1 and onto a plane parallel to it, it is described in this V, which are expected to be located. In the plane at its true length. Based on this, the new drawing, the trace of this plane is the line QbisN, projection direction s (s ', s ") perpendicular to it is the bisector line dividing the angle between Rn determined by passing the plane R in the and Vn and the horizontal R1n of R1, which is projection position through the AV section (or expected to lie on top of it (Vn≡R1n). parallel to it). For example, if the R plane passes 3. To place all points of the plane R through the AV section, A'V' ≡ RN and s' ⊥ RN; s and itself in the plane V as R1, a new projection "⊥ will be RV, Fig. 5. The thought R forms a two- light direction perpendicular to the plane R is sided angle with the edge RV, with the plane V projected along the s (s', s' ') to the bisector plane and the position itself being V1 to R1. of its points, and then to the plane V in the If this R plane is joined to the V plane direction of the returning light. using the rotation method, then all the lying This can be seen in the example of point A geometric figures, especially the AV cross-section in Figure 5. However, in the method of rotation of and the bounded scale itself, will be depicted in the point A, it was noted in detail above that the real V1 plane. To do this, the plane R is rotated position A1 "is determined by rotating it around around its frontal trace (as the axis of rotation) and Rv and joining it with V. A new projection of merged with the plane V. As a result, the actual point A in the direction of light s (s', s' ') at an length of the AV section lying in it is described in angle d to the bisector plane, then The projection A1'V1 ': A1'V1' ≡ AV. Because its ends A1 'and returned from point D 'is projected onto the plane V1' are placed on V using arcs of radius RXA 'and V using light directions. RXV'. Then the AV cross section comes to the 5712 www.psychologyandeducation.net PSYCHOLOGY AND EDUCATION (2021) 58(2): 5710-5718 ISSN: 00333077 Figure 5 In this case, the direction of the projection the return light from it at an equal angle: ⊥ A1 light returning to D'A1 'is parallel to the main "V1"; projection direction in the drawing, since the plane 3.
Recommended publications
  • On El Lissitzky's Representations of Space
    Online Journal of Art and Design volume 3, issue 3, 2015 Scissors versus T-square: on El Lissitzky’s Representations of Space Acalya Allmer Dokuz Eylül University, Turkey [email protected] ABSTRACT The first exhibition of Russian art since the Revolution was held in Berlin at the Van Diemen Gallery in the spring of 1922. In Camilla Gray’s terms it was ‘the most important and the only comprehensive exhibition of Russian abstract art to be seen in the West’ (Gray, 1962:315). The exhibition was organized and arranged by Russian architect El Lissitzky who acted as a link between the Russian avant-garde and that of the west. He played a seminal role especially in Germany, where he had lived before the war and where he was a constant visitor between 1922 and 1928. The diversity of El Lissitzky’s talents in many fields of art including graphic design, painting, and photography made him known as ‘travelling salesman for the avant-garde.’ However, what makes the theoretical and visual works of Lissitzky discontinuous and divergent is that they include apparently contradictory domains. Through his short life by shifting different modes of representations - perspective, axonometry, photomontage - Lissitzky sometimes presented us a number of problems in his irrational way of using the techniques. This article concentrates on his contradictory arguments on representation of space especially between 1920 and 1924, by re-reading his theoretical texts published in the avant-garde magazines of the period and looking through his well-preserved visual works. Keywords: El Lissitzky, representation, space, axonometry, photography, avant-garde 1.
    [Show full text]
  • The Agency of Mapping: Speculation, Critique and Invention
    IO The Agency of Mapping: Speculation, Critique and Invention JAMES CORNER Mapping is a fantastic cultural project, creating and building the world as much as measuring and describing it. Long affiliated with the planning and design of cities, landscapes and buildings, mapping is particularly instrumental in the construing and constructing of lived space. In this active sense, the function of mapping is less to mirror reality than to engender the re-shaping of the worlds in which people live. While there are countless examples of authoritarian, simplistic, erroneous and coer­ cive acts of mapping, with reductive effects upon both individuals and environments, I focus in this essay upon more optimistic revisions of mapping practices. 1 These revisions situate mapping as a collective enabling enterprise, a project that both reveals and realizes hidden poten­ tial. Hence, in describing the 'agency' of mapping, I do not mean to invoke agendas of imperialist technocracy and control but rather to sug­ gest ways in which mapping acts may emancipate potentials, enrich expe­ riences aJd diversify worlds. We have been adequately cautioned about mapping as a means of projecting power-knowledge, but what about mapping as a productive and liberating instrument, a world-enriching agent, especially in the design and planning arts? As a creative practice, mapping precipitates its most productive effects through a finding that is also a founding; its agency lies in neither repro­ duction nor imposition but rather in uncovering realities previously unseen or unimagined, even across seemingly exhausted grounds. Thus, mapping unfolds potential; it re-makes territory over and over again, each time with new and diverse consequences.
    [Show full text]
  • Maps and Meanings: Urban Cartography and Urban Design
    Maps and Meanings: Urban Cartography and Urban Design Julie Nichols A thesis submitted in fulfilment of the requirements of the degree of Doctor of Philosophy The University of Adelaide School of Architecture, Landscape Architecture and Urban Design Centre for Asian and Middle Eastern Architecture (CAMEA) Adelaide, 20 December 2012 1 CONTENTS CONTENTS.............................................................................................................................. 2 ABSTRACT .............................................................................................................................. 4 ACKNOWLEDGEMENT ....................................................................................................... 6 LIST OF FIGURES ................................................................................................................. 7 INTRODUCTION: AIMS AND METHOD ........................................................................ 11 Aims and Definitions ............................................................................................ 12 Research Parameters: Space and Time ................................................................. 17 Method .................................................................................................................. 21 Limitations and Contributions .............................................................................. 26 Thesis Layout ....................................................................................................... 28
    [Show full text]
  • 189 09 Aju 03 Bryon 8/1/10 07:25 Página 31
    189_09 aju 03 Bryon 8/1/10 07:25 Página 31 Measuring the qualities of Choisy’s oblique and axonometric projections Hilary Bryon Auguste Choisy is renowned for his «axonometric» representations, particularly those illustrating his Histoire de l’architecture (1899). Yet, «axonometric» is a misnomer if uniformly applied to describe Choisy’s pictorial parallel projections. The nomenclature of parallel projection is often ambiguous and confusing. Yet, the actual history of parallel projection reveals a drawing system delineated by oblique and axonometric projections which relate to inherent spatial differences. By clarifying the intrinsic demarcations between these two forms of parallel pro- jection, one can discern that Choisy not only used the two spatial classes of pictor- ial parallel projection, the oblique and the orthographic axonometric, but in fact manipulated their inherent differences to communicate his theory of architecture. Parallel projection is a form of pictorial representation in which the projectors are parallel. Unlike perspective projection, in which the projectors meet at a fixed point in space, parallel projectors are said to meet at infinity. Oblique and axonometric projections are differentiated by the directions of their parallel pro- jectors. Oblique projection is delineated by projectors oblique to the plane of pro- jection, whereas the orthographic axonometric projection is defined by projectors perpendicular to the plane of projection. Axonometric projection is differentiated relative to its angles of rotation to the picture plane. When all three axes are ro- tated so that each is equally inclined to the plane of projection, the axonometric projection is isometric; all three axes are foreshortened and scaled equally.
    [Show full text]
  • Architecture Program Report 7 September 2015
    ARCHITECTURE PROGRAM REPORT FOR THE NATIONAL ARCHITECTURAL ACCREDITATION BOARD 7 SEPTEMBER 2015 THE IRWIN S. CHANIN SCHOOL OF ARCHITECTURE THE COOPER UNION FOR THE ADVANCEMENT OF SCIENCE AND ART NADER TEHRANI, DEAN ELIZABETH O’DONNELL, ASSOCIATE DEAN The Irwin S. Chanin School of Architecture of the Cooper Union Architecture Program Report September 2015 The Cooper Union for the Advancement of Science and Art The Irwin S. Chanin School of Architecture Architecture Program Report for 2016 NAAB Visit for Continuing Accreditation Bachelor of Architecture (160 credits) Year of the Previous Visit: 2010 Current Term of Accreditation: From the VTR dated July 27, 2010 “The accreditation term is effective January 1, 2010. The Program is scheduled for its next accreditation visit in 2016.” Submitted to: The National Architectural Accrediting Board Date: 7 September 2015 The Irwin S. Chanin School of Architecture of the Cooper Union Architecture Program Report September 2015 Program Administrator: Nader Tehrani, Dean and Professor Chief administrator for the academic unit in which the Program is located: Nader Tehrani, Dean and Professor Chief Academic Officer of the Institution: NA President of the Institution: William Mea, Acting President Individual submitting the Architecture Program Report: Nader Tehrani, Dean and Professor Name of individual to whom questions should be directed: Elizabeth O’Donnell, Associate Dean and Professor (proportional-time) The Irwin S. Chanin School of Architecture of the Cooper Union Architecture Program Report September 2015 Section Page Section 1. Program Description I.1.1 History and Mission I.1.2 Learning Culture I.1.3 Social Equity I.1.4 Defining Perspectives I.1.5 Long Range Planning I.1.6 Assessment Section 2.
    [Show full text]
  • Advanced Geosimulation Models
    Advanced Geosimulation Models Editors Danielle J. Marceau University of Calgary Canada & Itzhak Benenson Tel-Aviv University Israel eBooks End User License Agreement Please read this license agreement carefully before using this eBook. Your use of this eBook/chapter constitutes your agreement to the terms and conditions set forth in this License Agreement. Bentham Science Publishers agrees to grant the user of this eBook/chapter, a non-exclusive, nontransferable license to download and use this eBook/chapter under the following terms and conditions: 1. This eBook/chapter may be downloaded and used by one user on one computer. The user may make one back-up copy of this publication to avoid losing it. The user may not give copies of this publication to others, or make it available for others to copy or download. For a multi-user license contact [email protected] 2. All rights reserved: All content in this publication is copyrighted and Bentham Science Publishers own the copyright. You may not copy, reproduce, modify, remove, delete, augment, add to, publish, transmit, sell, resell, create derivative works from, or in any way exploit any of this publication’s content, in any form by any means, in whole or in part, without the prior written permission from Bentham Science Publishers. 3. The user may print one or more copies/pages of this eBook/chapter for their personal use. The user may not print pages from this eBook/chapter or the entire printed eBook/chapter for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained from the publisher for such requirements.
    [Show full text]
  • Adaptive Façades Architecture
    Adaptive Façades An Integrated Algorithmic Approach Helena Luísa Freitas Martinho Thesis to obtain the Master of Science Degree in Architecture Supervisors: Prof. Dr. António Paulo Teles de Menezes Correia Leitão Prof. Dr. Miguel José das Neves Pires Amado Examination Committee Chairperson: Prof. Dr. Ana Paula Filipe Tomé Advisor: Prof. Dr. António Paulo Teles de Menezes Correia Leitão Member of the Committee: Prof. Manuel de Arriaga Brito Correia Guedes May 2019 Declaration I declare that this document is an original work of my own authorship and that it fulfills all the requirements of the Code of Conduct and Good Practices of the Universidade de Lisboa. Acknowledgments I would like to begin by leaving a word of appreciation for the person that made all of this work possible. To my supervisor, António Menezes Leitão, for the constant guidance and encouragement along this journey. To my co-supervisor, Miguel Pires Amado, for agreeing to be part of this work. To Roel Loonen, for the inspiring discussions that instigated my interest over this topic. To my fellow members of ADA, for the precious feedback and advice. A special acknowledgment to José, Catarina, Inês, and Renata, for the everlasting patience and wonderful company. To my parents, for the unconditional love and support. And most of all, to Ignacio, for believing in me whenever I couldn’t. To each and every one of you - thank you. This work was supported by national funds through Fundação para a Ciência e a Tecnologia (FCT) with references UID/CEC/50021/2019 and PTDC/ART-DAQ/31061/2017. i Abstract The concept of architectural performance comprises an understanding of the interaction between the built and natural environments.
    [Show full text]
  • Download Download
    O'SHAUNGHNESSY | The 1866 Vercoe and Harding map and the axonometric: the object of subjective representation AHA: Architectural History Aotearoa (2010) vol 7:58-65 The 1866 Vercoe and Harding map and the axonometric: the object of subjective representation Katherine O'Shaunghnessy ABSTRACT: The 1866 Vercoe and Harding map of Auckland provides a visual description of colonial development during the 1860s. This map is a static representation of the past and the backdrop to an exploration of the site via architectural drawing. This paper outlines the process of excavating a site through axonometric drawing looking specifically at an area within Freemans Bay. It explains how the two dimensional Vercoe and Harding map has been extruded into a three dimensional representation of the site. The idea of the map as a subjective representation of the past will be explored alongside the use of what might be considered an objective drawing type to create a subjective visualization of the site. The paper will investigate the process of creating this axonometric and the way in which this drawing relies on both historical fact and historical assumption. It will address how this process produces an understanding of the site, namely, the ability to translate each building based on the simple outline of its plan. This paper is part of a wider investigation into the documentation of heritage sites and the use of drawing to create an understanding of place. Thus, this drawing alone does not create this awareness of place, but rather, informs a new understanding of the 1866 map and a representation of what Freemans Bay might have been during the 1860s.
    [Show full text]
  • Measuring a Changing Mountain a Challenging Mission to New Zealand’S Highest Peak
    A Publication for Geospatial Professionals • Issue 2014-2 Measuring a Changing Mountain A Challenging Mission to New Zealand’s Highest Peak Flying Over Canada’s Oil Patch Bright Ideas for Solar Energy New Applications for Image Analysis The Next Disruptor technology&more technology&more Welcome to Technology&more! Deartechnology&more Readers, I am always impressed by the variety of people, places and opportunities • NEW ZEALAND pg. 1 that make up the world of geospatial information. Working in far corners and High Altitude widely varied environments of the planet, Measurements geospatial professionals are in a unique position to capture and share information about our environment, history and achievments. It’s a compelling and fasci- nating business. • UNITED STATES pg. 6 In this issue of Technology&more, we present stories that illustrate the broad A New Angle on impact that geospatial technologies have Chris Gibson: Vice President Scanning on the professional and social world. The stories show how ingenuity and flexibility combine with multiple technologies to produce new, sometimes unexpected, approaches to meeting the needs of our clients and projects. We’ll travel to the highest mountain in the Southern Alps to see how a team of university researchers respected indigenous traditions while gathering essential • SPAIN pg. 8 geospatial information. In a visit to Spain, we meet an archaeologist who takes advantage of measurement, communications and information Modern Archaeology management technologies to provide powerful new tools for research- ers in archaeology and paleontology. Near Chicago, we meet a surveyor who turns things upside down in using 3D scanning. The results provide information that will help project managers and contractors avoid surprises on a complex water project far underground.
    [Show full text]
  • Axonometry and New Design of Bauhaus
    Journal for Geometry and Graphics Volume 11 (2007), No. 1, 73{82. Axonometry and New Design of Bauhaus Michio Kato General System Studies, Graduate School of International and Interdisciplinary Studies The University of Tokyo 3-8-1, Komaba, Meguro City, 153-8902, Tokyo, Japan email: [email protected] Abstract. In this paper we analyze and clarify the relationship between the use of axonometry and the new design tendency of Bauhaus. First we analyze the three characteristics of axonometry: 1) an image of appearance and an image of objects themselves | their ambivalence, 2) a tendency from a limited world with a human center to one already ¯xed in¯nite world of objects, 3) engineer's language. Then we analyze the new design of Bauhaus, we point out the following three characteristics corresponding to axonometry: 1) from an image of appearance to an image of objects themselves, 2) co-existence of a limited world with a human center and one already ¯xed in¯nite world of objects, 3) a tendency toward seeing a building as a `machine'. In short, the main characteristic of axonometry as a visualization tool is the ob- jecti¯cation of vision. This tendency is less explicit in isometric projection, which is one of orthogonal projections having characteristics similar to perspective, than in military projection which does not simulate individual's view, as this paper clari¯es. Bauhaus in the early years maintained an individual's subjective, indi- vidual vision by using isometric projection. On the contrary, other contemporary modernists such as De Stijl used only military projection.
    [Show full text]
  • Spatial Visualization and Leadership in Teaching Multiview Orthographic Projection: an Alternative to the Glass Box
    Western Michigan University ScholarWorks at WMU Dissertations Graduate College 4-1992 Spatial Visualization and Leadership in Teaching Multiview Orthographic Projection: An Alternative to the Glass Box Mark A. Curtis Western Michigan University Follow this and additional works at: https://scholarworks.wmich.edu/dissertations Part of the Educational Assessment, Evaluation, and Research Commons Recommended Citation Curtis, Mark A., "Spatial Visualization and Leadership in Teaching Multiview Orthographic Projection: An Alternative to the Glass Box" (1992). Dissertations. 1936. https://scholarworks.wmich.edu/dissertations/1936 This Dissertation-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Dissertations by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. SPATIAL VISUALIZATION AND LEADERSHIP IN TEACHING MULTIVIEW ORTHOGRAPHIC PROJECTION: AN ALTERNATIVE TO THE GLASS BOX by Mark A. Curtis A Dissertation Submitted to the Faculty of The Graduate College in partial fulfillment of the requirements for the Degree of Doctor of Education Department of Educational Leadership Western Michigan University Kalamazoo, Michigan April 1992 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. SPATIAL VISUALIZATION AND LEADERSHIP IN TEACHING MULTIVIEW ORTHOGRAPHIC PROJECTION: AN ALTERNATIVE TO THE GLASS BOX Mark A. Curtis, Ed.D. Western Michigan University, 1992 The purpose of this study was to compare the effectiveness of using one instructional method versus another in teaching multiview orthographic projection to college students possessing varied spa­ tial visualization abilities. Two instructional methods were used: (1) the traditional hinged glass box method and (2) an unconven­ tional method in which an object is placed in the middle of a bowl/ hemispheric shape where the front view of the object is seen by looking directly into the bowl.
    [Show full text]
  • The Parallel Projection, As Flights of Fancy
    Portland State University PDXScholar Proceedings of the 18th National Conference on the Architecture Beginning Design Student 2002 The aP rallel Projection, as Flights of Fancy Mary Nixon University of Pennsylvania Let us know how access to this document benefits ouy . Follow this and additional works at: http://pdxscholar.library.pdx.edu/arch_design Part of the Architecture Commons, and the Art and Design Commons Recommended Citation Nixon, Mary, "The aP rallel Projection, as Flights of Fancy" (2002). Proceedings of the 18th National Conference on the Beginning Design Student. Paper 37. http://pdxscholar.library.pdx.edu/arch_design/37 This Article is brought to you for free and open access. It has been accepted for inclusion in Proceedings of the 18th National Conference on the Beginning Design Student by an authorized administrator of PDXScholar. For more information, please contact [email protected]. 1111 18th National Conference on the Beginning Design Student Portland. Oregon . 2002 The parallel projection, as flights of fancy Mary Nixon University of Pennsylvania The poet's eye, in a fine frenzy rolling, Doth glance from includes the families of axonometrics, isometrics (having iden­ heaven to earth, from earth to heaven; And as imagina­ tical standard measurement in all three axes), dimetrics (in tion bodies forth The forms of things unknown, the two axes), trimetrics (in none of the three axes), and obliques. poet's pen Tums them to shapes, and gives to airy noth­ They are all variations on the same theme. "Parallel lines 1 ing A local habitation and a name. remain parallel in parallel projections, while they converge to William Shakespeare, through Theseus, beautifully describes vanishing points in (central projections or) perspectives."4 this creative method of the poet.
    [Show full text]