Tessellator Robot Design Document
Total Page:16
File Type:pdf, Size:1020Kb
Tessellator Robot Design Document Kevin Dowling 22 August 2002 CMU-TR-RI-95-43 Robotics Institute Carnegie Mellon University Pittsburgh, Pennsylvania 15213-3890 Abstract This report documents the preliminary design for a mobile manipulator system to service the Space Shuttle. This doc- ument arose from the Mobile Robot Design Course in the Spring of 1991 held at Carnegie Mellon’s Robotics Insti- tute. A wide number of issues are addressed including mechanical configuration and design, software and hardware architectures, sensing, power, planning and a number of design process issues as well. Many comparisons and analy- ses are presented and much of this work helped formulate decisions and designs in the eventual robot system, the Tes- sellator. This research was partially supported by NASA NAGW-1175. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of NASA or the U.S. government. ACM Computing Reviews Keywords: 1.2.10 Vision and Scene Understanding, 1.2.9 Robotics, 1.4.6 Segmentation, 1.4.8 Scene Analysis, 1.4.1 Digitization 1. Introduction 9 1.1 Background 9 1.2 Document Outline 10 1.3 Design Process 11 1.3.1 End of Year Demonstration 11 2. Design Specifications and Constraints 13 2.1 Facility Constraints 13 2.1.1 Orbiter Processing Facility 14 2.1.2 Mate-Demate Device 16 2.2 Environmental and Safety Issues 16 2.3 Summary 20 3. Task Scenarios 23 3.1 Deployment 24 3.2 Robot Repositioning 25 3.3 Global Positioning 26 3.4 Local Positioning 26 3.5 Tile Servicing 26 3.6 Stowage 28 3.7 Exception Conditions 28 3.7.1 Minor Exceptions 28 3.7.2 Major Exceptions 30 3.8 Summary 31 4. Design Evaluation 33 4.1 Design Criteria 33 4.1.1 End User Criteria 33 4.1.2 Performance Criteria 34 4.1.3 Design Criteria 35 4.2 Design Overview 35 4.2.1 Candidate Designs 36 4.2.2 Preliminary Configurations 40 4.3 Tile Coverage and Cycle Time Evaluation 40 4.3.1 Base Tessellation Analysis 41 4.3.2 Timing Analysis 42 1 4.4 Manipulator Configuration 45 4.4.1 Design Criteria Evaluation 45 4.4.2 Configuration Evaluation 47 4.5 Configuration Decision 50 5. Configuration 53 5.1 Vehicle Base Configuration 54 5.1.1 Base Dimensions 54 5.1.2 Drive and Steering Configuration 54 5.1.3 Packaging 57 5.1.4 Suspension 58 5.1.5 Towing 60 5.1.6 Commercial Bases 60 5.1.7 Manipulator Lift Mechanism 61 5.1.8 Base Structure 62 5.2 Base Configuration Summary 63 5.3 Manipulator 64 5.3.1 General Design Requirements 65 5.3.2 Manipulator Design Requirements 66 5.3.3 Endeffector Design Requirements 67 5.3.4 Manipulator and End-Effector Design 75 5.3.5 Manipulator System Integration 92 5.3.6 Summary 95 5.4 Controller 97 5.4.1 Requirements 97 5.4.2 Hardware 98 5.4.3 Software 101 5.5 Human Interface 105 5.6 Power System 106 5.6.1 Tethering Issues 106 5.6.2 Battery Comparisons 107 5.6.3 Battery Recommendation 108 5.6.4 Power System Monitoring 109 5.6.5 Power Budget 109 5.6.6 Battery Pack 112 5.6.7 Battery Charger 113 2 TPS Robot Design Document 5.6.8 Power System Distribution 114 5.6.9 Summary 114 6. Architecture and Planning 115 6.1 Assumptions 115 6.2 Functional Requirements for the Software 116 6.3 Operation Flowcharts 118 6.3.1 Main Operation Loop 119 6.3.2 Obstacle Avoidance Loop 120 6.3.3 Health Monitoring Loop 121 6.4 Mobile Base Moves 125 6.4.1 Tile Coverage Planning 126 6.4.2 Path Planning 127 6.4.3 Unexpected Obstacles 128 6.4.4 User Interface 132 6.5 Tile Servicing Loop 134 6.5.1 Exceptions 135 6.5.2 Exception Handling 136 6.5.3 User Interface 139 6.6 Summary 141 7. Perception 143 7.1 Position Estimation Overview 144 7.2 Global Position Estimation 151 7.2.1 System Comparison 151 7.2.2 Proposed System 152 7.3 Local Position Estimation 159 7.3.1 Model Based Vision for Local Position Estimation 159 7.3.2 Visual Servoing Approach to Local Positioning 162 7.3.3 Camera Positioning Issues 163 7.4 Obstacle Detection 166 3 8. Conclusion 173 A. Driving and Steering Configuration Evaluation 175 A.1 Ackerman 175 A.2 Synchronous Steering 176 A.3 Omnidirectional Wheels 177 A.4 Differential Steer 178 A.5 Independent Drive and Steer 178 A.6 Summary 180 B. Manipulator Evaluation 181 B.1 Kinematic Configuration 181 B.2 Positioning Accuracies 183 B.3 Workspace 185 B.4 Stiffness and Resonances 188 B.5 Inertial Forces/Torques 195 B.6 Tip-over stabilities 199 B.7 Weight Estimates 200 B.8 XY Table 204 B.9 Reach and Dexterity 207 B.10 Power Analysis 207 B.11 Fault Tolerance and Redundancy 216 B.12 Discussion 217 C. System Inputs and Outputs 219 4 TPS Robot Design Document Figure 1-1 Demonstration of mobile base and positioning systems............................................. 12 Figure 2-1 Plan view of OPF........................................................................................................ 14 Figure 2-2 Elevation view of OPF.................................................................................................15 Figure 2-3 Iso-contours of orbiter..................................................................................................16 Figure 3-1 Task sequence ............................................................................................................. 23 Figure 4-1 Candidate designs ....................................................................................................... 37 Figure 4-2 Candidate configurations. ............................................................................................40 Figure 4-3 Sample tessellation.......................................................................................................41 Figure 4-4 Relationship between time and efficiency. ..................................................................42 Figure 4-5 Total time as a function of efficiency and workspace .................................................43 Figure 4-6 Task time as a function of tile and base times .............................................................44 Figure 4-7 Total time as a function of workspace size..................................................................45 Figure 4-8 Workspace tile coverage..............................................................................................47 Figure 4-9 A qualitative analysis of constraints and requirements................................................49 Figure 4-10 Final configuration.......................................................................................................52 Figure 5-1 Independent steer configuration.................................................................................. 56 Figure 5-2 Base packaging ............................................................................................................58 Figure 5-3 Rocker arm suspension. ...............................................................................................59 Figure 5-4 Column structure..........................................................................................................62 Figure 5-5 Bottomside shuttle iso-contours...................................................................................70 Figure 5-6 Frontal shuttle contours................................................................................................71 Figure 5-7 Orbiter cross-section reach dimensions .......................................................................72 Figure 5-8 Work envelope dimensions..........................................................................................72 Figure 5-9 Vision system standoff requirements...........................................................................74 Figure 5-10 Three axis gantry system .............................................................................................76 Figure 5-11 Tile-normal configuration............................................................................................78 Figure 5-12 Vertical-normal configuration .....................................................................................79 Figure 5-13 Vertical-tile-normal configuration...............................................................................79 Figure 5-14 Manipulator and endeffector reach requirements ........................................................81 Figure 5-15 Robot wrist design concept..........................................................................................85 Figure 5-16 End effector inverse kinematics...................................................................................86 Figure 5-17 Concepts for increased manipulator reach and dexterity.............................................88 Figure 5-18 Manipulator reach and dimensional study ...................................................................89 Figure 5-19 Proposed manipulation design concept........................................................................93 Figure 5-20 Role of the controller ...................................................................................................97 Figure 5-21 Real-time system overview..........................................................................................98 Figure 5-22 Real-time boards ........................................................................................................100 Figure 5-23 Safety circuit stages ...................................................................................................100 Figure 5-24 Conceptual decomposition of the controller software ...............................................102