|||GET||| Robots 1St Edition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Autonomous Mobile Systems for Long-Term Operations in Spatio-Temporal Environments Cedric Pradalier
Autonomous Mobile Systems for Long-Term Operations in Spatio-Temporal Environments Cedric Pradalier To cite this version: Cedric Pradalier. Autonomous Mobile Systems for Long-Term Operations in Spatio-Temporal Envi- ronments. Robotics [cs.RO]. INP DE TOULOUSE, 2015. tel-01435879 HAL Id: tel-01435879 https://hal.archives-ouvertes.fr/tel-01435879 Submitted on 20 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Autonomous Mobile Systems for Long-Term Operations in Spatio-Temporal Environments Synth`ese des travaux de recherche r´ealis´es en vue de l’obtention de l’Habilitation `aDiriger des Recherches de l’Institut National Polytechnique de Toulouse C´edric PRADALIER GeorgiaTech Lorraine – UMI 2958 GT-CNRS 2, rue Marconi 57070 METZ, France [email protected] Soutenue le Vendredi 6 Juin 2015 au LAAS/CNRS Membres du jury: Francois Chaumette, INRIA, Rapporteur Tim Barfoot, University of Toronto, Rapporteur Henrik Christensen, Georgia Institute of Technology, Rapporteur Olivier Simonin, INSA Lyon, Examinateur Roland Lenain, IRSTEA, Examinateur Florent Lamiraux, LAAS/CNRS, Examinateur Simon Lacroix, LAAS/CNRS, Examinateur Contents 1 Introduction 2 2 Autonomous mobile systems for natural and unmodified environments 4 2.1 Localization, navigation and control for mobile robotic systems . -
History of Robotics: Timeline
History of Robotics: Timeline This history of robotics is intertwined with the histories of technology, science and the basic principle of progress. Technology used in computing, electricity, even pneumatics and hydraulics can all be considered a part of the history of robotics. The timeline presented is therefore far from complete. Robotics currently represents one of mankind’s greatest accomplishments and is the single greatest attempt of mankind to produce an artificial, sentient being. It is only in recent years that manufacturers are making robotics increasingly available and attainable to the general public. The focus of this timeline is to provide the reader with a general overview of robotics (with a focus more on mobile robots) and to give an appreciation for the inventors and innovators in this field who have helped robotics to become what it is today. RobotShop Distribution Inc., 2008 www.robotshop.ca www.robotshop.us Greek Times Some historians affirm that Talos, a giant creature written about in ancient greek literature, was a creature (either a man or a bull) made of bronze, given by Zeus to Europa. [6] According to one version of the myths he was created in Sardinia by Hephaestus on Zeus' command, who gave him to the Cretan king Minos. In another version Talos came to Crete with Zeus to watch over his love Europa, and Minos received him as a gift from her. There are suppositions that his name Talos in the old Cretan language meant the "Sun" and that Zeus was known in Crete by the similar name of Zeus Tallaios. -
Wireless Control of Serpentine Like Robot for Industrial Inspection and Surveillance Controller, Camera Sensor Part, and Zigbee Network B
International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-2 Issue-3, July 2013 Wireless Control of Serpentine like Robot for Industrial Inspection and Surveillance K. Gafoor Raja, G. Ramakrishna Abstract— This paper focuses on a Robot which is biologically It is often used by snakes to move on loose or slippery inspired from nature. Snakes are unique because they utilize the surfaces like sand or mud, in such cases the snake appears to irregularities in the terrain and make an effective motion. This throw its head forward and the rest of its body follows motion robot is designed to visualize the situation and to measure the while the head is thrown forward again. (4) Rectilinear environment parameters. Snake is composed of segments, those method: This is a slow, creeping, straight movement. The are individually controlled. In particular the locomotion of snake uses some of the wide scales on its belly to grip the snake is controlled by CAN-bus. Among the all available buses ground while pushing forward with the others. These the CAN-bus is faster and provides real time data transfer. A methods will create new possibilities to make things possible wireless technology (ZigBee) is introduced between robot section and monitoring section. The measured values are updated on the in many rescue applications like in disastrous, risky and PC. perilous situations [11]. Index Terms— Snake Robot, CAN-bus, locomotion control, II. SYSTEM ARCHITECTURE surveillance, sensing. Monitoring section I. INTRODUCTION Many manmade machines are inspired from the nature. Among many available creatures around the world snakes are those whose ability to penetrating through many terrains. -
Robot Control and Programming: Class Notes Dr
NAVARRA UNIVERSITY UPPER ENGINEERING SCHOOL San Sebastian´ Robot Control and Programming: Class notes Dr. Emilio Jose´ Sanchez´ Tapia August, 2010 Servicio de Publicaciones de la Universidad de Navarra 987‐84‐8081‐293‐1 ii Viaje a ’Agra de Cimientos’ Era yo todav´ıa un estudiante de doctorado cuando cayo´ en mis manos una tesis de la cual me llamo´ especialmente la atencion´ su cap´ıtulo de agradecimientos. Bueno, realmente la tesis no contaba con un cap´ıtulo de ’agradecimientos’ sino mas´ bien con un cap´ıtulo alternativo titulado ’viaje a Agra de Cimientos’. En dicho capitulo, el ahora ya doctor redacto´ un pequeno˜ cuento epico´ inventado por el´ mismo. Esta pequena˜ historia relataba las aventuras de un caballero, al mas´ puro estilo ’Tolkiano’, que cabalgaba en busca de un pueblo recondito.´ Ya os podeis´ imaginar que dicho caballero, no era otro sino el´ mismo, y que su viaje era mas´ bien una odisea en la cual tuvo que superar mil y una pruebas hasta conseguir su objetivo, llegar a Agra de Cimientos (terminar su tesis). Solo´ deciros que para cada una de esas pruebas tuvo la suerte de encontrar a una mano amiga que le ayudara. En mi caso, no voy a presentarte una tesis, sino los apuntes de la asignatura ”Robot Control and Programming´´ que se imparte en ingles.´ Aunque yo no tengo tanta imaginacion´ como la de aquel doctorando para poder contaros una historia, s´ı que he tenido la suerte de encontrar a muchas personas que me han ayudado en mi viaje hacia ’Agra de Cimientos’. Y eso es, amigo lector, al abrir estas notas de clase vas a ser testigo del final de un viaje que he realizado de la mano de mucha gente que de alguna forma u otra han contribuido en su mejora. -
Industrial Robot
1 Introduction 25 1.2 Industrial robots - definition and classification 1.2.1 Definition (ISO 8373:2012) and delimitation The annual surveys carried out by IFR focus on the collection of yearly statistics on the production, imports, exports and domestic installations/shipments of industrial robots (at least three or more axes) as described in the ISO definition given below. Figures 1.1 shows examples of robot types which are covered by this definition and hence included in the surveys. A robot which has its own control system and is not controlled by the machine should be included in the statistics, although it may be dedicated for a special machine. Other dedicated industrial robots should not be included in the statistics. If countries declare that they included dedicated industrial robots, or are suspected of doing so, this will be clearly indicated in the statistical tables. It will imply that data for those countries is not directly comparable with those of countries that strictly adhere to the definition of multipurpose industrial robots. Wafer handlers have their own control system and should be included in the statistics of industrial robots. Wafers handlers can be articulated, cartesian, cylindrical or SCARA robots. Irrespective from the type of robots they are reported in the application “cleanroom for semiconductors”. Flat panel handlers also should be included. Mainly they are articulated robots. Irrespective from the type of robots they are reported in the application “cleanroom for FPD”. Examples of dedicated industrial robots that should not be included in the international survey are: Equipment dedicated for loading/unloading of machine tools (see figure 1.3). -
Umi-Uta-1152.Pdf (4.819Mb)
MODULAR MULTI-SCALE ASSEMBLY SYSTEM FOR MEMS PACKAGING by RAKESH MURTHY Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN MECHANICAL ENGINEERING THE UNIVERSITY OF TEXAS AT ARLINGTON December 2005 ACKNOWLEDGEMENTS With this degree, I feel one step closer to my goal. I wish to begin by thanking my Mom, Dad and my Brother. I would like to thank Dr. Raul Fernandez for his constant support and encouragement shown in the past two years. I am indebted to Dr. Dan Popa for his support and belief in my ability. I have seen tremendous improvements in my skills and confidence under his supervision. I look forward to many more years of close association with him. I would also like to thank Dr.Agonafer for his encouragement. I cannot undermine the role played by Dr. Jeongsik Sin, Dr. Wo Ho Lee, Dr. Heather Beardsley, Manoj Mittal, Abioudin Afosoro Amit Patil and Richard Bergs for my success in the BMC project and subsequently in my thesis research. Finally I wish to thank all my friends from UTA and in India. November 11, 2005 ii ABSTRACT MODULAR MULTI-SCALE ASSEMBLY SYSTEM FOR MEMS PACKAGING Publication No. ______ Rakesh Murthy, MS The University of Texas at Arlington, 2005 Supervising Professor: Dr. Raul Fernandez A multi-scale robotic assembly problem is approached here with focus on mechanical design for precision positioning at the microscale. The assembly system is characterized in terms of accuracy/repeatability and calibration via experiments. -
A Semi-Supervised Machine Learning Approach for Acoustic Monitoring of Robotic Manufacturing Facilities
A SEMI-SUPERVISED MACHINE LEARNING APPROACH FOR ACOUSTIC MONITORING OF ROBOTIC MANUFACTURING FACILITIES by Jeffrey Bynum A Thesis Submitted to the Graduate Faculty of George Mason University In Partial fulfillment of The Requirements for the Degree of Master of Science Electrical Engineering Committee: Dr. Jill Nelson, Thesis Director Dr. David Lattanzi, Committee Member Dr. Vasiliki Ikonomidou, Committee Member Dr. Monson Hayes, Chairman, Department of Electrical and Computer Engineering Dr. Kenneth Ball, Dean for Volgenau School of Engineering Date: Summer 2019 George Mason University Fairfax, VA A Semi-supervised Machine Learning Approach for Acoustic Monitoring of Robotic Manufacturing Facilities A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at George Mason University By Jeffrey Bynum Bachelor of Science George Mason University, 2016 Director: Dr. Jill Nelson, Professor Department of Electrical and Computer Engineering Summer 2019 George Mason University Fairfax, VA Copyright c 2019 by Jeffrey Bynum All Rights Reserved ii Dedication I dedicate this thesis to my parents. Your love and encouragement made this possible. iii Acknowledgments I would like to thank the members of the Lattanzi Research Group for your invaluable mentorship, guidance, and feedback. In addition, portions of this work were supported by a grant from the Office of Naval Research (No. N00014-18-1-2014). Any findings or recommendations expressed in this material are those of the author and does not necessarily reflect the views of ONR. iv Table of Contents Page List of Tables . vii List of Figures . viii Abstract . x 1 Introduction . 1 2 Prior Work . 3 2.1 Feature Engineering . -
Design, Control and Implementation of SCARA Robot for Sorting Missions with Machine Vision
Design, control and implementation of SCARA robot for sorting missions with machine vision. By Ahmad Manasra Ashraf AL Sharif Ala Salaymeh Yousef Natsheh Supervisor: Dr. Yousef Sweiti Submitted to the College of Engineering in partial fulfillment of the requirements for the Bachelor degree in Mechatronics Engineering Palestine Polytechnic University May 2018 Hebron – Palestine I اﻹهداء إلى ُمعلمنا وقائدنا وشفيعنا وقدوتنا سيدنا ُمحمد " صل اهلل عليه وسلم " إلى بوصلة المسلمين ، الى عاصمة دولة فلسطين ، الى مدينة القدس المباركة إلى من رسموا بدمائهم خارطة الوطن وطريق المستقبل وهندسوا بأجسادهم معاقل العزة والك ارمة والى من هم أكرم منا جميعا شهداء الوطن الحبيب إلى الذين عشقوا الحرية التي تفوح منها رائحة الياسمين وتواروا خلف القضبان ليفسحوا لنا النور.. أسرانا البواسل إلى من كلّت أنامله ليقدم لنا لحظة سعادة، إلى الذي طلب ُت منه نجمة، فعاد حامﻻ السماء،إلى القلب الكبير أبي الحبيب إلى التي رآني قلبها قبل عينيها وحضنتني أحشاءها قبل يديها ، إلى من كٌرست حياتها لنجاحنا أُمي الحنونة إلى من شاركونا ذكريات الطفولة وأحﻻم الشباب إلى أخواني اﻻعزاء إلى كل من علمني حرفا وغرس معاني التميز واﻻبداع فينا الى معلمينا اﻻكارم إلى من ضاقت السطور لذكرهم فوسعتهم قلوبنا..أصدقائنا اﻷعزاء إلى من رسم معنا خطوات هذا النجاح ،الى من بذل جهده ووقته وكان لنا مرشدا وناصحا وأخا الى مشرفنا الحبيب الدكتور يوسف السويطي. إليكم نهدي هذا العمل المتواضع I شكر وتقدير "كن عالما .. فـإن لم تستطع فكن متعلما ، فإن لم تستطع فـأحب العلماء ،فـإن لم تستطع فـﻻ تبغضهم" )الحمد هلل الذي هدانا لهذا وما كنا لنهتدي لوﻻ ان هدانا اهلل( نحمد اهلل سبحانه وتعالى الذي سخر لنا قدره وجعلنا من المتعلمين ،فبعد مسيرة خمسة أعوام من رحلة بحث وجهد واجتهاد تكللت بإنجاز هذا المشروع ، نحمد اهلل عز وجل على نعمه التي م ّن بها علينا فهو العلي القدير ، كما ﻻ يسعنا إﻻ أن نخص بأسمى عبارات الشكر والتقدير الدكتور يوسف سويطي لما قّد مه لنا من جهد ونصح ومعرفة طيلة انجاز هذا المشروع . -
Walking Machines: 0-Legged-Robots
limbless mobile robots file:///E|/Eigene Dateien/Leonardo/Stud...NoLegs-CD/RoboterLaufenNoLegsLocal.html Walking machines: 0-legged-robots (only snake-like robots, so far) A compilation by Christian Düntgen Pictorial Overview on Crawling Robots ACM III KORYU I KORYU II OBLIX Chabin's snake GMD-Snake GMD-Snake2 JPL-Snake Mita-Lab Snake NEC-'Quake'-Snake Snakey Shan's Snake 1 of 16 26.08.00 18:45 limbless mobile robots file:///E|/Eigene Dateien/Leonardo/Stud...NoLegs-CD/RoboterLaufenNoLegsLocal.html ATMS KAA Snake 'Henrietta' JHU Metamorphical Robot Model I. Motivation Snakes populate wide regions of our planet. They use different methods to move within varying environments (sand, water, solid surface, within trees, ...). They can even climb obstacles and pass rough, smooth and slippery surfaces. Robotic snake might be used to inspect pipes and underground locations or to explore rough territories. As snakes have a lot of degrees of freedoms, their construction pattern is interesting for manipulators e.g. to work with dangerous materials. Snake-like architectures' high degree of freedoms and allow three-dimensional locomotion and a lot of other tasks as gripping, moving or transporting objects with the body. Advantages of snake like motion 1. Terrainability Snake like robots can traverse rough terrain: they can climb steps whose heights approach its longest linear dimension, pass soft or viscous materials, span gasps, etc. 2. Traction Snakes can use almost their full bodylenght to apply forces to the ground. 3. Efficiency Low costs of body support, no cost of limb motion. But: high friction losses, lateral accelerations of the body. -
An Engineer's Guide to Industrial Robot Designs
e-book An Engineer’s Guide to Industrial Robot Designs A compendium of technical documentation on robotic system designs ti.com/robotics Q2 | 2020 Table of Contents/Overview 1. Introduction 3. Robot arm and driving system (manipulator) 1.1 An introduction to an industrial robot system. 3 3.1.1 How to protect battery power management systems from thermal damage. 45 2. Robot system controller 3.1.2 Protecting your battery isn’t as hard as 2.1 Control panel you think.....................................46 2.1.1 Using Sitara™ processors for Industry 3.1.3 Position feedback-related reference designs 4.0 servo drives.......................9 for robotic systems............................47 2.2 Servo drives for robotic systems 4. Sensing and vision technologies 2.2.1 The impact of an isolated gate driver. 13 4.1 TI mmWave radar sensors in robotics 2.2.2 Understanding peak source and applications..................................48 sink current parameters . 17 4.2 Intelligence at the edge powers autonomous 2.2.3 Low-side gate drivers with UVLO versus factories .....................................53 BJT totem poles ......................19 4.3 Use ultrasonic sensing for graceful robots. 55 2.2.4 An external gate-resistor design guide for 4.4 How sensor data is powering AI in robotics. 57 gate drivers.......................... 20 4.5 Bringing machine learning to embedded 2.2.5 High-side motor current monitoring for systems .....................................61 overcurrent protection. 22 4.6 Robots get wheels to address new 2.2.6 Five benefits of enhanced PWM rejection for challenges and functions. 65 in-line motor control. 24 4.7 Vision and sensing-technology reference 2.2.7 How to protect control systems from thermal designs for robotic systems. -
Autonomous Navigation Field Results of a Planetary Analog Robot in Antarctica
AUTONOMOUS NAVIGATION FIELD RESULTS OF A PLANETARY ANALOG ROBOT IN ANTARCTICA Stewart Moorehead, Reid Simmons, Dimitrios Apostolopoulos and William "Red" Whittaker The Robotics Institute Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA. 15213 U.S.A. phone: 1-412-268-7086, fax: 1-412-268-5895, email: [email protected] phone: 1-412-268-262 1, fax: 1-412-268-5576, email: [email protected] phone: 1-412-268-7224, fax: 1-412-268- 1488, email: [email protected] phone: 1-412-268-6556, fax: 1-412-682-1 793, email: [email protected] ABSTRACT tion in polar terrain and meteorite detection/classification 191. Experiments were also performed on characterizing The Robotic Antarctic Meteorite Search at Curnegie Mel- laser and stereo sensors [14], systematic patterned search lon is developing robotic technologies to allow for auton- [lo], ice and snow mobility, landmark based navigation omous seart.h and class$cation of meteorites in and millimeter wave radar [I]. Foot search by the expedi- Antarctica. In November 1998, the robot Nomad was tion found two meteorites [5]. r1eployc.d in the Patriot Hills region of Antarctica to per- ,form several demonstrations and experiments of these technologies in a polar environment. Nomad drove 10.3km autonomously in Antarctica under a variety of weather and terrain conditions. This paperpre- sents the results of this traverse, the ability of stereo ~lisionand laser scanner to perceive polar terrain and the rlutonomous navigation system used. 1 INTRODUCTION From the Lunakhods on the Moon to Sojourner on Mars 161, mobile robots have demonstrated their usefulness to planetary exploration. -
Insect-Computer Hybrid System for Autonomous Search and Rescue Mission
Insect-Computer Hybrid System for Autonomous Search and Rescue Mission Hirotaka Sato ( [email protected] ) Nanyang Technological University P. Thanh Tran-Ngoc Nanyang Technological University Le Duc Long Nanyang Technological University Bing Sheng Chong Nanyang Technological University H. Duoc Nguyen Nanyang Technological University V. Than Dung Nanyang Technological University Feng Cao Nanyang Technological University Yao Li Harbin Institute of Technology Kazuki Kai Nanyang Technological University Jia Hui Gan Nanyang Technological University T. Thang Vo-Doan University of Freiburg T. Luan Nguyen University of Leeds Physical Sciences - Article Keywords: Disaster-hit Areas, Power Consumption, Locomotion Computation Load, Obstacle-avoidance System, Navigation Control Algorithm, Human Presence Detection Posted Date: June 12th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-598481/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Insect-Computer Hybrid System for Autonomous Search and Rescue Mission P. Thanh Tran-Ngoc1, D. Long Le1, Bing Sheng Chong1, H. Duoc Nguyen1, V. Than Dung1, Feng Cao1, Yao Li2, Kazuki Kai1, Jia Hui Gan1, T. Thang Vo-Doan3, T. Luan Nguyen4, and Hirotaka Sato1* 1School of Mechanical & Aerospace Engineering, Nanyang Technological University; 50 Nanyang Avenue, 639798, Singapore 2School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen; University Town, Shenzhen, 518055, China 3University of Freiburg; Hauptstrasse. 1, Freiburg, 79104, Germany 4University of Leeds; Woodhouse, Leeds LS2 9JT, United Kingdom *Corresponding author. Email: [email protected] Abstract: There is still a long way to go before artificial mini robots are really used for search and rescue missions in disaster-hit areas due to hindrance in power consumption, computation load of the locomotion, and obstacle-avoidance system.