Modeling, Control, and Simulation of a SCARA PRR-Type Robot Manipulator

Total Page:16

File Type:pdf, Size:1020Kb

Modeling, Control, and Simulation of a SCARA PRR-Type Robot Manipulator Scientia Iranica B (2020) 27(1), 330{340 Sharif University of Technology Scientia Iranica Transactions B: Mechanical Engineering http://scientiairanica.sharif.edu Modeling, control, and simulation of a SCARA PRR-type robot manipulator M.E. Uk, F.B. Sajjad Ali Shah, M. Soyaslan, and O. Eldogan Faculty of Technology, Department of Mechatronics Engineering, Sakarya University, Sakarya, Turkey. Received 19 June 2018; received in revised form 2 September 2018; accepted 29 October 2018 KEYWORDS Abstract. In this study, a SCARA Prismatic-Revolute-Revolute-type (PRR) robot manipulator is designed and implemented. Firstly, the SCARA robot is designed in SCARA robot; accordance with the mechanical calculations. Then, forward and inverse kinematic Real-time control; equations of the robot are derived by using D-H parameters and analytical methods. The Modelling; software is developed according to the obtained Cartesian velocities from joint velocities Simulation; and joint velocities from Cartesian velocities. The trajectory planning is designed using Prismatic-Revolute- the calculated kinematic equations, and the simulation is performed in MATLAB VRML Revolute (PRR); environment. A stepping motor is used for the prismatic joint of the robot, and servo Servo motor. motors are used for revolute joints. While most of the SCARA robot studies focus on the Revolute-Revolute-Prismatic -type (RRP) servo control strategy, this work focuses on PRR-type and both stepper and servo control structures. The objects in the desired points of the workspace are picked and placed to another desired point synchronously with the simulation. Therefore, the performance of the robot is examined experimentally. © 2020 Sharif University of Technology. All rights reserved. 1. Introduction can operate without the need for large areas. For this reason, the processes such as packaging, sorting, Nowadays, the objective of production at high speeds alignment, planar welding, and assembly in the pro- with low costs and low error rates in industrial pro- duction lines are usually performed with SCARA-type duction lines has gained great importance in terms of manipulators. The rst SCARA robot was developed competitiveness. For this reason, companies often use in 1978 by Professor Hiroshi Makino at Yamanashi di erent types of robots, such as Cartesian, SCARA, University in Japan [3]. Afterwards, many types etc., in industrial applications. Cartesian systems are of SCARA robots have emerged to be used in the widely used in high-density warehouses and, generally, machine, automotive, and robot industries. have both shuttle and aisle robots that generate the In literature studies, kinematic and dynamic Cartesian structure [1,2]. SCARA (Selective Compli- modeling, simulation analysis, di erent control meth- ance Assembly Robot Arm) manipulators take up less ods, and trajectory planning have been studied both space than Cartesian systems, are easier to install, and theoretically and experimentally. Di erent decentral- ized and centralized (model-based) controllers have *. Corresponding author. Tel.: +90 2642956912; been tested with experimental studies of an industrial Fax: +90 2642956424 SCARA robot. E-mail addresses: [email protected] (M.E. As a result, the performance of decentralized Uk); [email protected] (F.B. Sajjad Ali Shah); [email protected] (M. Soyaslan); controllers was found to be suciently accurate for a [email protected] (O. Eldogan) large number of industrial applications [4]. Accurate results of experimental studies depend on well-made doi: 10.24200/sci.2018.51214.2065 mathematical modeling. In SCARA robots, which M.E. Uk et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 330{340 331 are generally used in industrial applications, it is heavy weights is a challenge. Since the base is xed very important to make both dynamic and kinematic on one point, powerful torque motors for lifting heavy calculations accurately in order to make the system loads linearly can be used easily. work properly. While Das and Dulger [5] developed a In this study, a PRR-type (Prismatic-Revolute- complete mathematical model with actuator dynamics Revolute) SCARA robot manipulator is designed. In and motion equations derived by using the Lagrangian addition, a gripper is placed on the last joint so that mechanics, Alshamasin et al. [6] investigated kinematic the objects can be picked and placed at the desired modeling and simulation of a SCARA robot by using locations. In the rst section, the usage areas of solid dynamics by means of Matlab/Simulink. Unlike SCARA robots and the studies in the literature are other studies, Urrea and Kern [7] implemented a mentioned. In Section 2, the forward kinematics of the simulation of a 5-Degree-Of-Freedom (DOF) SCARA robot is obtained by using the Denavit-Hartenberg (D- manipulator using Matlab/Simulink software. Their H) method [22]. Then, the inverse kinematic equations study has no physical application, although it bears and Jacobian matrix are obtained by using analytical similarity with the work we have done. This study methods. In Section 3, the experimental setup of enjoys some advantages over these types of works, the robot is explained. In Section 4, the control and which include only modeling and simulation. Kaleli simulation software are described. In the conclusion et al. [8] and Korayem et al. [9] designed a program section, the results and discussion are presented. for simulating and animating the robot kinematics and dynamics in LabView software. Similar to these 2. Robot kinematics works, there are various robot control, simulation, and calculation program studies in the literature [10{20]. 2.1. Forward kinematics While some of them are just based on the analysis and Robot forward kinematics deals with the relationship simulation of one type of robot arms, some give results among the positions, velocities, and accelerations of for robots in di erent types. robot joints [23]. A robot consists of links that are SCARA robots with RRP (Revolute-Revolute- attached to each other by prismatic or rotary joints. Prismatic) or PRR (Prismatic-Revolute-Revolute) Coordinate systems are placed to each joint to nd the joint con gurations are easy to provide linear move- transformation matrices that set the relation between ment in vertical directions. RRP and PRR types two neighboring joints. The transformation matrix have some advantages and disadvantages. RRP-type i1 between the two joints is shown like iT . The relation SCARA manipulators are very common in light-duty between the base frame and the tool frame is de ned by applications that require precision and speed, which is the serial joint transformation matrices. This relation dicult to achieve by human beings [21]. While the is called forward kinematics and shown in Eq. (1): prismatic joint motor is only lifting the objects in RRP type, it is lifting the whole robot structure with the 0 T = 0T 1T 2T 3T N1T: (1) objects in PRR type. Therefore, the prismatic joint N 1 2 3 4 N motor of PRR type has higher torque than that of The projected SCARA robot and the axes on RRP type. Therefore, the PRR-type SCARA robot the joints are shown in Figure 1. While d3 is the con guration is preferred in applications, where lifting length of the vertical joint, l1 and l2 are the horizontal Figure 1. Joint axes and implemented SCARA robot. 332 M.E. Uk et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 330{340 2 3 2 3 Table 1. D H parameters. c1l1 + c12l2 P1 6 7 6 7 a b c d s1l1 + s12l2 P2 i i1 ai1 i di O = P = 6 7 = 6 7 : (4) 4 d3 5 4P35 1 0 0 0 d3 1 1 2 0 0 1 0 Eqs. (5){(7) can be easily understood from Eq. (4): 3 0 l1 2 0 4 0 l 0 0 2 P1 = c1l1 + c12l2; (5) a i1: Angle between zi1 and zi around xi1; b ai1 : Distance between axes zi1 and zi throughout xi1; P2 = s1l1 + s12l2; (6) c i : Angle between xi1 and xi around zi; d di : Distance between axes xi1 and xi throughout zi. P3 = d3: (7) 2.2.1. Calculation of 1 angle lengths of the other two joints. The length of d3 is Eqs. (5) and (6) are rearranged as follows: calculated considering the height of the gripper. The 2 2 transformation matrices are obtained as in Eq. (2) by (c12l2) = (P1 c1l1) ; (8) the D-H method: 2 2 (s12l2) = (P2 s1l1) : (9) 2 3 2 3 1 0 0 0 c1 s1 0 l1 Eqs. (8) and (9) are summed up together as follows: 6 7 6 7 0 60 1 0 0 7 1 6s1 c1 0 07 1T =4 5 ; 2T =4 5 ; 2 2 2 2 0 0 1 d3 0 0 1 0 l2 = P1 P2 + l1 2l1(P1c1 + P2s1): (10) 0 0 0 1 0 0 0 1 Eq. (11) is obtained when b1 is used instead of (P1c1 + 2 3 P2s1): c2 s2 0 l2 6s c 0 07 2 2 2 2 2T = 6 2 2 7 : (2) l2 = P1 P2 + l1 2l1b1: (11) 3 4 0 0 1 05 0 0 0 1 Figure 2 shows the 1 derivation illustration. Due to the existence of b1, v1 also can be derived by analytical The abbreviations c and s represent the terms \cosine" methods as in Eq. (13). The variables in Figure 2 are and \sine". The DH parameters are given in Table 1. calculated as follows: b = (P c + P s ); (12) The forward kinematic matrix is obtained through 1 1 1 2 1 Eq. (3) by the product of the transformation matrices. v1 = (P1s1 + P2c1); (13) 2 3 2 2 2 c12 s12 0 c1l1 + c12l2 r = v1 + b1; (14) 6 7 0 6s12 c12 0 s1l1 + s12l27 3T = 4 5 : (3) 2 2 2 0 0 1 d3 r = P1 + P2 ; (15) 0 0 0 1 q v = P 2 + P 2 b2; (16) 2.2.
Recommended publications
  • Robotic Manipulators Mechanical Project for the Domestic Robot HERA
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/333931156 Robotic Manipulators Mechanical Project For The Domestic Robot HERA Conference Paper · April 2019 CITATIONS READS 0 197 3 authors: Marina Gonbata Fabrizio Leonardi University Center of FEI University Center of FEI 3 PUBLICATIONS 0 CITATIONS 97 PUBLICATIONS 86 CITATIONS SEE PROFILE SEE PROFILE Plinio Thomaz Aquino Junior University Center of FEI 58 PUBLICATIONS 237 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Vehicle Coordination View project HERA: Home Environment Robot Assistant View project All content following this page was uploaded by Plinio Thomaz Aquino Junior on 21 June 2019. The user has requested enhancement of the downloaded file. BRAHUR-BRASERO 2019 II Brazilian Humanoid Robot Workshop and III Brazilian Workshop on Service Robotics Robotic Manipulators Mechanical Project For The Domestic Robot HERA Marina Yukari Gonbata1, Fabrizio Leonardi1 and Plinio Thomaz Aquino Junior1 Abstract— Robotics can ease peoples life, in the industrial that can ”read” the environment where it acts), ability to act and home environment. When talking about homes, robot may actuators and motors capable of producing actions, such as assist people in some domestic and tasks, done in repeat. To the displacement of the robot in the environment), robustness accomplish those tasks, a robot must have a robotic arm, so it can interact with the environment physically, therefore, a robot and intelligence (ability to handle the most diverse situations, must use its arm to do the tasks that are required by its user. in order to solve and perform tasks as complex as they are) [2].
    [Show full text]
  • History of Robotics: Timeline
    History of Robotics: Timeline This history of robotics is intertwined with the histories of technology, science and the basic principle of progress. Technology used in computing, electricity, even pneumatics and hydraulics can all be considered a part of the history of robotics. The timeline presented is therefore far from complete. Robotics currently represents one of mankind’s greatest accomplishments and is the single greatest attempt of mankind to produce an artificial, sentient being. It is only in recent years that manufacturers are making robotics increasingly available and attainable to the general public. The focus of this timeline is to provide the reader with a general overview of robotics (with a focus more on mobile robots) and to give an appreciation for the inventors and innovators in this field who have helped robotics to become what it is today. RobotShop Distribution Inc., 2008 www.robotshop.ca www.robotshop.us Greek Times Some historians affirm that Talos, a giant creature written about in ancient greek literature, was a creature (either a man or a bull) made of bronze, given by Zeus to Europa. [6] According to one version of the myths he was created in Sardinia by Hephaestus on Zeus' command, who gave him to the Cretan king Minos. In another version Talos came to Crete with Zeus to watch over his love Europa, and Minos received him as a gift from her. There are suppositions that his name Talos in the old Cretan language meant the "Sun" and that Zeus was known in Crete by the similar name of Zeus Tallaios.
    [Show full text]
  • Robot Control and Programming: Class Notes Dr
    NAVARRA UNIVERSITY UPPER ENGINEERING SCHOOL San Sebastian´ Robot Control and Programming: Class notes Dr. Emilio Jose´ Sanchez´ Tapia August, 2010 Servicio de Publicaciones de la Universidad de Navarra 987‐84‐8081‐293‐1 ii Viaje a ’Agra de Cimientos’ Era yo todav´ıa un estudiante de doctorado cuando cayo´ en mis manos una tesis de la cual me llamo´ especialmente la atencion´ su cap´ıtulo de agradecimientos. Bueno, realmente la tesis no contaba con un cap´ıtulo de ’agradecimientos’ sino mas´ bien con un cap´ıtulo alternativo titulado ’viaje a Agra de Cimientos’. En dicho capitulo, el ahora ya doctor redacto´ un pequeno˜ cuento epico´ inventado por el´ mismo. Esta pequena˜ historia relataba las aventuras de un caballero, al mas´ puro estilo ’Tolkiano’, que cabalgaba en busca de un pueblo recondito.´ Ya os podeis´ imaginar que dicho caballero, no era otro sino el´ mismo, y que su viaje era mas´ bien una odisea en la cual tuvo que superar mil y una pruebas hasta conseguir su objetivo, llegar a Agra de Cimientos (terminar su tesis). Solo´ deciros que para cada una de esas pruebas tuvo la suerte de encontrar a una mano amiga que le ayudara. En mi caso, no voy a presentarte una tesis, sino los apuntes de la asignatura ”Robot Control and Programming´´ que se imparte en ingles.´ Aunque yo no tengo tanta imaginacion´ como la de aquel doctorando para poder contaros una historia, s´ı que he tenido la suerte de encontrar a muchas personas que me han ayudado en mi viaje hacia ’Agra de Cimientos’. Y eso es, amigo lector, al abrir estas notas de clase vas a ser testigo del final de un viaje que he realizado de la mano de mucha gente que de alguna forma u otra han contribuido en su mejora.
    [Show full text]
  • Industrial Robot
    1 Introduction 25 1.2 Industrial robots - definition and classification 1.2.1 Definition (ISO 8373:2012) and delimitation The annual surveys carried out by IFR focus on the collection of yearly statistics on the production, imports, exports and domestic installations/shipments of industrial robots (at least three or more axes) as described in the ISO definition given below. Figures 1.1 shows examples of robot types which are covered by this definition and hence included in the surveys. A robot which has its own control system and is not controlled by the machine should be included in the statistics, although it may be dedicated for a special machine. Other dedicated industrial robots should not be included in the statistics. If countries declare that they included dedicated industrial robots, or are suspected of doing so, this will be clearly indicated in the statistical tables. It will imply that data for those countries is not directly comparable with those of countries that strictly adhere to the definition of multipurpose industrial robots. Wafer handlers have their own control system and should be included in the statistics of industrial robots. Wafers handlers can be articulated, cartesian, cylindrical or SCARA robots. Irrespective from the type of robots they are reported in the application “cleanroom for semiconductors”. Flat panel handlers also should be included. Mainly they are articulated robots. Irrespective from the type of robots they are reported in the application “cleanroom for FPD”. Examples of dedicated industrial robots that should not be included in the international survey are: Equipment dedicated for loading/unloading of machine tools (see figure 1.3).
    [Show full text]
  • Umi-Uta-1152.Pdf (4.819Mb)
    MODULAR MULTI-SCALE ASSEMBLY SYSTEM FOR MEMS PACKAGING by RAKESH MURTHY Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN MECHANICAL ENGINEERING THE UNIVERSITY OF TEXAS AT ARLINGTON December 2005 ACKNOWLEDGEMENTS With this degree, I feel one step closer to my goal. I wish to begin by thanking my Mom, Dad and my Brother. I would like to thank Dr. Raul Fernandez for his constant support and encouragement shown in the past two years. I am indebted to Dr. Dan Popa for his support and belief in my ability. I have seen tremendous improvements in my skills and confidence under his supervision. I look forward to many more years of close association with him. I would also like to thank Dr.Agonafer for his encouragement. I cannot undermine the role played by Dr. Jeongsik Sin, Dr. Wo Ho Lee, Dr. Heather Beardsley, Manoj Mittal, Abioudin Afosoro Amit Patil and Richard Bergs for my success in the BMC project and subsequently in my thesis research. Finally I wish to thank all my friends from UTA and in India. November 11, 2005 ii ABSTRACT MODULAR MULTI-SCALE ASSEMBLY SYSTEM FOR MEMS PACKAGING Publication No. ______ Rakesh Murthy, MS The University of Texas at Arlington, 2005 Supervising Professor: Dr. Raul Fernandez A multi-scale robotic assembly problem is approached here with focus on mechanical design for precision positioning at the microscale. The assembly system is characterized in terms of accuracy/repeatability and calibration via experiments.
    [Show full text]
  • Coordinated Control of a Mobile Manipulator
    University of Pennsylvania ScholarlyCommons Technical Reports (CIS) Department of Computer & Information Science March 1994 Coordinated Control of a Mobile Manipulator Yoshio Yamamoto University of Pennsylvania Follow this and additional works at: https://repository.upenn.edu/cis_reports Recommended Citation Yoshio Yamamoto, "Coordinated Control of a Mobile Manipulator", . March 1994. University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-94-12. This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/240 For more information, please contact [email protected]. Coordinated Control of a Mobile Manipulator Abstract In this technical report, we investigate modeling, control, and coordination of mobile manipulators. A mobile manipulator in this study consists of a robotic manipulator and a mobile platform, with the manipulator being mounted atop the mobile platform. A mobile manipulator combines the dextrous manipulation capability offered by fixed-base manipulators and the mobility offered by mobile platforms. While mobile manipulators offer a tremendous potential for flexible material handling and other tasks, at the same time they bring about a number of challenging issues rather than simply increasing the structural complexity. First, combining a manipulator and a platform creates redundancy. Second, a wheeled mobile platform is subject to nonholonomic constraints. Third, there exists dynamic interaction between the manipulator and the mobile platform. Fourth,
    [Show full text]
  • A Semi-Supervised Machine Learning Approach for Acoustic Monitoring of Robotic Manufacturing Facilities
    A SEMI-SUPERVISED MACHINE LEARNING APPROACH FOR ACOUSTIC MONITORING OF ROBOTIC MANUFACTURING FACILITIES by Jeffrey Bynum A Thesis Submitted to the Graduate Faculty of George Mason University In Partial fulfillment of The Requirements for the Degree of Master of Science Electrical Engineering Committee: Dr. Jill Nelson, Thesis Director Dr. David Lattanzi, Committee Member Dr. Vasiliki Ikonomidou, Committee Member Dr. Monson Hayes, Chairman, Department of Electrical and Computer Engineering Dr. Kenneth Ball, Dean for Volgenau School of Engineering Date: Summer 2019 George Mason University Fairfax, VA A Semi-supervised Machine Learning Approach for Acoustic Monitoring of Robotic Manufacturing Facilities A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at George Mason University By Jeffrey Bynum Bachelor of Science George Mason University, 2016 Director: Dr. Jill Nelson, Professor Department of Electrical and Computer Engineering Summer 2019 George Mason University Fairfax, VA Copyright c 2019 by Jeffrey Bynum All Rights Reserved ii Dedication I dedicate this thesis to my parents. Your love and encouragement made this possible. iii Acknowledgments I would like to thank the members of the Lattanzi Research Group for your invaluable mentorship, guidance, and feedback. In addition, portions of this work were supported by a grant from the Office of Naval Research (No. N00014-18-1-2014). Any findings or recommendations expressed in this material are those of the author and does not necessarily reflect the views of ONR. iv Table of Contents Page List of Tables . vii List of Figures . viii Abstract . x 1 Introduction . 1 2 Prior Work . 3 2.1 Feature Engineering .
    [Show full text]
  • |||GET||| Robots 1St Edition
    ROBOTS 1ST EDITION DOWNLOAD FREE John M Jordan | 9780262529501 | | | | | Building Robots with LEGO Mindstorms NXT It relied primarily on stereo vision to navigate and determine distances. Please note the delivery estimate is greater than 6 business days. Continue shopping. Mark Zug illustrator. Illustrator: Hoban, Robots 1st edition. But the large drum memory made programming time-consuming and Robots 1st edition. Technological unemployment Terrainability Fictional robots. The robot opened up a beer, struck a golfball to its target and even conducted the shows band. First edition, first printing. Commercial and industrial robots are now in widespread use performing jobs more cheaply or with greater accuracy and reliability than humans. Condition: Very Good. For additional information, see the Global Shipping Program terms and conditions - opens in a new window or tab This amount includes applicable customs duties, taxes, Robots 1st edition and other fees. In new protective mylar. Condition: Good. Institutional Subscription. Got one to sell? The robot could move its hands and head and could be controlled by remote control or voice control. Add to Watchlist. From Wikipedia, the free encyclopedia. Seller Image. Graduate students, researchers, academics and professionals in the areas of human Robots 1st edition, robotics, social psychology, and engineering psychology. General Motors had left all its competition behind in the dust with the sheer number of cars it was producing. Users can choose from seven factory presets for tunings, six of which are editable. Himber Lebanon, NJ, U. Printing Year see all. The ultimate attempt at automation was The Turk by Wolfgang von Kempelena sophisticated machine that could play chess against a human opponent and toured Europe.
    [Show full text]
  • Design, Control and Implementation of SCARA Robot for Sorting Missions with Machine Vision
    Design, control and implementation of SCARA robot for sorting missions with machine vision. By Ahmad Manasra Ashraf AL Sharif Ala Salaymeh Yousef Natsheh Supervisor: Dr. Yousef Sweiti Submitted to the College of Engineering in partial fulfillment of the requirements for the Bachelor degree in Mechatronics Engineering Palestine Polytechnic University May 2018 Hebron – Palestine I اﻹهداء إلى ُمعلمنا وقائدنا وشفيعنا وقدوتنا سيدنا ُمحمد " صل اهلل عليه وسلم " إلى بوصلة المسلمين ، الى عاصمة دولة فلسطين ، الى مدينة القدس المباركة إلى من رسموا بدمائهم خارطة الوطن وطريق المستقبل وهندسوا بأجسادهم معاقل العزة والك ارمة والى من هم أكرم منا جميعا شهداء الوطن الحبيب إلى الذين عشقوا الحرية التي تفوح منها رائحة الياسمين وتواروا خلف القضبان ليفسحوا لنا النور.. أسرانا البواسل إلى من كلّت أنامله ليقدم لنا لحظة سعادة، إلى الذي طلب ُت منه نجمة، فعاد حامﻻ السماء،إلى القلب الكبير أبي الحبيب إلى التي رآني قلبها قبل عينيها وحضنتني أحشاءها قبل يديها ، إلى من كٌرست حياتها لنجاحنا أُمي الحنونة إلى من شاركونا ذكريات الطفولة وأحﻻم الشباب إلى أخواني اﻻعزاء إلى كل من علمني حرفا وغرس معاني التميز واﻻبداع فينا الى معلمينا اﻻكارم إلى من ضاقت السطور لذكرهم فوسعتهم قلوبنا..أصدقائنا اﻷعزاء إلى من رسم معنا خطوات هذا النجاح ،الى من بذل جهده ووقته وكان لنا مرشدا وناصحا وأخا الى مشرفنا الحبيب الدكتور يوسف السويطي. إليكم نهدي هذا العمل المتواضع I شكر وتقدير "كن عالما .. فـإن لم تستطع فكن متعلما ، فإن لم تستطع فـأحب العلماء ،فـإن لم تستطع فـﻻ تبغضهم" )الحمد هلل الذي هدانا لهذا وما كنا لنهتدي لوﻻ ان هدانا اهلل( نحمد اهلل سبحانه وتعالى الذي سخر لنا قدره وجعلنا من المتعلمين ،فبعد مسيرة خمسة أعوام من رحلة بحث وجهد واجتهاد تكللت بإنجاز هذا المشروع ، نحمد اهلل عز وجل على نعمه التي م ّن بها علينا فهو العلي القدير ، كما ﻻ يسعنا إﻻ أن نخص بأسمى عبارات الشكر والتقدير الدكتور يوسف سويطي لما قّد مه لنا من جهد ونصح ومعرفة طيلة انجاز هذا المشروع .
    [Show full text]
  • Motion Planning for a Mobile Humanoid Manipulator Working in an Industrial Environment
    applied sciences Article Motion Planning for a Mobile Humanoid Manipulator Working in an Industrial Environment Iwona Pajak † and Grzegorz Pajak *,† Institute of Mechanical Engineering, University of Zielona Gora, 65-516 Zielona Gora, Poland; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: This paper presents the usage of holonomic mobile humanoid manipulators to carry out autonomous tasks in industrial environments, according to the smart factory concept and the Industry 4.0 philosophy. The problem of transporting lengthy objects, taking into account mechanical limitations, the conditions for avoiding collisions, as well as the dexterity of the manipulator arms was considered. The primary problem was divided into three phases, leading to three different types of robotic tasks. In the proposed approach, the pseudoinverse Jacobian method at the acceleration level to solve each of the tasks was used. The redundant degrees of freedom were used to satisfy secondary objectives such as robot kinetic energy, the maximization of the manipulability measure, and the fulfillment mechanical and collision-avoidance limitations. A computer example involving a mobile humanoid manipulator, operating in an industrial environment, illustrated the effectiveness of the proposed method. Keywords: humanoid manipulator; mobile robot; motion planning; transportation task Citation: Pajak, I.; Pajak, G. Motion Planning for a Mobile Humanoid Manipulator Working in an Industrial Environment. Appl. Sci. 2021, 11, 1. Introduction 6209. https://doi.org/10.3390/ The history of industrial robotics dates back to the 1950s. At that time, the first designs app11136209 of numerically controlled machine tools and programmable manipulators for industrial applications were created.
    [Show full text]
  • An Engineer's Guide to Industrial Robot Designs
    e-book An Engineer’s Guide to Industrial Robot Designs A compendium of technical documentation on robotic system designs ti.com/robotics Q2 | 2020 Table of Contents/Overview 1. Introduction 3. Robot arm and driving system (manipulator) 1.1 An introduction to an industrial robot system. 3 3.1.1 How to protect battery power management systems from thermal damage. 45 2. Robot system controller 3.1.2 Protecting your battery isn’t as hard as 2.1 Control panel you think.....................................46 2.1.1 Using Sitara™ processors for Industry 3.1.3 Position feedback-related reference designs 4.0 servo drives.......................9 for robotic systems............................47 2.2 Servo drives for robotic systems 4. Sensing and vision technologies 2.2.1 The impact of an isolated gate driver. 13 4.1 TI mmWave radar sensors in robotics 2.2.2 Understanding peak source and applications..................................48 sink current parameters . 17 4.2 Intelligence at the edge powers autonomous 2.2.3 Low-side gate drivers with UVLO versus factories .....................................53 BJT totem poles ......................19 4.3 Use ultrasonic sensing for graceful robots. 55 2.2.4 An external gate-resistor design guide for 4.4 How sensor data is powering AI in robotics. 57 gate drivers.......................... 20 4.5 Bringing machine learning to embedded 2.2.5 High-side motor current monitoring for systems .....................................61 overcurrent protection. 22 4.6 Robots get wheels to address new 2.2.6 Five benefits of enhanced PWM rejection for challenges and functions. 65 in-line motor control. 24 4.7 Vision and sensing-technology reference 2.2.7 How to protect control systems from thermal designs for robotic systems.
    [Show full text]
  • A Low-Cost Compliant 7-DOF Robotic Manipulator
    A Low-cost Compliant 7-DOF Robotic Manipulator Morgan Quigley, Alan Asbeck, and Andrew Y. Ng Abstract— We present the design of a new low-cost series- elastic robotic arm. The arm is unique in that it achieves reasonable performance for the envisioned tasks (backlash-free, sub-3mm repeatability, moves at 1.5m/s, 2kg payload) but with a significantly lower parts cost than comparable manipulators. The paper explores the design decisions and tradeoffs made in achieving this combination of price and performance. A new, human-safe design is also described: the arm uses stepper motors with a series-elastic transmission for the proximal four degrees of freedom (DOF), and non-series-elastic robotics servos for the distal three DOF. Tradeoffs of the design are discussed, especially in the areas of human safety and control bandwidth. The arm is used to demonstrate pancake cooking (pouring batter, flipping pancakes), using the intrinsic compliance of the arm to aid in interaction with objects. I. INTRODUCTION Fig. 1. The low-cost compliant manipulator described in this paper. Many robotic manipulators are very expensive, due to A spatula was used as the end effector in the demonstration application high-precision actuators and custom machining of compo- described in this paper. For ease of prototyping, lasercut plywood was used nents. We propose that robotic manipulation research can as the primary structural material. advance more rapidly if robotic arms of reasonable perfor- mance were greatly reduced in price. Increased affordability can lead to wider adoption, which in turn can lead to arms but at a drastically lower single-unit parts cost of $4135.
    [Show full text]