Umi-Uta-1152.Pdf (4.819Mb)
Total Page:16
File Type:pdf, Size:1020Kb
MODULAR MULTI-SCALE ASSEMBLY SYSTEM FOR MEMS PACKAGING by RAKESH MURTHY Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN MECHANICAL ENGINEERING THE UNIVERSITY OF TEXAS AT ARLINGTON December 2005 ACKNOWLEDGEMENTS With this degree, I feel one step closer to my goal. I wish to begin by thanking my Mom, Dad and my Brother. I would like to thank Dr. Raul Fernandez for his constant support and encouragement shown in the past two years. I am indebted to Dr. Dan Popa for his support and belief in my ability. I have seen tremendous improvements in my skills and confidence under his supervision. I look forward to many more years of close association with him. I would also like to thank Dr.Agonafer for his encouragement. I cannot undermine the role played by Dr. Jeongsik Sin, Dr. Wo Ho Lee, Dr. Heather Beardsley, Manoj Mittal, Abioudin Afosoro Amit Patil and Richard Bergs for my success in the BMC project and subsequently in my thesis research. Finally I wish to thank all my friends from UTA and in India. November 11, 2005 ii ABSTRACT MODULAR MULTI-SCALE ASSEMBLY SYSTEM FOR MEMS PACKAGING Publication No. ______ Rakesh Murthy, MS The University of Texas at Arlington, 2005 Supervising Professor: Dr. Raul Fernandez A multi-scale robotic assembly problem is approached here with focus on mechanical design for precision positioning at the microscale. The assembly system is characterized in terms of accuracy/repeatability and calibration via experiments. The MEMS packaging requirements are studied from an assembly point of view. The tolerance budget of the assembly ranges from 4 microns to 300 microns. The system components include robots, microstages, end-effectors and fixtures that accomplish the assembly tasks. Task assignment amongst this hardware has been accomplished based on precision and dexterity availability. Various end-effectors and fixtures have been designed for use with off-the-shelf hardware (robots and microstages) to develop a coarse-fine positioning system. These end-effector and fixture designs are tested for iii precision performance. The robots and the vision system are calibrated to an accuracy of 11 microns or less. Inverse kinematics solutions for one of the robots have been developed in order to position parts in the global coordinate frame. Conclusions have been drawn with regard to implementation of calibration, fixturing, visual servoing or a combination of these techniques to achieve assembly within the specified tolerance budget as required by the target application. End-effector performance is improved by tuning the PID gains of the controller such that tool oscillations are minimized. iv TABLE OF CONTENTS ACKNOWLEDGEMENTS....................................................................................... ii ABSTRACT .............................................................................................................. iii LIST OF ILLUSTRATIONS…................................................................................. vii LIST OF TABLES..................................................................................................... ix Chapter 1. INTRODUCTION………............................................................................. 1 1.1 Motivation – Multi-Scale Assembly.................................................... 1 1.2 Problem Statement.............................................................................. 3 1.3 Approach……….. ............................................................................... 4 1.4 Accomplishments................................................................................ 6 1.5 Summary…………............................................................................. 9 2. BACKGROUND………............................................................................... 10 2.1 Microassembly…................................................................................ 10 2.2 Precision assembly.............................................................................. 13 2.3 Errors in Manipulators........................................................................ 15 2.4 Modular/ Reconfigurable assembly system........................................ 16 2.5 Visual Servoing ............................................................................... 17 3. SYSTEM ARCHITECTURE ....................................................................... 19 3.1 Parts to be assembled.......................................................................... 19 v 3.2 Assembly Sequence............................................................................ 21 3.3 Precision Requirements...................................................................... 22 3.4 System Components........................................................................... 25 3.5 End-Effector / Fixture Design… ........................................................ 29 4. SYSTEM ANALYSIS…............................................................................... 38 4.1 End-Effector Performance.................................................................. 38 4.2 Calibration………. ............................................................................. 48 4.3 PID gain tuning/Tool oscillations…………....................................... 60 4.4 Inverse Kinematics….. ....................................................................... 60 5. CONCLUSIONS AND FUTURE WORK.................................................... 63 REFERENCES… ...................................................................................................... 65 BIOGRAPHICAL INFORMATION......................................................................... 69 vi LIST OF ILLUSTRATIONS 1.1 MEMS package ................................................................................................... 3 1.2 Approach.............................................................................................................. 5 2.1 “Sticking effect” in microassembly..................................................................... 12 2.2 Principles of RCC............................................................................................... 14 2.3 Picture of microfactory....................................................................................... 16 3.1 Completed package.............................................................................................. 20 3.2 Exploded view of components to be assembled.................................................. 20 3.3 Package alignment............................................................................................... 23 3.4 Tolerance budget description............................................................................... 23 3.5 RobotWorld ® setup............................................................................................ 25 3.6 Multi-scale mechanical setup .............................................................................. 26 3.7 Fine positioning system ....................................................................................... 27 3.8 Schematic diagram of supervisory control system .............................................. 28 3.9 RobotWorld setup shown with platen (translucent) ............................................ 29 3.10 Package gripper .................................................................................................. 30 3.11 Vacuum pick-up tool ......................................................................................... 31 3.12 Fiber gripper ...................................................................................................... 32 3.13 Tool rest fixtures................................................................................................ 33 3.14 Fiber insertion platform..................................................................................... 35 vii 3.15 Plate holding fiber spool.................................................................................... 35 3.16 Fiber tilt experiment test-bed............................................................................. 36 3.17 Laser Fixture...................................................................................................... 37 4.1 Bulls eye diagram ................................................................................................ 38 4.2 Camera accuracy.................................................................................................. 40 4.3 CCD accuracy datapoints .................................................................................... .42 4.4 Camera robot repeatability datapoints................................................................. 43 4.5 Robot repeatability............................................................................................... 44 4.6 Robot repeatability datapoints ............................................................................. 46 4.7 Four-axis robot accuracy ..................................................................................... 48 4.8 Assembly system coordinate frames ................................................................... 51 4.9 Camera/ robot calibration .................................................................................... 52 viii LIST OF TABLES 3.1 Tolerance budget ................................................................................................