Enzymatic Characterization of Wild-Type and Mutant Janus Kinase 1

Total Page:16

File Type:pdf, Size:1020Kb

Enzymatic Characterization of Wild-Type and Mutant Janus Kinase 1 cancers Article Enzymatic Characterization of Wild-Type and Mutant Janus Kinase 1 Nicholas P. D. Liau 1,2,* , Artem Laktyushin 1,2, Rhiannon Morris 1,2 , Jarrod J. Sandow 1,2, Nicos A. Nicola 1,2 , Nadia J. Kershaw 1,2 and Jeffrey J. Babon 1,2,* 1 Walter and Eliza Hall Institute, 1G Royal Parade, Parkville 3052, VIC, Australia; [email protected] (A.L.); [email protected] (R.M.); [email protected] (J.J.S.); [email protected] (N.A.N.); [email protected] (N.J.K.) 2 Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville 3050, VIC, Australia * Correspondence: [email protected] (N.P.D.L.); [email protected] (J.J.B.); Tel.: +61-3-93452960 (N.P.D.L.); Fax: +61-3-93470852 (J.J.B.) Received: 4 October 2019; Accepted: 22 October 2019; Published: 1 November 2019 Abstract: Janus kinases (JAKs) are found constitutively associated with cytokine receptors and are present in an inactive state prior to cytokine exposure. Activating mutations of JAKs are causative for a number of leukemias, lymphomas, and myeloproliferative diseases. In particular, the JAK2V617F mutant is found in most human cases of polycythemia vera, a disease characterized by over-production of erythrocytes. The V617F mutation is found in the pseudokinase domain of JAK2 and it leads to cytokine-independent activation of the kinase, as does the orthologous mutation in other JAK-family members. The mechanism whereby this mutation hyperactivates these kinases is not well understood, primarily due to the fact that the full-length JAK proteins are difficult to produce for structural and kinetic studies. Here we have overcome this limitation to perform a series of enzymatic analyses on full-length JAK1 and its constitutively active mutant form (JAK1V658F). Consistent with previous studies, we show that the presence of the pseudokinase domain leads to a dramatic decrease in enzymatic activity with no further decrease from the presence of the FERM or SH2 domains. However, we find that the mutant kinase, in vitro, is indistinguishable from the wild-type enzyme in every measurable parameter tested: KM (ATP), KM (substrate), kcat, receptor binding, thermal stability, activation rate, dephosphorylation rate, and inhibitor affinity. These results show that the V658F mutation does not enhance the intrinsic enzymatic activity of JAK. Rather this data is more consistent with a model in which there are cellular processes and interactions that prevent JAK from being activated in the absence of cytokine and it is these constraints that are affected by disease-causing mutations. Keywords: jak; jak/stat; myeloproliferative disease; v617f; jak; jak/stat; myeloproliferative disease; v617f 1. Introduction Cytokines that signal through the JAK/STAT pathway are important modulators of hematopoiesis, inflammation, and the immune response [1,2]. Cytokines are small secreted proteins that bind to the extracellular domains of specific receptors on the surface of target cells to initiate a cytokine-specific transcriptional program. Cytokine receptors lack intrinsic kinase domains and so rely on the constitutively associated Janus kinases (JAKs) to phosphorylate downstream substrates and initiate the signaling cascade [3]. JAKs phosphorylate tyrosine residues on the cytoplasmic domains of the receptors to which they are attached, and these newly phosphorylated sites recruit downstream effector proteins and transcription factors, the most important of which are the signal transducers and Cancers 2019, 11, 1701; doi:10.3390/cancers11111701 www.mdpi.com/journal/cancers Cancers 2019, 11, x 2 of 15 Cancers 2019, 11, 1701 2 of 16 transducers and activators of transcription (STATs). STATs are in turn activated by JAK-mediated phosphorylation and then dissociate from the receptor and migrate into the nucleus to initiate the activators of transcription (STATs). STATs are in turn activated by JAK-mediated phosphorylation cytokine-induced transcriptional program [4]. and then dissociate from the receptor and migrate into the nucleus to initiate the cytokine-induced There are four JAK family members—JAK1, JAK2, JAK3, and TYK2, which all share the same transcriptional program [4]. basic domain architecture (see Figure 1A), in addition to 23% overall sequence identity and 48% There are four JAK family members—JAK1, JAK2, JAK3, and TYK2, which all share the same overall similarity [5]. JAK2 is known to be important for hematopoiesis, as JAK2 knockout mice die basic domain architecture (see Figure1A), in addition to 23% overall sequence identity and 48% overall before birth as a lack of erythrocytes [6,7]. JAK1, JAK3, and TYK2 are known to be important for similarity [5]. JAK2 is known to be important for hematopoiesis, as JAK2 knockout mice die before development of the immune system, though a JAK1 knockout results in a more severe phenotype birth as a lack of erythrocytes [6,7]. JAK1, JAK3, and TYK2 are known to be important for development than JAK3 or TYK2, suggesting that JAKs are at least partially redundant for some functions [8–11]. of the immune system, though a JAK1 knockout results in a more severe phenotype than JAK3 or The N-terminal half of the protein contains a FERM-SH2 module which anchors the protein to the TYK2, suggesting that JAKs are at least partially redundant for some functions [8–11]. The N-terminal intracellular Box1 and Box2 motifs of a cytokine receptor [12,13]. The C-terminal half consists of two half of the protein contains a FERM-SH2 module which anchors the protein to the intracellular Box1 kinase domains, the first of which is catalytically inactive (termed the JH2 or pseudokinase domain) and Box2 motifs of a cytokine receptor [12,13]. The C-terminal half consists of two kinase domains, the whilst the second is catalytically active (the JH1 or kinase domain) and phosphorylates downstream first of which is catalytically inactive (termed the JH2 or pseudokinase domain) whilst the second is substrates. catalytically active (the JH1 or kinase domain) and phosphorylates downstream substrates. Figure 1. Purification of JAK1 constructs. (A), Schematic representation of the JAK1 domains used Figure 1. Purification of JAK1 constructs. (A), Schematic representation of the JAK1 domains used for for expression. The internal domain boundaries are numbered on the full-length construct, whilst expression. The internal domain boundaries are numbered on the full-length construct, whilst N and N and C terminal boundaries are numbered at each end. (B), Purified JAK1 constructs shown on C terminal boundaries are numbered at each end. (B), Purified JAK1 constructs shown on SDS-PAGE SDS-PAGE gel stained with Coomassie blue. KD = kinase domain, FL WT = full length wild type JAK1, gel stained with Coomassie blue. KD = kinase domain, FL WT = full length wild type JAK1, FL V658F FL V658F = full length JAK1V658F, PK-KD WT = pseudokinase-kinase domain wild type, PK-KD V658F = full length JAK1V658F, PK-KD WT = pseudokinase-kinase domain wild type, PK-KD V658F = = pseudokinase-kinase domain V658F, FERM-SH2 = FERM-SH2 domain. pseudokinase-kinase domain V658F, FERM-SH2 = FERM-SH2 domain. JAKs are found to be associated with receptors but in an inactive state prior to cytokine exposure. TheirJAKs kinase are domainsfound to be contain associated a structural with receptors feature knownbut in an as inactive the activation state prior loop, to whichcytokine contains exposure. two Theirconsecutive kinase domains tyrosine contain residues. a structural When the feature first of known these tyrosines as the activation is unphosphorylated loop, which contains the kinase two is consecutiveinactive. Phosphorylation tyrosine residues. of this When tyrosine the leadsfirst of to th re-orientationese tyrosines of is the unphosphorylated activation loop and the activates kinase theis inactive.domain. Phosphorylation Phosphorylation of of this tyrosinetyrosine isleads catalyzed to re-orientation in trans by theof the kinase activation domain loop of the and neighboring activates theJAK domain. molecule Phosphorylation attached to the otherof this chain tyrosine of the is cytokine catalyzed receptor in trans [3]. by This the auto-activation kinase domain occurs of the in neighboringresponse to cytokineJAK molecule engaging attached the extracellular to the other domain chain of the of receptorthe cytokine and inducing receptor either [3]. dimerizationThis auto- activation(or multimerization) occurs in response [14,15] or reorientationto cytokine engagi [16]. Theng pseudokinasethe extracellular domain domain plays of an the important receptor part and in inducingregulating either the activation dimerization process (or sincemultimerization) its removal results [14,15] in or constitutive reorientation partial [16]. activation The pseudokinase of the kinase domainas well asplays a failure an important to fully-activate part in in regulating the presence the of activation cytokine [process17]. The since importance its removal of this results domain in is constitutivehighlighted partial by the activation fact that the of majoritythe kinase of as activating well as a (and failure therefore to fully-activate disease-causing) in the mutationspresence of of cytokineJAKs are [17]. found The in importance this domain. of this domain is highlighted by the fact that the majority of activating (and thereforeThe most disease-causing) common disease-causing mutations JAK of mutationJAKs are isfound the V617F in this point domain. mutation in the pseudokinase domainThe ofmost JAK2. common This mutation disease-causing
Recommended publications
  • Mutation Analysis in Myeloproliferative Neoplasms AHS - M2101
    Corporate Medical Policy Mutation Analysis in Myeloproliferative Neoplasms AHS - M2101 File Name: mutation_analysis_in_myeloproliferative_neoplasms Origination: 1/1/2019 Last CAP review: 8/2021 Next CAP review: 8/2022 Last Review: 8/2021 Description of Procedure or Service Myeloproliferative neoplasms (MPN) are a heterogeneous group of clonal disorders characterized by overproduction of one or more differentiated myeloid lineages (Grinfeld, Nangalia, & Green, 2017). These include polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The majority of MPN result from somatic mutations in the 3 driver genes, JAK2, CALR, and MPL, which represent major diagnostic criteria in combination with hematologic and morphological abnormalities (Rumi & Cazzola, 2017). Related Policies: BCR-ABL 1 Testing for Chronic Myeloid Leukemia AHS-M2027 ***Note: This Medical Policy is complex and technical. For questions concerning the technical language and/or specific clinical indications for its use, please consult your physician. Policy BCBSNC will provide coverage for mutation analysis in myeloproliferative neoplasms when it is determined to be medically necessary because the medical criteria and guidelines shown below are met. Benefits Application This medical policy relates only to the services or supplies described herein. Please refer to the Member's Benefit Booklet for availability of benefits. Member's benefits may vary according to benefit design; therefore member benefit language should be reviewed before applying the terms of this medical policy. When Mutation Analysis in Myeloproliferative Neoplasms is covered 1. JAK2, CALR or MPL mutation testing is considered medically necessary for the diagnosis of patients presenting with clinical, laboratory, or pathological findings suggesting classic forms of myeloproliferative neoplasms (MPN), that is, polycythemia vera (PV), essential thrombocythemia (ET), or primary myelofibrosis (PMF) when ordered by a hematology and/or oncology specialist in the following situations: A.
    [Show full text]
  • Promoter Janus Kinase 3 Proximal Characterization and Analysis Of
    The Journal of Immunology Characterization and Analysis of the Proximal Janus Kinase 3 Promoter1 Martin Aringer,2*† Sigrun R. Hofmann,2* David M. Frucht,* Min Chen,* Michael Centola,* Akio Morinobu,* Roberta Visconti,* Daniel L. Kastner,* Josef S. Smolen,† and John J. O’Shea3* Janus kinase 3 (Jak3) is a nonreceptor tyrosine kinase essential for signaling via cytokine receptors that comprise the common ␥-chain (␥c), i.e., the receptors for IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21. Jak3 is preferentially expressed in hemopoietic cells and is up-regulated upon cell differentiation and activation. Despite the importance of Jak3 in lymphoid development and immune function, the mechanisms that govern its expression have not been defined. To gain insight into this issue, we set out to characterize the Jak3 promoter. The 5؅-untranslated region of the Jak3 gene is interrupted by a 3515-bp intron. Upstream of this intron and the transcription initiation site, we identified an ϳ1-kb segment that exhibited lymphoid-specific promoter activity and was responsive to TCR signals. Truncation of this fragment revealed that core promoter activity resided in a 267-bp fragment that contains putative Sp-1, AP-1, Ets, Stat, and other binding sites. Mutation of the AP-1 sites significantly diminished, whereas mutation of the Ets sites abolished, the inducibility of the promoter construct. Chromatin immunoprecipitation assays showed that histone acetylation correlates with mRNA expression and that Ets-1/2 binds this region. Thus, transcription factors that bind these sites, especially Ets family members, are likely to be important regulators of Jak3 expression.
    [Show full text]
  • Erb‑B2 Receptor Tyrosine Kinase 2 Is Negatively Regulated by the P53‑Responsive Microrna‑3184‑5P in Cervical Cancer Cells
    ONCOLOGY REPORTS 45: 95-106, 2021 Erb‑B2 Receptor Tyrosine Kinase 2 is negatively regulated by the p53‑responsive microRNA‑3184‑5p in cervical cancer cells HONGLI LIU1, YUZHI LI1, JING ZHANG1, NAN WU2, FEI LIU2, LIHUA WANG1, YUAN ZHANG1, JING LIU1, XUAN ZHANG3, SUYANG GUO1 and HONGTAO WANG4 Departments of 1Gynecological Oncology and 2Respiration and Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, First Affiliated Hospital of Bengbu Medical College; Departments of3 Gynecological Oncology and 4Immunology and Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China Received November 30, 2019; Accepted October 2, 2020 DOI: 10.3892/or.2020.7862 Abstract. The oncogenic role of Erb-B2 Receptor Tyrosine Introduction Kinase 2 (ERBB2) has been identified in several types of cancer, but less is known on its function and mechanism of Among women, cervical cancer is ranked 4th in global action in cervical cancer cells. The present study employed cancer-associated deaths (1), with over half a million deaths a multipronged approach to investigate the role of ERBB2 in in 2012 (2). Cervical cancer can be broadly categorized into cervical cancer. ERBB2 and microRNA (miR)-3184-5p expres- squamous cell carcinoma, which constitutes the majority of sion was assessed in patient-derived cervical cancer biopsy cases (70-80%) or adenocarcinoma, which comprises 10-15% tissues, revealing that higher levels of ERBB2 and lower levels of cases (3). Cervical cancer is frequently caused by the of miR-3184-5p were associated with clinicopathological indi- oncovirus human papillomavirus (HPV), mainly by types cators of cervical cancer progression.
    [Show full text]
  • 942.Full.Pdf
    Original Article Opposite Effect of JAK2 on Insulin-Dependent Activation of Mitogen-Activated Protein Kinases and Akt in Muscle Cells Possible Target to Ameliorate Insulin Resistance Ana C.P. Thirone, Lellean JeBailey, Philip J. Bilan, and Amira Klip Many cytokines increase their receptor affinity for Janus kinases (JAKs). Activated JAK binds to signal transducers and activators of transcription, insulin receptor substrates olypeptides such as erythropoietin, prolactin, (IRSs), and Shc. Intriguingly, insulin acting through its leptin, angiotensin, growth hormone, most inter- own receptor kinase also activates JAK2. However, the leukins, and interferon-␥ bind to receptors that impact of such activation on insulin action remains un- Plack intrinsic kinase activity, recruiting and acti- known. To determine the contribution of JAK2 to insulin vating cytoplasmic tyrosine kinases of the Janus family signaling, we transfected L6 myotubes with siRNA against (JAK) consisting of JAK1, JAK2, JAK3, and Tyk2 (1–3). JAK2 (siJAK2), reducing JAK2 protein expression by 75%. Activated JAK phosphorylates tyrosine residues within Insulin-dependent phosphorylation of IRS1/2 and Shc was not affected by siJAK2, but insulin-induced phosphoryla- itself and the associated receptor forming high-affinity tion of the mitogen-activated protein kinases (MAPKs) binding sites for a variety of signaling proteins containing Src homology 2 and other phosphotyrosine-binding do- extracellular signal–related kinase, p38, and Jun NH2- terminal kinase and their respective upstream kinases mains, including signal transducers and activators of tran- MKK1/2, MKK3/6, and MKK4/7 was significantly lowered scription, insulin receptor substrates (IRSs), and the when JAK2 was depleted, correlating with a significant adaptor protein Shc (1–4).
    [Show full text]
  • JAK Inhibitors for Treatment of Psoriasis: Focus on Selective TYK2 Inhibitors
    Drugs https://doi.org/10.1007/s40265-020-01261-8 CURRENT OPINION JAK Inhibitors for Treatment of Psoriasis: Focus on Selective TYK2 Inhibitors Miguel Nogueira1 · Luis Puig2 · Tiago Torres1,3 © Springer Nature Switzerland AG 2020 Abstract Despite advances in the treatment of psoriasis, there is an unmet need for efective and safe oral treatments. The Janus Kinase– Signal Transducer and Activator of Transcription (JAK–STAT) pathway plays a signifcant role in intracellular signalling of cytokines of numerous cellular processes, important in both normal and pathological states of immune-mediated infamma- tory diseases. Particularly in psoriasis, where the interleukin (IL)-23/IL-17 axis is currently considered the crucial pathogenic pathway, blocking the JAK–STAT pathway with small molecules would be expected to be clinically efective. However, relative non-specifcity and low therapeutic index of the available JAK inhibitors have delayed their integration into the therapeutic armamentarium of psoriasis. Current research appears to be focused on Tyrosine kinase 2 (TYK2), the frst described member of the JAK family. Data from the Phase II trial of BMS-986165—a selective TYK2 inhibitor—in psoriasis have been published and clinical results are encouraging, with a large Phase III programme ongoing. Further, the selective TYK2 inhibitor PF-06826647 is being tested in moderate-to-severe psoriasis in a Phase II clinical trial. Brepocitinib, a potent TYK2/JAK1 inhibitor, is also being evaluated, as both oral and topical treatment. Results of studies with TYK2 inhibitors will be important in assessing the clinical efcacy and safety of these drugs and their place in the therapeutic armamentarium of psoriasis.
    [Show full text]
  • JAK-Inhibitors for the Treatment of Rheumatoid Arthritis: a Focus on the Present and an Outlook on the Future
    biomolecules Review JAK-Inhibitors for the Treatment of Rheumatoid Arthritis: A Focus on the Present and an Outlook on the Future 1, 2, , 3 1,4 Jacopo Angelini y , Rossella Talotta * y , Rossana Roncato , Giulia Fornasier , Giorgia Barbiero 1, Lisa Dal Cin 1, Serena Brancati 1 and Francesco Scaglione 5 1 Postgraduate School of Clinical Pharmacology and Toxicology, University of Milan, 20133 Milan, Italy; [email protected] (J.A.); [email protected] (G.F.); [email protected] (G.B.); [email protected] (L.D.C.); [email protected] (S.B.) 2 Department of Clinical and Experimental Medicine, Rheumatology Unit, AOU “Gaetano Martino”, University of Messina, 98100 Messina, Italy 3 Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Pordenone, 33081 Aviano, Italy; [email protected] 4 Pharmacy Unit, IRCCS-Burlo Garofolo di Trieste, 34137 Trieste, Italy 5 Head of Clinical Pharmacology and Toxicology Unit, Grande Ospedale Metropolitano Niguarda, Department of Oncology and Onco-Hematology, Director of Postgraduate School of Clinical Pharmacology and Toxicology, University of Milan, 20162 Milan, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-090-2111; Fax: +39-090-293-5162 Co-first authors. y Received: 16 May 2020; Accepted: 1 July 2020; Published: 5 July 2020 Abstract: Janus kinase inhibitors (JAKi) belong to a new class of oral targeted disease-modifying drugs which have recently revolutionized the therapeutic panorama of rheumatoid arthritis (RA) and other immune-mediated diseases, placing alongside or even replacing conventional and biological drugs.
    [Show full text]
  • Supplementary Materials
    Supplementary Suppl. Figure 1: MAPK signalling pathway of A: NCI-H2502, B: NCI-H2452, C: MSTO-211H and D: MRC-5. Suppl. Figure 2: Cell cycle pathway of A: NCI-H2502, B: NCI-H2452, C: MSTO-211H and D: MRC- 5. Suppl. Figure 3: Cancer pathways of A: NCI-H2502, B: NCI-H2452, C: MSTO-211H and D: MRC-5. Suppl. Figure 4: Phosphorylation level of A: ARAF, B: EPHA1, C: EPHA2, D: EPHA7 in all cell lines. For each cell line, phosphorylation levels are depicted before (Medium) and after cisplatin treatment (Cis). Suppl. Figure 5: Phosphorylation Level of A: KIT, B: PTPN11, C: PIK3R1, D: PTPN6 in all cell lines. For each cell line, phosphorylation levels are depicted before (Medium) and after cisplatin treatment (Cis). Suppl. Figure 6: Phosphorylation Level of A: KDR, B: EFS, C: AKT1, D: PTK2B/FAK2 in all cell lines. For each cell line, phosphorylation levels are depicted before (Medium) and after cisplatin treatment (Cis). Suppl. Figure 7: Scoreplots and volcanoplots of PTK upstream kinase analysis: A: Scoreplot of PTK- Upstream kinase analysis for NCI-H2052 cells. B: Volcanoplot of PTK-Upstream kinase analysis for NCI-H2052 cells. C: Scoreplot of PTK-Upstream kinase analysis for NCI-H2452 cells. D: Volcanoplot of PTK-Upstream kinase analysis for NCI-H2452 cells. E: Scoreplot of PTK-Upstream kinase analysis for MSTO-211H cells. F: Volcanoplot of PTK-Upstream kinase analysis for MSTO- 211H cells. G: Scoreplot of PTK-Upstream kinase analysis for MRC-5cells. H: Volcanoplot of PTK- Upstream kinase analysis for MRC-5 cells. Suppl. Figure 8: Scoreplots and volcanoplots of STK upstream kinase analysis: A: Scoreplot of STK- Upstream kinase analysis for NCI-H2052 cells.
    [Show full text]
  • Biomarker Testing in Non- Small Cell Lung Cancer (NSCLC)
    The biopharma business of Merck KGaA, Darmstadt, Germany operates as EMD Serono in the U.S. and Canada. Biomarker testing in non- small cell lung cancer (NSCLC) Copyright © 2020 EMD Serono, Inc. All rights reserved. US/TEP/1119/0018(1) Lung cancer in the US: Incidence, mortality, and survival Lung cancer is the second most common cancer diagnosed annually and the leading cause of mortality in the US.2 228,820 20.5% 57% Estimated newly 5-year Advanced or 1 survival rate1 metastatic at diagnosed cases in 2020 diagnosis1 5.8% 5-year relative 80-85% 2 135,720 survival with NSCLC distant disease1 Estimated deaths in 20201 2 NSCLC, non-small cell lung cancer; US, United States. 1. National Institutes of Health (NIH), National Cancer Institute. Cancer Stat Facts: Lung and Bronchus Cancer website. www.seer.cancer.gov/statfacts/html/lungb.html. Accessed May 20, 2020. 2. American Cancer Society. What is Lung Cancer? website. https://www.cancer.org/cancer/non-small-cell-lung-cancer/about/what-is-non-small-cell-lung-cancer.html. Accessed May 20, 2020. NSCLC is both histologically and genetically diverse 1-3 NSCLC distribution by histology Prevalence of genetic alterations in NSCLC4 PTEN 10% DDR2 3% OTHER 25% PIK3CA 12% LARGE CELL CARCINOMA 10% FGFR1 20% SQUAMOUS CELL CARCINOMA 25% Oncogenic drivers in adenocarcinoma Other or ADENOCARCINOMA HER2 1.9% 40% KRAS 25.5% wild type RET 0.7% 55% NTRK1 1.7% ROS1 1.7% Oncogenic drivers in 0% 20% 40% 60% RIT1 2.2% squamous cell carcinoma Adenocarcinoma DDR2 2.9% Squamous cell carcinoma NRG1 3.2% Large cell carcinoma
    [Show full text]
  • Kinase Inhibitors: an Introduction
    David Peters Baran Group Meeting Kinase Inhibitors: An Introduction 2/2/19 INTRODUCTION SIGNAL TRANSDUCTION KINASES ARE IMPORTANT IN HUMAN BIOLOGY/DISEASE: The process describing how a signal (chemical/physical) is transmitted through a - Kinases are a superfamily of proteins (5th largest in humans) cell ultimately resulting in a cellular response - 518 genes and 106 pseudogenes - Diverse in size, subunit structure, and cellular location RECEPTOR TRANSDUCERS EFFECTORS - ~260 residues make up their conserved catalytic core - dysregulation of kinases occurs in many diseases (cancer, inflamatory, degenerative, and autoimmune diseases) - signals can originate inside or outside the cell - 244 of the 518 map to disease loci - signals generally passed through a series of steps (signal transduction pathway) often consisting of multiple enzymes and messengers protein O - pathways open possibility for signal aplification (>1x106) kinase ATP + PROTEIN OH ADP + PROTEIN O P O - Extracellular signals transduced by RTKs, GPCR’s, guanlyl cyclases, or ligand-gated Ion channels O - Phosphorylation is the most prominent covalent modification/signal in KINASES INHIBITORS ARE IMPORTANT IN DISEASE THERAPY/RESEARCH: cellular regulation - currently 51 FDA approved small molecule kinase inhibitors - “converter enzymes” (protein kinases and phosphoprotein phosphorlyases) - 4 FDA approved antibody kinase inhibitors are regulated; conserve ATP/maintain desired target protein state - thousands of known inhibitors spanning the kinome - pathway ends by affecting biomolecule
    [Show full text]
  • Anti-Inflammatory Cytokines Hepatocyte Growth Factor and Interleukin-11 Are Over-Expressed in Polycythemia Vera and Contribute T
    Oncogene (2011) 30, 990–1001 & 2011 Macmillan Publishers Limited All rights reserved 0950-9232/11 www.nature.com/onc ORIGINAL ARTICLE Anti-inflammatory cytokines hepatocyte growth factor and interleukin-11 are over-expressed in Polycythemia vera and contribute to the growth of clonal erythroblasts independently of JAK2V617F M Boissinot1,3,4, C Cleyrat1,3, M Vilaine1, Y Jacques1, I Corre1 and S Hermouet1,2 1INSERM UMR 892, Institut de Biologie, Centre Hospitalier Universitaire, Nantes, France and 2Laboratoire d’He´matologie, Institut de Biologie, Centre Hospitalier Universitaire, Nantes, France The V617F activating mutation of janus kinase 2 (JAK2), Keywords: Polycythemia vera; JAK2V617F; hepatocyte a kinase essential for cytokine signalling, characterizes growth factor (HGF); interleukin 11 (IL-11); interleukin Polycythemia vera (PV), one of the myeloproliferative 6 (IL-6); inflammation neoplasms (MPN). However, not all MPNs carry mutations of JAK2, and in JAK2-mutated patients, expression of JAK2V617F does not always result in clone expansion. In the present study, we provide evidence that Introduction inflammation-linked cytokines are required for the growth of JAK2V617F-mutated erythroid progenitors. In a first Myeloproliferative neoplasms (MPNs) constitute a series of experiments, we searched for cytokines over- group of three clonal diseases: Polycythemia vera expressed in PV using cytokine antibody (Ab) arrays, and (PV), essential thrombocythemia (ET) and primary enzyme-linked immunosorbent assays for analyses of myelofibrosis. About half of MPN patients present with serum and bone marrow (BM) plasma, and quantitative activating mutations in the janus kinase 2 (JAK2) gene, reverse transcription–PCRs for analyses of cells purified which encodes for a tyrosine kinase essential for the from PV patients and controls.
    [Show full text]
  • HCC and Cancer Mutated Genes Summarized in the Literature Gene Symbol Gene Name References*
    HCC and cancer mutated genes summarized in the literature Gene symbol Gene name References* A2M Alpha-2-macroglobulin (4) ABL1 c-abl oncogene 1, receptor tyrosine kinase (4,5,22) ACBD7 Acyl-Coenzyme A binding domain containing 7 (23) ACTL6A Actin-like 6A (4,5) ACTL6B Actin-like 6B (4) ACVR1B Activin A receptor, type IB (21,22) ACVR2A Activin A receptor, type IIA (4,21) ADAM10 ADAM metallopeptidase domain 10 (5) ADAMTS9 ADAM metallopeptidase with thrombospondin type 1 motif, 9 (4) ADCY2 Adenylate cyclase 2 (brain) (26) AJUBA Ajuba LIM protein (21) AKAP9 A kinase (PRKA) anchor protein (yotiao) 9 (4) Akt AKT serine/threonine kinase (28) AKT1 v-akt murine thymoma viral oncogene homolog 1 (5,21,22) AKT2 v-akt murine thymoma viral oncogene homolog 2 (4) ALB Albumin (4) ALK Anaplastic lymphoma receptor tyrosine kinase (22) AMPH Amphiphysin (24) ANK3 Ankyrin 3, node of Ranvier (ankyrin G) (4) ANKRD12 Ankyrin repeat domain 12 (4) ANO1 Anoctamin 1, calcium activated chloride channel (4) APC Adenomatous polyposis coli (4,5,21,22,25,28) APOB Apolipoprotein B [including Ag(x) antigen] (4) AR Androgen receptor (5,21-23) ARAP1 ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 1 (4) ARHGAP35 Rho GTPase activating protein 35 (21) ARID1A AT rich interactive domain 1A (SWI-like) (4,5,21,22,24,25,27,28) ARID1B AT rich interactive domain 1B (SWI1-like) (4,5,22) ARID2 AT rich interactive domain 2 (ARID, RFX-like) (4,5,22,24,25,27,28) ARID4A AT rich interactive domain 4A (RBP1-like) (28) ARID5B AT rich interactive domain 5B (MRF1-like) (21) ASPM Asp (abnormal
    [Show full text]
  • Supplementary Table 1. in Vitro Side Effect Profiling Study for LDN/OSU-0212320. Neurotransmitter Related Steroids
    Supplementary Table 1. In vitro side effect profiling study for LDN/OSU-0212320. Percent Inhibition Receptor 10 µM Neurotransmitter Related Adenosine, Non-selective 7.29% Adrenergic, Alpha 1, Non-selective 24.98% Adrenergic, Alpha 2, Non-selective 27.18% Adrenergic, Beta, Non-selective -20.94% Dopamine Transporter 8.69% Dopamine, D1 (h) 8.48% Dopamine, D2s (h) 4.06% GABA A, Agonist Site -16.15% GABA A, BDZ, alpha 1 site 12.73% GABA-B 13.60% Glutamate, AMPA Site (Ionotropic) 12.06% Glutamate, Kainate Site (Ionotropic) -1.03% Glutamate, NMDA Agonist Site (Ionotropic) 0.12% Glutamate, NMDA, Glycine (Stry-insens Site) 9.84% (Ionotropic) Glycine, Strychnine-sensitive 0.99% Histamine, H1 -5.54% Histamine, H2 16.54% Histamine, H3 4.80% Melatonin, Non-selective -5.54% Muscarinic, M1 (hr) -1.88% Muscarinic, M2 (h) 0.82% Muscarinic, Non-selective, Central 29.04% Muscarinic, Non-selective, Peripheral 0.29% Nicotinic, Neuronal (-BnTx insensitive) 7.85% Norepinephrine Transporter 2.87% Opioid, Non-selective -0.09% Opioid, Orphanin, ORL1 (h) 11.55% Serotonin Transporter -3.02% Serotonin, Non-selective 26.33% Sigma, Non-Selective 10.19% Steroids Estrogen 11.16% 1 Percent Inhibition Receptor 10 µM Testosterone (cytosolic) (h) 12.50% Ion Channels Calcium Channel, Type L (Dihydropyridine Site) 43.18% Calcium Channel, Type N 4.15% Potassium Channel, ATP-Sensitive -4.05% Potassium Channel, Ca2+ Act., VI 17.80% Potassium Channel, I(Kr) (hERG) (h) -6.44% Sodium, Site 2 -0.39% Second Messengers Nitric Oxide, NOS (Neuronal-Binding) -17.09% Prostaglandins Leukotriene,
    [Show full text]