The Role of Signaling Pathways in the Development and Treatment of Hepatocellular Carcinoma

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Signaling Pathways in the Development and Treatment of Hepatocellular Carcinoma Oncogene (2010) 29, 4989–5005 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 www.nature.com/onc REVIEW The role of signaling pathways in the development and treatment of hepatocellular carcinoma S Whittaker1,2, R Marais3 and AX Zhu4 1Dana-Farber Cancer Institute, Boston, MA, USA; 2The Broad Institute, Cambridge, MA, USA; 3Institute of Cancer Research, London, UK and 4Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA Hepatocellular carcinoma (HCC) is a highly prevalent, malignancy in adults (Pons-Renedo and Llovet, 2003). treatment-resistant malignancy with a multifaceted mole- For the vast majority of patients, HCC is a late cular pathogenesis. Current evidence indicates that during complication of chronic liver disease, and as such, is hepatocarcinogenesis, two main pathogenic mechanisms often associated with cirrhosis. The main risk factors for prevail: (1) cirrhosis associated with hepatic regeneration the development of HCC include infection with hepatitis after tissue damage caused by hepatitis infection, toxins B virus (HBV) or hepatitis C virus (HCV). Hepatitis (for example, alcohol or aflatoxin) or metabolic influ- infection is believed to be the main etiologic factor in ences, and (2) mutations occurring in single or multiple 480% of cases (Anzola, 2004). Other risk factors oncogenes or tumor suppressor genes. Both mechanisms include excessive alcohol consumption, nonalcoholic have been linked with alterations in several important steatohepatitis, autoimmune hepatitis, primary biliary cellular signaling pathways. These pathways are of cirrhosis, exposure to environmental carcinogens (parti- interest from a therapeutic perspective, because targeting cularly aflatoxin B) and the presence of various genetic them may help to reverse, delay or prevent tumorigenesis. metabolic diseases (for example, hereditary hemo- In this review, we explore some of the major pathways chromatosis, tyrosinemia and a1-antitrypsin deficiency; implicated in HCC. These include the RAF/MEK/ERK Llovet et al., 1999; Roberts and Gores, 2005; Thomas pathway, phosphatidylinositol-3 kinase (PI3K)/AKT/ and Abbruzzese, 2005). mammalian target of rapamycin (mTOR) pathway, One of the main reasons for the high mortality rate in WNT/b-catenin pathway, insulin-like growth factor patients with HCC is the lack of effective treatment pathway, hepatocyte growth factor/c-MET pathway and options, especially for those with advanced disease. growth factor-regulated angiogenic signaling. We focus on Although surgery and percutaneous ablation can the role of these pathways in hepatocarcinogenesis, how achieve long-term control in some patients with early they are altered, and the consequences of these abnor- HCC, recurrence rates are high (approximately 50% malities. In addition, we also review the latest preclinical at 3 years; Mulcahy, 2005). Moreover, because of the and clinical data on the rationally designed targeted asymptomatic nature of early HCC, lack of awareness agents that are now being directed against these pathways, and poorly defined screening strategies, most patients with early evidence of success. (approximately 80%) present with advanced or unre- Oncogene (2010) 29, 4989–5005; doi:10.1038/onc.2010.236; sectable disease (Thomas and Abbruzzese, 2005). These published online 19 July 2010 patients generally have a very poor prognosis and treatment options are mainly palliative. Even with Keywords: epidermal growth factor receptor; hepato- treatment (such as transarterial chemoembolization, cellular carcinoma; multikinase inhibitor; signaling; intra-arterial or systemic chemotherapy, radiotherapy, sorafenib; vascular endothelial growth factor immunotherapy or hormonal therapy), the 5-year relative survival rate for patients with HCC is only 7%, and very few patients with symptomatic disease Introduction survive for 41 year (Bosch et al., 2004). The paucity of effective and well-tolerated treatments for advanced Liver cancer is the sixth most common malignancy and HCC (Simonetti et al., 1997; Zhu, 2006) highlights the the third most common cause of cancer-related morta- need for new therapeutic approaches. lity worldwide (Parkin et al., 2005). Hepatocellular In recent years, improved knowledge of oncogenic carcinoma (HCC) is the most common primary liver processes and the signaling pathways that regulate tumor cell proliferation, differentiation, angiogenesis, invasion and metastasis has led to the identification of Correspondence: Dr AX Zhu, Massachusetts General Hospital Cancer several possible therapeutic targets that have driven the Center, Harvard Medical School, Lawrence House/POB 232, 55 Fruit development of molecularly targeted therapies. These Street, Boston, MA 02114, USA. E-mail: [email protected] drugs, which act directly on components of the signaling Received 4 March 2010; accepted 13 May 2010; published online 19 July pathways regulating tumorigenesis, have showed clinical 2010 benefit in patients with various tumor types, including HCC signaling review S Whittaker et al 4990 colorectal, renal, breast and lung cancers, and more larly, tumor growth, vascular invasion (the hallmark of recently, HCC. Because many of the pathways are invasive disease) and metastasis are also critically implicated in the pathogenesis of various tumor types, dependent on efficient angiogenesis (Semela and Du- targeted agents seem to be effective in more than one four, 2004). In HCC, angiogenesis relies on autocrine malignancy. Here we review several major molecular and paracrine interactions between tumor cells, vascular signaling pathways implicated in the pathogenesis of endothelial cells and pericytes (Figure 3) (Folkman, HCC. In addition, we explore the rationale for targeting 2003; Roberts and Gores, 2006). During the angiogenic molecular components of these signaling pathways, process, the existing microvasculature is destabilized, describe the preclinical activity of targeted therapies leading to vascular hyperpermeability, remodeling of the currently in development and approved for HCC, and cellular matrix and activation of endothelial cells briefly review the evidence for their clinical activity in (Papetti and Herman, 2002). Once activated, endothelial patients with HCC. cells proliferate, migrate and undergo cord formation to form new microvessels (Papetti and Herman, 2002). Finally, pericytes are activated and recruited to stabilize Search strategy and selection criteria the new blood vessels. Normal angiogenesis is maintained by the balance Data on the molecular drivers of HCC were identified between proangiogenic and antiangiogenic factors (Seme- for this review by searches of MEDLINE, EMBASE, la and Dufour, 2004). The angiogenic balance is disturbed BIOSIS, ISI and PubMed. Only papers published in in HCC as tumor cells, endothelial cells and pericytes English from 1987 to 2010 were assessed. Recent (2006– secrete a net excess of angiogenic factors, which support 2010) abstracts and reports from meetings were also the recruitment and activation of endothelial cells included if relevant. In addition, the clinicaltrials.gov and pericytes. A number of angiogenic growth factors, website was used to identify studies of agents of including VEGF-A, angiopoietin-2 and PDGF, have been potential interest in HCC. shown to be upregulated in HCC tumors at the level of gene expression and at the plasma protein level in patients with HCC compared with cirrhotic patients (Mas et al., Signaling transduction pathways implicated in HCC 2007). The principal angiogenic factors involved are VEGFs, PDGFs, placental growth factors, transforming HCC has a very complex molecular pathogenesis in growth factor (TGF)-a and -b, basic fibroblast growth which two mechanisms predominate: (1) cirrhosis factor, EGF, HGF, angiopoietins and interleukin-4 and -8 associated with hepatic regeneration after tissue damage (Folkman, 2003; Semela and Dufour, 2004). These growth caused by hepatitis infection, toxin/environmental fac- factors and cytokines induce angiogenic signaling through tors (for example, alcohol or aflatoxin B) or metabolic a variety of mechanisms, including activation of the influences (for example, insulin resistance, obesity, type RAF/MEK/ERK, PI3K/AKT/mTOR and Janus kinase II diabetes or dyslipidemia in nonalcoholic steatohepa- (JAK)/signal transducer and activator of transcription titis-induced HCC; Bugianesi, 2005); and (2) mutations pathways (Roberts and Gores, 2005). occurring in one or more oncogenes or tumor suppres- sor genes (Figure 1) (Thorgeirsson and Grisham, 2002; Wang et al., 2002; Feitelson et al., 2004; Marotta et al., VEGF receptor signaling 2004; Villanueva et al., 2007, 2008). Both of these mechanisms have been associated with abnormalities in One of the most intensely studied growth factors several critical cell signaling pathways that perpetuate involved in angiogenesis is VEGF. Studies of human the carcinogenic process. These signaling cascades are of tumor xenografts in immunodeficient mice showed that interest from a therapeutic perspective, because target- neutralization of VEGF inhibited tumor growth and ing them may help to reverse, delay or prevent hepato- decreased blood vessel density in a variety of tumor carcinogenesis. In this respect, growth factor-mediated types (Kim et al., 1993). Overexpression of VEGF angiogenic signaling (vascular endothelial growth factor may be induced by the hypoxic tumor environment (VEGF), platelet-derived growth factor (PDGF), (mediated by hypoxia-inducible
Recommended publications
  • Promoter Janus Kinase 3 Proximal Characterization and Analysis Of
    The Journal of Immunology Characterization and Analysis of the Proximal Janus Kinase 3 Promoter1 Martin Aringer,2*† Sigrun R. Hofmann,2* David M. Frucht,* Min Chen,* Michael Centola,* Akio Morinobu,* Roberta Visconti,* Daniel L. Kastner,* Josef S. Smolen,† and John J. O’Shea3* Janus kinase 3 (Jak3) is a nonreceptor tyrosine kinase essential for signaling via cytokine receptors that comprise the common ␥-chain (␥c), i.e., the receptors for IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21. Jak3 is preferentially expressed in hemopoietic cells and is up-regulated upon cell differentiation and activation. Despite the importance of Jak3 in lymphoid development and immune function, the mechanisms that govern its expression have not been defined. To gain insight into this issue, we set out to characterize the Jak3 promoter. The 5؅-untranslated region of the Jak3 gene is interrupted by a 3515-bp intron. Upstream of this intron and the transcription initiation site, we identified an ϳ1-kb segment that exhibited lymphoid-specific promoter activity and was responsive to TCR signals. Truncation of this fragment revealed that core promoter activity resided in a 267-bp fragment that contains putative Sp-1, AP-1, Ets, Stat, and other binding sites. Mutation of the AP-1 sites significantly diminished, whereas mutation of the Ets sites abolished, the inducibility of the promoter construct. Chromatin immunoprecipitation assays showed that histone acetylation correlates with mRNA expression and that Ets-1/2 binds this region. Thus, transcription factors that bind these sites, especially Ets family members, are likely to be important regulators of Jak3 expression.
    [Show full text]
  • The Crosstalk Between FAK and Wnt Signaling Pathways in Cancer and Its Therapeutic Implication
    International Journal of Molecular Sciences Review The Crosstalk between FAK and Wnt Signaling Pathways in Cancer and Its Therapeutic Implication Janine Wörthmüller * and Curzio Rüegg * Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland * Correspondence: [email protected] (J.W.); [email protected] (C.R.) Received: 31 October 2020; Accepted: 26 November 2020; Published: 30 November 2020 Abstract: Focal adhesion kinase (FAK) and Wnt signaling pathways are important contributors to tumorigenesis in several cancers. While most results come from studies investigating these pathways individually, there is increasing evidence of a functional crosstalk between both signaling pathways during development and tumor progression. A number of FAK–Wnt interactions are described, suggesting an intricate, context-specific, and cell type-dependent relationship. During development for instance, FAK acts mainly upstream of Wnt signaling; and although in intestinal homeostasis and mucosal regeneration Wnt seems to function upstream of FAK signaling, FAK activates the Wnt/β-catenin signaling pathway during APC-driven intestinal tumorigenesis. In breast, lung, and pancreatic cancers, FAK is reported to modulate the Wnt signaling pathway, while in prostate cancer, FAK is downstream of Wnt. In malignant mesothelioma, FAK and Wnt show an antagonistic relationship: Inhibiting FAK signaling activates the Wnt pathway and vice versa. As the identification of effective Wnt inhibitors to translate in the clinical setting remains an outstanding challenge, further understanding of the functional interaction between Wnt and FAK could reveal new therapeutic opportunities and approaches greatly needed in clinical oncology.
    [Show full text]
  • Wnt Signaling in Neuromuscular Junction Development
    Downloaded from http://cshperspectives.cshlp.org/ on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Wnt Signaling in Neuromuscular Junction Development Kate Koles and Vivian Budnik Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 Correspondence: [email protected] Wnt proteins are best known for their profound roles in cell patterning, because they are required for the embryonic development of all animal species studied to date. Besides regulating cell fate, Wnt proteins are gaining increasing recognition for their roles in nervous system development and function. New studies indicate that multiple positive and negative Wnt signaling pathways take place simultaneously during the formation of verte- brate and invertebrate neuromuscular junctions. Although some Wnts are essential for the formation of NMJs, others appear to play a more modulatory role as part of multiple signaling pathways. Here we review the most recent findings regarding the function of Wnts at the NMJ from both vertebrate and invertebrate model systems. nt proteins are evolutionarily conserved, though important roles for Wnt signaling have Wsecreted lipo-glycoproteins involved in a become known from studies in both the central wide range of developmental processes in all and peripheral nervous system, this article is metazoan organisms examined to date. In ad- concerned with the role of Wnts at the NMJ. dition to governing many embryonic develop- mental processes, Wnt signaling is also involved WNT LIGANDS, RECEPTORS, AND WNT in nervous system maintenance and function, SIGNALING PATHWAYS and deregulation of Wnt signaling pathways oc- curs in many neurodegenerative and psychiatric Wnts and their receptors comprise a large fam- diseases (De Ferrari and Inestrosa 2000; Carica- ily of proteins.
    [Show full text]
  • Human B-Cell Proliferation and Intracellular Signaling: Part 3
    1872 Diabetes Volume 64, June 2015 Andrew F. Stewart,1 Mehboob A. Hussain,2 Adolfo García-Ocaña,1 Rupangi C. Vasavada,1 Anil Bhushan,3 Ernesto Bernal-Mizrachi,4 and Rohit N. Kulkarni5 Human b-Cell Proliferation and Intracellular Signaling: Part 3 Diabetes 2015;64:1872–1885 | DOI: 10.2337/db14-1843 This is the third in a series of Perspectives on intracel- signaling pathways in rodent and human b-cells, with lular signaling pathways coupled to proliferation in pan- a specific focus on the links between b-cell proliferation creatic b-cells. We contrast the large knowledge base in and intracellular signaling pathways (1,2). We highlight rodent b-cells with the more limited human database. what is known in rodent b-cells and compare and contrast With the increasing incidence of type 1 diabetes and that to the current knowledge base in human b-cells. In- the recognition that type 2 diabetes is also due in part variably, the human b-cell section is very brief compared fi b to a de ciency of functioning -cells, there is great ur- with the rodent counterpart, reflecting the still primitive gency to identify therapeutic approaches to expand hu- state of our understanding of mitogenic signaling in hu- b man -cell numbers. Therapeutic approaches might man b-cells. To emphasize this difference, each figure is include stem cell differentiation, transdifferentiation, or divided into two panels, one summarizing rodent b-cell expansion of cadaver islets or residual endogenous signaling and one for human b-cells. Our intended audi- b-cells. In these Perspectives, we focus on b-cell ence includes trainees in b-cell regeneration as well as proliferation.
    [Show full text]
  • Biomarker Testing in Non- Small Cell Lung Cancer (NSCLC)
    The biopharma business of Merck KGaA, Darmstadt, Germany operates as EMD Serono in the U.S. and Canada. Biomarker testing in non- small cell lung cancer (NSCLC) Copyright © 2020 EMD Serono, Inc. All rights reserved. US/TEP/1119/0018(1) Lung cancer in the US: Incidence, mortality, and survival Lung cancer is the second most common cancer diagnosed annually and the leading cause of mortality in the US.2 228,820 20.5% 57% Estimated newly 5-year Advanced or 1 survival rate1 metastatic at diagnosed cases in 2020 diagnosis1 5.8% 5-year relative 80-85% 2 135,720 survival with NSCLC distant disease1 Estimated deaths in 20201 2 NSCLC, non-small cell lung cancer; US, United States. 1. National Institutes of Health (NIH), National Cancer Institute. Cancer Stat Facts: Lung and Bronchus Cancer website. www.seer.cancer.gov/statfacts/html/lungb.html. Accessed May 20, 2020. 2. American Cancer Society. What is Lung Cancer? website. https://www.cancer.org/cancer/non-small-cell-lung-cancer/about/what-is-non-small-cell-lung-cancer.html. Accessed May 20, 2020. NSCLC is both histologically and genetically diverse 1-3 NSCLC distribution by histology Prevalence of genetic alterations in NSCLC4 PTEN 10% DDR2 3% OTHER 25% PIK3CA 12% LARGE CELL CARCINOMA 10% FGFR1 20% SQUAMOUS CELL CARCINOMA 25% Oncogenic drivers in adenocarcinoma Other or ADENOCARCINOMA HER2 1.9% 40% KRAS 25.5% wild type RET 0.7% 55% NTRK1 1.7% ROS1 1.7% Oncogenic drivers in 0% 20% 40% 60% RIT1 2.2% squamous cell carcinoma Adenocarcinoma DDR2 2.9% Squamous cell carcinoma NRG1 3.2% Large cell carcinoma
    [Show full text]
  • Kinase Inhibitors: an Introduction
    David Peters Baran Group Meeting Kinase Inhibitors: An Introduction 2/2/19 INTRODUCTION SIGNAL TRANSDUCTION KINASES ARE IMPORTANT IN HUMAN BIOLOGY/DISEASE: The process describing how a signal (chemical/physical) is transmitted through a - Kinases are a superfamily of proteins (5th largest in humans) cell ultimately resulting in a cellular response - 518 genes and 106 pseudogenes - Diverse in size, subunit structure, and cellular location RECEPTOR TRANSDUCERS EFFECTORS - ~260 residues make up their conserved catalytic core - dysregulation of kinases occurs in many diseases (cancer, inflamatory, degenerative, and autoimmune diseases) - signals can originate inside or outside the cell - 244 of the 518 map to disease loci - signals generally passed through a series of steps (signal transduction pathway) often consisting of multiple enzymes and messengers protein O - pathways open possibility for signal aplification (>1x106) kinase ATP + PROTEIN OH ADP + PROTEIN O P O - Extracellular signals transduced by RTKs, GPCR’s, guanlyl cyclases, or ligand-gated Ion channels O - Phosphorylation is the most prominent covalent modification/signal in KINASES INHIBITORS ARE IMPORTANT IN DISEASE THERAPY/RESEARCH: cellular regulation - currently 51 FDA approved small molecule kinase inhibitors - “converter enzymes” (protein kinases and phosphoprotein phosphorlyases) - 4 FDA approved antibody kinase inhibitors are regulated; conserve ATP/maintain desired target protein state - thousands of known inhibitors spanning the kinome - pathway ends by affecting biomolecule
    [Show full text]
  • Mechanisms of Wnt Signaling in Development
    P1: APR/ary P2: ARS/dat QC: ARS/APM T1: ARS August 29, 1998 9:42 Annual Reviews AR066-03 Annu. Rev. Cell Dev. Biol. 1998. 14:59–88 Copyright c 1998 by Annual Reviews. All rights reserved MECHANISMS OF WNT SIGNALING IN DEVELOPMENT Andreas Wodarz Institut f¨ur Genetik, Universit¨at D¨usseldorf, Universit¨atsstrasse 1, 40225 D¨usseldorf, Germany; e-mail: [email protected] Roel Nusse Howard Hughes Medical Institute and Department of Developmental Biology, Stanford University, Stanford, CA 94305-5428; e-mail: [email protected] KEY WORDS: Wnt, wingless, frizzled, catenin, signal transduction ABSTRACT Wnt genes encode a large family of secreted, cysteine-rich proteins that play key roles as intercellular signaling molecules in development. Genetic studies in Drosophila and Caenorhabditis elegans, ectopic gene expression in Xenopus, and gene knockouts in the mouse have demonstrated the involvement of Wnts in pro- cesses as diverse as segmentation, CNS patterning, and control of asymmetric cell divisions. The transduction of Wnt signals between cells proceeds in a complex series of events including post-translational modification and secretion of Wnts, binding to transmembrane receptors, activation of cytoplasmic effectors, and, finally, transcriptional regulation of target genes. Over the past two years our understanding of Wnt signaling has been substantially improved by the identifi- cation of Frizzled proteins as cell surface receptors for Wnts and by the finding that -catenin, a component downstream of the receptor, can translocate to the nucleus and function as a transcriptional activator. Here we review recent data that have started to unravel the mechanisms of Wnt signaling.
    [Show full text]
  • Targeting FGFR/PDGFR/VEGFR Impairs Tumor Growth, Angiogenesis, and Metastasis by Effects on Tumor Cells, Endothelial Cells, and Pericytes in Pancreatic Cancer
    Published OnlineFirst September 1, 2011; DOI: 10.1158/1535-7163.MCT-11-0312 Molecular Cancer Preclinical Development Therapeutics Targeting FGFR/PDGFR/VEGFR Impairs Tumor Growth, Angiogenesis, and Metastasis by Effects on Tumor Cells, Endothelial Cells, and Pericytes in Pancreatic Cancer Johannes Taeger1, Christian Moser1, Claus Hellerbrand2, Maria E. Mycielska1, Gabriel Glockzin1, Hans J. Schlitt1, Edward K. Geissler1, Oliver Stoeltzing3, and Sven A. Lang1 Abstract Activation of receptor tyrosine kinases, such as fibroblast growth factor receptor (FGFR), platelet-derived growth factor receptor (PDGFR), and VEGF receptor (VEGFR), has been implicated in tumor progression and metastasis in human pancreatic cancer. In this study, we investigated the effects of TKI258, a tyrosine kinase inhibitor to FGFR, PDGFR, and VEGFR on pancreatic cancer cell lines (HPAF-II, BxPC-3, MiaPaCa2, and L3.6pl), endothelial cells, and vascular smooth muscle cells (VSMC). Results showed that treatment with TKI258 impaired activation of signaling intermediates in pancreatic cancer cells, endothelial cells, and VSMCs, even upon stimulation with FGF-1, FGF-2, VEGF-A, and PDGF-B. Furthermore, blockade of FGFR/PDGFR/VEGFR reduced survivin expression and improved activity of gemcitabine in MiaPaCa2 pancreatic cancer cells. In addition, motility of cancer cells, endothelial cells, and VSMCs was reduced upon treatment with TKI258. In vivo, therapy with TKI258 led to dose-dependent inhibition of subcutaneous (HPAF-II) and orthotopic (L3.6pl) tumor growth. Immunohistochemical analysis revealed effects on tumor cell proliferation [bromodeoxyuridine (BrdUrd)] and tumor vascularization (CD31). Moreover, lymph node metastases were significantly reduced in the orthotopic tumor model when treatment was initiated early with TKI258 (30 mg/kg/d).
    [Show full text]
  • Mir-449 Overexpression Inhibits Papillary Thyroid Carcinoma Cell Growth by Targeting RET Kinase-Β-Catenin Signaling Pathway
    INTERNATIONAL JOURNAL OF ONCOLOGY 49: 1629-1637, 2016 miR-449 overexpression inhibits papillary thyroid carcinoma cell growth by targeting RET kinase-β-catenin signaling pathway ZONGYU LI1*, XIN HUANG2*, JINKAI XU1, QINGHUA SU1, JUN ZHAO1 and JIANCANG MA1 1Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University; 2Department of General Surgery, The Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China Received May 20, 2016; Accepted July 13, 2016 DOI: 10.3892/ijo.2016.3659 Abstract. Papillary thyroid carcinoma (PTC) is the most miR-449 overexpression inhibited the growth of PTC by inac- common thyroid cancer and represent approximately 80% of tivating the β-catenin pathway. Thus, miR-449 may serve as a all thyroid cancers. The present study is aimed to investigate potential therapeutic strategy for the treatment of PTC. the role of microRNA (miR)-449 in the progression of PTC. Our results revealed that miR-449 was underexpressed in Introduction the collected PTC specimens compared with non-cancerous PTC tissues. Overexpression of miR-449 induced a cell cycle Thyroid cancer is the leading cause of increased morbidity and arrest at G0/G1 phase and inhibited PTC cell growth in vitro. mortality for endocrine malignancies, and papillary thyroid Further studies revealed that RET proto-oncogene (RET) is carcinoma (PTC) accounts for 80% of thyroid cancer cases (1). a novel miR-449 target, due to miR-449 bound directly to Reports have indicated that PTC have a homogeneous molec- its 3'-untranslated region and miR-449 mimic reduced the ular signature during tumorigenesis compared with other protein expression of RET.
    [Show full text]
  • CIRP Promotes the Progression of Non-Small Cell Lung Cancer Through
    Liao et al. Journal of Experimental & Clinical Cancer Research (2021) 40:275 https://doi.org/10.1186/s13046-021-02080-9 RESEARCH Open Access CIRP promotes the progression of non- small cell lung cancer through activation of Wnt/β-catenin signaling via CTNNB1 Yi Liao1,2†, Jianguo Feng3†, Weichao Sun1, Chao Wu2, Jingyao Li1, Tao Jing4, Yuteng Liang5, Yonghui Qian5, Wenlan Liu1,5* and Haidong Wang2* Abstract Background: Cold-inducible RNA binding protein (CIRP) is a newly discovered proto-oncogene. In this study, we investigated the role of CIRP in the progression of non-small cell lung cancer (NSCLC) using patient tissue samples, cultured cell lines and animal lung cancer models. Methods: Tissue arrays, IHC and HE staining, immunoblotting, and qRT-PCR were used to detect the indicated gene expression; plasmid and siRNA transfections as well as viral infection were used to manipulate gene expression; cell proliferation assay, cell cycle analysis, cell migration and invasion analysis, soft agar colony formation assay, tail intravenous injection and subcutaneous inoculation of animal models were performed to study the role of CIRP in NSCLC cells; Gene expression microarray was used to select the underlying pathways; and RNA immunoprecipitation assay, biotin pull-down assay, immunopurification assay, mRNA decay analyses and luciferase reporter assay were performed to elucidate the mechanisms. The log-rank (Mantel-Cox) test, independent sample T- test, nonparametric Mann-Whitney test, Spearman rank test and two-tailed independent sample T-test were used accordingly in our study. Results: Our data showed that CIRP was highly expressed in NSCLC tissue, and its level was negatively correlated with the prognosis of NSCLC patients.
    [Show full text]
  • Epigenetic Gene Regulation by Janus Kinase 1 in Diffuse Large B-Cell Lymphoma
    Epigenetic gene regulation by Janus kinase 1 in diffuse large B-cell lymphoma Lixin Ruia,b,c,1,2, Amanda C. Drennanb,c,1, Michele Ceribellia,1, Fen Zhub,c, George W. Wrightd, Da Wei Huanga, Wenming Xiaoe, Yangguang Lib,c, Kreg M. Grindleb,c,LiLub,c, Daniel J. Hodsona, Arthur L. Shaffera, Hong Zhaoa, Weihong Xua, Yandan Yanga, and Louis M. Staudta,2 aLymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892; bDepartment of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705; cCarbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705; dBiometric Research Branch, DCTD, National Cancer Institute, NIH, Bethesda, MD 20892; and eDivision of Bioinformatics and Biostatistics, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR 72079 Contributed by Louis M. Staudt, September 29, 2016 (sent for review July 22, 2016; reviewed by Anthony R. Green and Ross L. Levine) Janus kinases (JAKs) classically signal by activating STAT transcription promote STAT dimerization, nuclear translocation, and binding factors but can also regulate gene expression by epigenetically to cis-regulatory elements to regulate transcription (15, 17). This phosphorylating histone H3 on tyrosine 41 (H3Y41-P). In diffuse large canonical JAK/STAT pathway is deregulated in several hemato- B-cell lymphomas (DLBCLs), JAK signaling is a feature of the activated logic malignancies (16). In DLBCL, STAT3 is activated in the B-cell (ABC) subtype and is triggered by autocrine production of IL-6 ABC subtype and regulates gene expression to promote the sur- and IL-10.
    [Show full text]
  • Structural and Mechanistic Insights Into VEGF Receptor 3 Ligand Binding and Activation
    Structural and mechanistic insights into VEGF receptor 3 ligand binding and activation Veli-Matti Leppänena,1, Denis Tvorogova,1, Kaisa Kiskob, Andrea E. Protab, Michael Jeltscha, Andrey Anisimova, Sandra Markovic-Muellerb, Edward Stuttfeldb,c, Kenneth N. Goldied, Kurt Ballmer-Hoferb, and Kari Alitaloa,2 aWihuri Research Institute and Translational Cancer Biology Program, Institute for Molecular Medicine Finland and Helsinki University Central Hospital, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland; bLaboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland; cStructural Biology and Biophysics, Biozentrum, University of Basel, CH-4056 Basel, Switzerland; and dCenter for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, CH-4056 Basel, Switzerland Edited by Napoleone Ferrara, University of California at San Diego, La Jolla, CA, and approved June 26, 2013 (received for review January 23, 2013) Vascular endothelial growth factors (VEGFs) and their receptors binding, VEGFRs use predominantly D2, with D3 providing ad- (VEGFRs) are key drivers of blood and lymph vessel formation in ditional binding affinity (16–18). In addition, D1 is required for development, but also in several pathological processes. VEGF-C VEGFR-3 ligand binding, but the exact role of this domain re- signaling through VEGFR-3 promotes lymphangiogenesis, which is mains elusive (19, 20). VEGFRs and the closely related type III a clinically relevant target for treating lymphatic insufficiency and RTKs are activated by ligand-induced dimerization of the extra- for blocking tumor angiogenesis and metastasis. The extracellular cellular domain, followed by tyrosine autophosphorylation of the domain of VEGFRs consists of seven Ig homology domains; intracellular kinase domain to generate downstream signaling domains 1–3 (D1-3) are responsible for ligand binding, and the (21).
    [Show full text]