WILUITE, Gars(Al,Mg,Fe,Ti)

Total Page:16

File Type:pdf, Size:1020Kb

WILUITE, Gars(Al,Mg,Fe,Ti) 1301 Thz Carwd.ian M ineralo gist Vol. 36, pp. l30l-13M (1998) WILUITE,Gars(Al,Mg,Fe,Ti)13(B,Al,!)5Si1sO6s(O,OH)ro, A NEWMINERAL SPECIES ISOSTRUCTURALWITH VESUVIANITE, FROM THE SAKHA REPUBLIC, RUSSIANFEDERATION LEE A. GROATI Depamnent of Earth anl Ocean Sciences, University of British Columbia, Vancouver, British Columbia V6R 124 FRANKC. TIAWTHORNE Departmcnt of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2 T. SCOTTERCIT andJOEL D. GRICE Mineral Sciences Division, Carudian Museum of Nanre, Onatva. Ontario KlP 6P4 AssrRAcr Wiluite, Cale(At,Mg,Fe,Ti)13(B,A1,E)5SirrOes(OH,F,O)ro,rerragonal, a 15.752(L),c ll.7l7(l) A, V ZgOl.Z(Z)A3, space grotpP4lnnc,Z = 2, is a newmineral species of thevesuvianils g'.up from theWilui River,SakhaRepublic, Russian Federation. Itoccunasholosymmsfficcrystalswithforms(100Jand{101}dominantplusrninor{110}and{001},upto3X3x5cm, slightly elongatealong [001]. f{6 fiTvinningwas observed. Wiluite is darkgreen with a colorlessstreal<, a vitreousluster, and it doesnot fluoresceunder long- or short-waveultraviolet lighr It hasa Mohs hardnessof 6, is brittle with an irregularfracture, and haspoor cleavageon { 100}.The measureddensity is 3.36(3)glcm3, and the calculateddensity is 3.358g/cm3. In transmitted light, vdluiteis colorlessand nonpleochroic; it is uniaxial-positivewith a = 1.721(2)and e = 1.725(2).The strongestten reflec- tions in the X-ray powder-diffractionpattern ld(in A)(I)(hkDl are2.'176(100)(342),2.617(61)(252),2.491(61)(260), 2.s92(43)(224),r.66(26)(346), r.640(23)(292),2.r21(20)(r3s),3.s2(r8)(240), 1.987(1sxs6r),2.929(14)(004), and 2.912(14)(233).An analysisof wiluite gaveSiO236.Ll, A12O312.03, TiO2 0.80, MgO 6.48,FeO l.21,Fezo32.28,CaO35.54, Ce2O30.18, BzO: 3.06,F 0.50,H2O 0.61, O = F 4,24, sum= 99.20wt.Va.Ttie concentrarion of FeOwas determined by wet chemistry,and that of H2Owas determinedwith a LECO induction furnace;the concentrationof the other elementswas deter- minsd fy electron-microprobeanalysis. The correspondingunit formula,based on 19(Ca+ Ce), is (Ca1s.97Ceo.o:)>rs (Al6r3TiffoFes6N4ga.s1Fe5s)p13(B2.63A1s.511.sa)z5Sirz.qsOoe[(OfDz.oso7.r]>ro. Wiluite is isostructuralwith vesuvianite,and con- tainsessential B [B > 2.5 apfu (xoms per formulaunit)]; vesuvianiteis uniaxial (-), wiluite is uniaxial(+). It occurswith grossularand serpentineminerals in a serpentinite.The namerecalls the localiry, and has beenin use as a varietal name for "vesuvianite"from this locality for over 200 years. Keywords:wiluite, new rnineralspecies, electron-microprobe analysis, X-ray powder-diffractiondat4 vesuvianite,boron min- era1,Yakutia. Russia- Sopnaene Nous d6crivonsla wiluite, Cale(Al,Mg"Fe,TDr3@,Al,E)sSilaOoe(OH,F,O)ro,t6tragonale, a 15.752(1),c ll.7I70) A, V 2907.3(3)A3, groupe spatial P4lnnc, Z= 2. commenoun"au membre du groupede la v6iuvianiteprovenant de la rivibreWilui, enR6publique de Sakh4 F6d6ration Russe. Elle sepr6sente en cristaux holosym6triques montrant les forrnes dominantes { 100} et {101},etenplus, {110J et {001}moinsimportantes;ils atteignentunetaillemaximumde3 x 3 x 5 cm,etsontl6gerement allong6ssur [001].Aucune macle n'a€t€ d6cel€e.La wiluite estvert fonc6avec utre ra]ure incoloreet un 6clatvireux. Elle ne montreaucune fluorescence en lumibreultra-violette, soit en ondeslongues ou courtes.Sa duret6 est de 6; elle estcassante, et fait preuved'une fracnue irr6gulibre et d'un pidfe clivagesur { 100}. La densit6mesur6e est de 3.36(3), et la densit6calculde, 3.358 g/cm3.En fumi|1g6an5mise, la wiluite est incoloreet non pl6ochroique;els s51uniaxe positive, avec o = 1.72I(2) et e = 1.725(2).Les dix raiesles plus intensesdu spectrede diffractionX td(enA)(IXrftDlsoat2.776(100)(342),2.617(61)(252), 2.49r(6r)(260),2.592(43)(224),1.66(26)(346),r.&O(23)(2e2),2.r2r(2o)(r3s),3.52(18)(240),1.987(rs)(s6r),2.929(r4)(0M), et2.9l2(14)Q33).Une analyse chimique de la wiluite a donn6SiOz36.lI, AlzOg12.03,'tiOz 0.80, MgO 6.48,FeO 1.21,FezO: ' E-mail address: [email protected] 1302 2.28,CaO35.54, Ce2O30.18, B2O33.06, F 0.50, HzO 0.61,O = F 4.24, pour un total de 99.20Vaparpoids. La concentration de FeO a 6€ d6termin6e par voie hnmide, et la teneur enHzo a eG 6tablie au moyen d'un four tr induction LECO. Le niveau de concenmdon des autres6l6ments a€t€Atabh,pat microsonde dlectronique.La formule chimique qui en resulte, fond6e sur 19(Ca + Ce), est (Ca16.e7Cee.e3)21e(,{16.53Tie.3eFes6Mga.8lFe50)>13(B2.63Ale.53n1.ea)>5silz.eeo6s[(OH)z.olOr.g7]>10.La wiluite est isostrucnrale avec la v6suvianite, et contient le bore comme constituent essentiel (>2.5 atomes de B par unit6 formulaire). La vdsuvianite est uniaxe (-), tandis que la wiluite est uniaxe (+). On trouve la wiluite avec le grossulaire et des min6raux du groupe de la serpentine.lans une serpentinite. Le nom rappelle la localit6, et sert ddja depuis plus de 200 ans pour signifier lavari€t6, de '!6suvianite" provenant de cet endroit. (Traduit par la R6daction) Mots-clCs: wil'uite, nouvelle espdcemin6rale, analysed la miqosonde 6lectronique,diffraction X sur poudre, v6suvianite, minfpl de bore, Yakoutie, Russie. INrnopucnom cal sector zoning; {001 } sectorsshows a cross-hatched pattern,possibly due to twinning, and the {110} and It has long beenknown (Jannasch1884, Widman { 100} sectorsshow fine striations.The {001 } sectorhas 1890,Jannasch & Weingarten1896) that vesuvianite a low birefringence and is slightly biaxial, withO <2V can containsignificant boron. Groat et al. (1992) < l0o; the { 100} sectorshave higher bireftingence, and showedthat vesuvianite samples from severallocalities 2V vaies within the range l0 < 2V < 25" . The to and e containhigh (>1 vrt.VoBzO) contentsof boron. Groat indices of refraction of the {001 } sector in monochro- et al. (1994) examinedthe mechanismwhereby boron matic light (590 nm) are 1.721(2) and 1.725(2),respec- is incorporatedinto vesuvianite,and showed that boron tively. The compatibility index is 0.008: superior. occupiestwo newly identifiedsites in the structure.If Boron-free and boron-poor vesuvianitesare uniaxial (or the occupancyof one or more of thesesites by boron slightly biaxial) negative. The composition (i.e., B con- becomesdemin2a1, then a newmineral species is estab- tent) at which the optic sign changesis not known, but lished.Vesuvianite from theWilui Riverhas long been the optic sign is a simple indicator of high-B vesuvianite known to have a high boron content,and the work of and wiluite. Groatet al. (1994)showed that vesuvianitefrom this localitycontains sufficient boron to establisha newspe- Cmvucer CowosrnoN cies.The new mineral is namedwiluite, a"fterthe local- ity, theWilui River,Sakha Republic (Yakutia), Russian Crystals were analyzedchemically with aJEOL733 Federation.The new mineral and mineralname have electron microprobe operating in wavelenglh-dispersion been approvedby the InternationalMineralogical As- mode with an acceleratingvoltage of 15 kV and a speci sociationCommission on New Mineralsand Mineral men current of 25 nA. Data on standards were collected Names.Type material is depositedat the Canadian to O.25Voprecision or for 25 seconds,whichever was Museumof Narure,Ottawa" Ontario, Canada. less. Data on each element were collected to 0.5Vopre- cision or for 50 seconds.The beam size was 10 or PHvsIcar Pnopnnrms 20 Um, and counting t;mes on peak and background, 20 and 10 s, respectively. The following standardswere Wiluite occursas isolated holosymmetric crystals up used: diopside (Si), almandine (Al,Mg,Fe), titanite (Ti), to 3 X 3 ( 5 cm (ll a, b, c, respectlely).The dominant tephroite (Mn), gehlenite (Ca), elbaite @), glass 5-254 formsare {100} and {101},with minor {110} and (Ce) and fluororiebeckite (F). The FeO content was de- {001}; no twinningwas observed. Wiluite is darkgreen termhed by tihation. The H2O content was determined with a colorlessstreak and a vitreouslusler; it doesnot with a LECO induction furnace. Data were reduced us- fluoresceunder longwave or shortwaveultraviolet light. ing conventional ZAF techniques. The mean of twenty- It is brittle with a poor cleavageon {100}, and as an five determinations is given in Table 1; the crystals are irregular fracture and a Mohs hardnessof 6. The den- chemically homogeneous. The chemical formula was sity wasmeasured with a Bermanbalance using toluene calculated on the basis of 19 X cations (= Ca + Ce), as at29"C;the measured density is 3.36(3)g/cm3, and the recommended by Groat et al. (1992); the resulting for- calculateddensity is 3.358g/cm3. mula is given in Table 1. A simplified formula may be written as Cale (Al,Mg,Fe,Ti)t, (B,Al,n)s Sire Oos Orncar Pnopsnrms (O,OH)1e. In transminedlight, wiluite is colorlessand non- Trn Lnrmrnc B Covrem oF WLUTTE pleochroic.Although morphologicallytetragonal, wiluite shows"anomalous" optical properties in cross- As shownby Groatet al. (1994,1996),8 occupies r/+] r/+1/+ r/+] polarizedlight (Groater al. 1993).There is strongopti- the Z(l) [ 0.055,0.055, atdT(2) [ sitesin WILUITE FROM YAKUTL!\. RUSSIA 1303 TABLE1. cHEMICALoOMPoSITION' (wt.%) diffractometry showed the crystal tohave lmmtnLate ANDUNI-I FORMULA (eptu) FOR WILUIE symmetry; furthermore, the extinction conditions are sioz 36.11 Si 17.99 compatible with P4lnnc space-grolp symmetry. Details Alro, '12.03 of the refined crystal-structure are given by Groat et al. lto, 0.8 (1994), and the polarized ffiared spectrum is given by Ir/gO 6.48 AI 0.53 Groat et aI. (1995). FeO 1.21 tr 1.U Fe.O. 2.28 OccuRnm,tce arvo Assoqnrsl MweRAI-s CaO 35.54 Ce2O. 0.18 AI 6.53 Wiluite occurs associated with grossular in a matrix BrO, 3.06 II 0.3 of fine-grained serpentine minerals, carbonate, Fe$ 0.86 limonitized pyrite, chlorite and "achtarandid', a teta- HrO 0.61 Fe2* NA pseudomorph of rrnknown precursor mineral O"F 4.24 lr/S 4.81 hedral an from the Wilui River region, Yakutia, Russia (Grew rotal T 994_ 1996), tentatively identified as wadalite (Galuskina et Ca 18.97 al.
Recommended publications
  • New Mineral Names*
    American Mineralogist, Volume 84, pages 1464–1468, 1999 NEW MINERAL NAMES* JOHN L. JAMBOR1 AND ANDREW C. ROBERTS2 1Department of Earth Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada 2Geological Survey of Canada, 601 Booth Street, Ottawa K1A 0E8, Canada Barquillite* Chloromenite* A. Murciego, I. Pascua, J. Babkine, Y. Dusausoy, O. Medenbach, L. Vergasova, S. Krivovichev, T. Semenova, S. Filatov, V. Ananiev H.-J. Bernhardt (1999) Barquillite, Cu2(Cd,Fe)GeS4, a new (1999) Chloromenite, Cu9O2(SeO3)4Cl6, a new mineral from mineral from the Barquilla deposit, Salamanca, Spain. Eur. J. the Tolbachik volcano, Kamchatka, Russia. Eur. J. Mineral., Mineral., 11, 111–117. 11, 119-123. The mean of nine listed electron microprobe analyses is Cu The mean of four listed electron microprobe analyses is 30.67, Ag 0.26, Cd 20.38, Fe 2.20, Mn 0.43, Zn 0.09, Ge 14.99, CuO 46.23, ZnO 5.94, SeO2 34.37, Cl 16.57, O ≡ Cl 3.74, sum Sn 0.17, Ga 0.05, Bi 0.16, Sb 0.09, S 29.42, sum 98.91 wt%, 99.36 wt%, corresponding to (Cu7.71Zn0.97)Σ8.68Se4.11O13.80Cl6.20. corresponding to (Cu Ag )Σ (Cd Fe Mn Zn )Σ The mineral occurs as transparent plates, up to 0.2 mm long, 2.10 0.01 2.11 0.79 0.17 0.03 0.01 1.00 – (Ge Sn )Σ S for 8 atoms. The mineral occurs as plates, flattened on {101}, elongate [111] and rarely [010], showing 0.90 0.01 0.91 3.98 – – up to 50 µm across and <20 µm thick, either isolated or in {001}, {101}, {110}, {011} {312} and poorly developed – rosette-like aggregates.
    [Show full text]
  • 1457 Vol 43#5 Art 02.Indd
    1457 The Canadian Mineralogist Vol. 43, pp. 1457-1468 (2005) WILUITE FROM ARICCIA, LATIUM, ITALY: OCCURRENCE AND CRYSTAL STRUCTURE FABIO BELLATRECCIA Dipartimento di Scienze della Terra, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, I–00185 Roma, Italy, and Dipartimento di Scienze Geologiche, Università Roma Tre, Largo S. Leonardo Murialdo 1, I–00146 Roma, Italy FERNANDO CÁMARA AND LUISA OTTOLINI CNR – Istituto di Geoscienze e Georisorse, Sede di Pavia, via Ferrata 1, I–27100 Pavia, Italy GIANCARLO DELLA VENTURA§, GIANNANTONIO CIBIN AND ANNIBALE MOTTANA Dipartimento di Scienze Geologiche, Università Roma Tre, Largo S. Leonardo Murialdo 1, I–00146 Roma, Italy ABSTRACT We report a new occurrence of the rare mineral wiluite, the B-rich equivalent of vesuvianite, from Ariccia, Alban Hills volcano, Rome, Italy. The specimen studied was found in the collection of the Museum of Mineralogy of the University of Rome (label MMUR22496/482). Wiluite from Ariccia was sampled at the Parco Chigi quarry, within the phreatomagmatic unit emitted by the Albano maar known locally as “Peperino di Marino”. It occurs as dark brown to black euhedral, well-formed prismatic crystals, up to 1.0 cm in length and 0.5 cm across. Optical observations show a weak pleochroism and an imperfect extinction. The mineral is uniaxial (+) with ␻ 1.722(2) and ␧ 1.727(2). It is tetragonal P4/nnc, a 15.716(2), c 11.704(2) Å, V 2890.8(7) Å3. The crystal-chemical formula, obtained by combining EMP, SIMS and XREF data and calculated on the basis of 18 Si atoms, is: X Y(1) 3+ Y(2) 3+ Y(3) 3+ T(1) (Ca18.72Mg0.15Sr0.02La0.05Ce0.04Nd0.01) (Fe 0.36Mg0.26Ti0.27Mn0.11) (Al3.67Fe 0.19Mg0.14) (Al3.29Fe 1.36Mg3.35) (B2.18 T(2) Z O(11) [O(10)+O(12)] Al0.02Be0.02H0.47Ⅺ1.31) (B0.68H0.32) Si18O68 (F1.21O6.79) O2.68.
    [Show full text]
  • Relationship Among Metamorphic Grade, Vesuvianite “Rod Polytypism,” and Vesuvianite Composition
    American Mineralogist, Volume 91, pages 862–870, 2006 Relationship among metamorphic grade, vesuvianite “rod polytypism,” and vesuvianite composition EDWIN GNOS1,* AND THOMAS ARMBRUSTER2 1Institut für Geologie, Universität Bern, Baltzerstrasse 1-3, CH-3012 Bern, Switzerland 2Laboratorium für chemische und mineralogische Kristallographie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland ABSTRACT Single-crystal X-ray study of different vesuvianite samples of known origin shows that differ- ent metamorphic grade results in different arrangements of structural rods oriented parallel to the vesuvianite c axis, interpreted as “rod polytypism.” There is a systematic dependence of space-group symmetry and rod arrangement on crystallization temperature: P4nc-dominant < 300 °C, P4/n-domi- nant ~300–500 °C, and P4/nnc > 500 °C. Partial occupancy of the T sites (B, Al, Fe3+) and increased F-content seem to stabilize rod disorder causing P4/nnc space-group symmetry. All studied vesuvianites in calcsilicate rocks and marbles from regional- and contact-metamorphic upper amphibolite facies have disordered rods (P4/nnc symmetry). Electron-microprobe analyses of metamorphic vesuvianites from alpine and non-alpine occurrences, supported by structural investigation, showed that in addi- tion to homo- and heterovalent substitution, partial occupancy of the commonly vacant T sites by B, 3+ 4– → 4– Al, or Fe , and the (O4H4) SiO4 (hydrogarnet-type) substitutions are signiÞ cant in nature. With few exceptions, T-site occupancy seems to be restricted to high-grade metamorphic rocks whereas the “hydrovesuvianite” substitution is only found in vesuvianites formed at very low metamorphic grade. The cell parameters of vesuvianite with empty T sites increase with increasing Ti + Mg → 2 Al substitution, and this increase is even more pronounced with increasing “hydrovesuvianite” component.
    [Show full text]
  • Nomenclature of the Garnet Supergroup
    American Mineralogist, Volume 98, pages 785–811, 2013 IMA REPORT Nomenclature of the garnet supergroup EDWARD S. GREW,1,* ANDREW J. LOCOCK,2 STUART J. MILLS,3,† IRINA O. GALUSKINA,4 EVGENY V. GALUSKIN,4 AND ULF HÅLENIUS5 1School of Earth and Climate Sciences, University of Maine, Orono, Maine 04469, U.S.A. 2Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada 3Geosciences, Museum Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia 4Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland 5Swedish Museum of Natural History, Department of Mineralogy, P.O. Box 50 007, 104 05 Stockholm, Sweden ABSTRACT The garnet supergroup includes all minerals isostructural with garnet regardless of what elements occupy the four atomic sites, i.e., the supergroup includes several chemical classes. There are pres- ently 32 approved species, with an additional 5 possible species needing further study to be approved. The general formula for the garnet supergroup minerals is {X3}[Y2](Z3)ϕ12, where X, Y, and Z refer to dodecahedral, octahedral, and tetrahedral sites, respectively, and ϕ is O, OH, or F. Most garnets are cubic, space group Ia3d (no. 230), but two OH-bearing species (henritermierite and holtstamite) have tetragonal symmetry, space group, I41/acd (no. 142), and their X, Z, and ϕ sites are split into more symmetrically unique atomic positions. Total charge at the Z site and symmetry are criteria for distinguishing groups, whereas the dominant-constituent and dominant-valency rules are critical in identifying species. Twenty-nine species belong to one of five groups: the tetragonal henritermierite group and the isometric bitikleite, schorlomite, garnet, and berzeliite groups with a total charge at Z of 8 (silicate), 9 (oxide), 10 (silicate), 12 (silicate), and 15 (vanadate, arsenate), respectively.
    [Show full text]
  • 4358 Revision 2 1 Fe-Rich and As-Bearing Vesuvianite and Wiluite
    4358 Revision 2 1 Fe-rich and As-bearing vesuvianite and wiluite from Kozlov, Czech Republic 2 ∗ 3 LEE A. GROAT,1, R. JAMES EVANS,1 JAN CEMPÍREK,1 CATHERINE McCAMMON2, 4 AND STANISLAV HOUZAR3 5 6 1Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 7 Vancouver, British Columbia V6T 1Z4, Canada 8 9 2Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany 10 11 3Department of Mineralogy and Petrography, Moravian Museum, Zelný trh 6, 659 37 Brno, 12 Czech Republic 13 ∗ ∗E-mail: [email protected] 1 4358 Revision 2 14 ABSTRACT 15 16 Green vesuvianite crystals occur with garnet and calcite in a hand specimen from the 17 Nedvědice marble near Kozlov (near Štěpánov nad Svratkou, Svratka Crystalline Complex) in 18 the Czech Republic. The average electron microprobe composition of the vesuvianite shows 19 12.10 wt.% Fe2O3 (4.66 Fe pfu), 2.77 wt.% B2O3 (2.45 B pfu), 1.71 wt.% As2O5 (0.46 As pfu), 20 and 1.40 wt.% F (2.26 F pfu). The Fe concentration is the highest ever recorded for a 21 vesuvianite-group mineral. The boron contents are extremely variable and two of the five 22 compositions show more than the 2.50 B pfu needed for wiluite, and the average is only slightly 23 less than this. The crystal structure [a = 15.7250(4), c = 11.7736(3) Å] was refined in space 24 group P4/nnc to an R1 value of 0.0221. The site refinement and Mössbauer spectroscopy results 25 show Fe2+ substituting for Ca at the X3 site and filling the Y1 position, and Fe3+ substituting for 26 Al at the Y3 position.
    [Show full text]
  • Irina GALUSKINA1, Evgeny GALUSKIN1, Roman W£ODYKA1, Piotr DZIER¯ANOWSKI2, Roman WRZALIK3
    MINERALOGIA POLONICA DOI 10.2478/v10002-007-0022-9 PL ISSN 0032-6267 Vol. 38, No 2, 2007 Irina GALUSKINA1, Evgeny GALUSKIN1, Roman W£ODYKA1, Piotr DZIER¯ANOWSKI2, Roman WRZALIK3 ATOLL GARNETS IN “ACHTARANDITE” SERPENTINITES: MORPHOLOGY, COMPOSITION AND MODE OF ORIGIN Received April 26, 2007; accepted November 14, 2007 A b s t r a c t . Atoll garnets in aposkarn serpentinite from the Wiluy River, Republic of Sakha-Yakutia, Russia, have the classic form comprising a garnet core, an intermediate zone filled with chlorite-group minerals and an outer garnet atoll. The core of an illustrated example is complexly zoned from schorlomite to grossular-andradite. Morphologically, the core is a rhombic dodecahedral crystal. The atoll crystallized as a tetragon-trisoctahedron with minor rhombic dodecahedron faces and is composed of hibschite and “hydroandradite”. The atoll garnet formed as the result of selective dissolution and substitution by chlorite of an internal hibschite zone with columnar structure that became unstable under new conditions of crystallization. The pattern of dissolution traces defects in the garnet crystal. The growth of the atoll garnets reflects the main stages in the evolution of the Wiluy deposit itself and is associated with the development of the Siberian traps. Key-words: atoll garnet, morphology, hibschite, Raman spectroscopy, serpentinite, Wiluy River, Russia INTRODUCTION Beginning twelve years ago, during work on “achtarandite” represented by hib- schite pseudomorphs of wadalite (Galuskin et al. 1995; Galuskina et al. 1998), we encountered minerals of the hydrogarnet group for the first time. Searching the lite- rature on hydrogarnet, we discovered the valuable early work on crystal chemistry of hydrogarnets published by Professor Witold ¯abiñski in 1965 (¯abiñski 1965a, b).
    [Show full text]
  • Si-DEFICIENT, OH-SUBSTITUTED, BORON-BEARING VESUVIANITE from the WILUY RIVER, YAKUTIA, RUSSIA
    833 Volume 41 August 2003 Part 4 The Canadian Mineralogist Vol. 41, pp. 833-842 (2003) Si-DEFICIENT, OH-SUBSTITUTED, BORON-BEARING VESUVIANITE FROM THE WILUY RIVER, YAKUTIA, RUSSIA EVGENY V. GALUSKIN§ AND IRINA O. GALUSKINA§ Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Be¸dzi´nska 60, 41–200 Sosnowiec, Poland MACIEJ SITARZ Department of Material Sciences and Ceramics, University of Mining and Metallurgy, al. Mickiewicza 30, Cracow, 30–059, Poland KATARZYNA STADNICKA Faculty of Chemistry, Jagellonian University, Ingardena 3, Cracow, 30–060, Poland ABSTRACT A low-temperature, Si-deficient variety of vesuvianite occurs in porous tetrahedral “achtarandite” pseudomorphs consisting 4– of hibschite, along the banks of the Wiluy River, Yakutia, Russia, the type locality of grossular and wiluite. The (H4O4) -for- 4– (SiO4) hydrogarnet-type substitution is evident in the vesuvianite, a substitution that allows it to be considered an analogue of hibschite. This variety of vesuvianite belongs to a new series in the vesuvianite group, as expressed by the formula X19Y13T0–5(Si2O7)4(SiO4)10–x(OH)4xW10. The filling of the X, Y, and T positions in this Si-deficient vesuvianite, where x varies from 0.67 to 2.89, is analogous to that in vesuvianite and wiluite. The Si-deficient vesuvianite is characterized by increased unit- cell parameters, a 15.688(3), c 11.860(3) Å and by lower indices of refraction, ␧ 1.691(1), ␻ 1.668(1). In the OH-region, the FTIR and Raman spectra differ sharply from those of low-temperature vesuvianite from rodingites, but are similar to the spectra of hibschite.
    [Show full text]
  • Subject Index, Volume 84, 1999
    American Mineralogist, Volume 84, pages 1985–1992, 1999 SUBJECT INDEX, VOLUME 84, 1999 Aenigmatite 257 andalusite 1727 ites and related rocks. By A.F. Aerinite 1467 Annealing 1213, 1224, 1235 Glazner 1210 AFM (SFM, STM) 620, 884 Anion-centered tetrahedra 1099 Coppens, P.: X-Ray Charge hematite 1061 Anomalous scattering 294 Densities and Chemical Bonding. ilmenite 1384 Arnhemite 193 By J.W.Downs 690 pyrite 1549 Apatite 581, 977, 1213, 1224, 1235, Dyar, M.D., McCammon, C. Akimotite 226, 233, 267 1346 and Schaefer M.W.: Mineral Al2SiO5 group 1152 dental 1406 Spectroscopy: A Tribute to Roger Albite 27, 333, 726, 746, 1144 Armenite 86, 92 G. Burns. By A. Treiman 211 melting 1830 Arsenides 639 Grew, E.S. and Anovitz, L.M.: ALH84001 1569 Ashanite 688 Boron: Mineralogy, Petrology Alkali basalt 357 Au, As in pyrite 1071 and Geochemistry. By E.E Allanite 1346 Auorthosites 806 Foord, J.T. O’Connor 1209 Almandine 374 Au2SbO2(OH) 197 Hughes, R.W.: Ruby and Sapphire. AlO6 octahedral chains 1152 Averievite 685 By J. Sinkankas 211 Aluminosilicates 152, 311, 345, 465, Awards Moore, D.M. and Reynolds, R. C., Jr.: 983 Distinguished Public Service X-ray Diffraction and the Identifi- Alunite-group minerals 1687 Medal, acceptance of 1207 cation and Analysis of Clay Miner- Amphibole 1, 86, 102, 1033, 1304 Distinguished Public Service als, second edition. By S.P. Altaner, Analcime 112 Medal, presentation of 1205 689 Analysis chem. (mineral) 1170 Mineralogical Society of America, Young, D.A.: N.L. Bowen and aenigmatite 257 acceptance of 1203 cystallization—differentation: amphibole 102 Mineralogical Society of America, The evolution of a theory.By bederite 1674 presentation of 1202 H.S.
    [Show full text]
  • THE CRYSTAL STRUCTURE of Si-DEFICIENT, OH-SUBSTITUTED, BORON-BEARING VESUVIANITE from the WILUY RIVER, SAKHA-YAKUTIA, RUSSIA
    239 The Canadian Mineralogist Vol. 45, pp. 239-248 (2007) THE CRYSTAL STRUCTURE OF Si-DEFICIENT, OH-SUBSTITUTED, BORON-BEARING VESUVIANITE FROM THE WILUY RIVER, SAKHA-YAKUTIA, RUSSIA Evgeny V. GALUSKIN§ and Irina O. GALUSKINA Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będzińska 60, 41–200 Sosnowiec, Poland Katarzyna STADNICKA Faculty of Chemistry, Jagiellonian University, Ingardena 3, Cracow, 30–060, Poland Thomas ARMBRUSTER Laboratory for Chemical and Mineralogical Crystallography, University of Bern, Freiestr. 3, CH–3012 Bern, Switzerland Marcin KOZANECKI Technical University, Department of Molecular Physics, Żeromskiego 116, 90–924 Łódż, Poland Abstract The crystal structure of a Si-defi cient vesuvianite, space group P4/nnc, a 15.678(1), c 11.828(1) Å, from the Wiluy River, Sakha–Yakutia, Russia, has been refi ned from single-crystal X-ray data to R = 0.037. Electron-microprobe analyses indicate that this vesuvianite has only ca. 16 Si pfu in contrast to regular vesuvianite with 18 Si pfu. Site-occupancy refi nement yielded substantial vacancies at orthosilicate sites Z(1): 25% vacancies, Z(2): 16% vacancies. Vacancies at the tetrahedral site are associated with increased Z(1)–O and Z(2)–O distances, 1.687 and 1.660 Å, respectively. Vacancies and increased Z(1)–O and Z(2)–O bond lengths are consistent with hydrogarnet-type defects, where SiO4 is replaced by H4O4 tetrahedra. The single crystal investigated shows the highest hydrogarnet-type substitution analyzed by structure refi nement of vesuvianite. No vacancies were found involving the disilicate groups. Along the c axis, the increased size of Z(1) tetrahedra is balanced by a compression of the adjacent X(3) Ca-bearing dodecahedra.
    [Show full text]
  • Mineralogical Notes Sekies 1
    DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, DIRECTOR BULLETIN 490 MINERALOGICAL NOTES SEKIES 1 BY WALDEMAR T. SCHALLER WASHINGTON GOVERNMENT PRINTING OFFICE 1911 CONTENTS. Page. Introduction............................................................. 7 Chemical composition of hulsite and paigeite...........................__ 8 Introduction.....................................................__ 8 Occurrence and association........................................_. 8 Notes on chemical examination...................__............_. 10 General statement...........................__................. 10 The gangue...................................................... 11 Methods of analyses.............................................. 13 Hulsite.............................................................. 16 Crystallography............... ... ....... ................ 16 General properties........ ................. ............... 16 Character of samples ............................................. 17 Analyses and ratios.......................__.................... 18 Discussion of formulas............................................ 20 Paigeite ................................ .......................... 21 General description .............................................. 21 Character of samples............................................. 22 Analyses and ratios .............................................. 22 Discussion of formulas...... ................................. 24 Chemical composition of jamesonite
    [Show full text]
  • Appendix 1 Calculation of a Chemical Formula from a Mineral Analysis
    Appendix 1 Calculation of a chemical formula from a mineral analysis Appendix 1 Magnesiohornblende analysis 3 4 2 Atomic proportion No. of anions on 1 Molecular of oxygen from basis of 24 (O,OH) 5 Wt.% of oxides proportion of oxides each molecule i.e. col. 368.3735 No. of ions in formula SiO 51.63 0.8594 1.7188 14.392 Si 7.196 2 8.00 0.804 } Al2O3 7.39 0.0725 0.2175 1.821 Al 1.214 0.410 3+ Fe2O3 2.50 0.0157 0.0471 0.394 Fe 0.263 FeO 5.30 0.0738 0.0738 0.618 Fe2+ 0.618 5.07 MnO 0.17 0.0024 0.0024 0.020 Mn 0.020 } MgO 18.09 0.4489 0.4489 3.759 Mg 3.759 CaO 12.32 0.2197 0.2197 1.840 Ca 1.840 2.00 Na2O 0.61 0.0098 0.0098 0.082 Na 0.164 } H2O+ 2.31 0.1282 0.1282 1.073 OH 2.146 2.15 Total 100.32 2.8662 24 = 8.3735 2.8662 The procedure for calculating a chemical formula is Column 5 gives the number of cations associated described by means of the above example, a with the oxygens in column 4. Thus for SiO2 there is magnesiohornblende. one silicon for two oxygens so the column 4 entry is divided by 2. For A12O3 there are two aluminiums for Column 1 lists the composition of the mineral every three oxygens so the column 4 entry is multiplied expressed in the usual manner as weight percentages by ~˜.
    [Show full text]
  • Glossary of Obsolete Mineral Names
    vaalerts = tetrahedrite, Zirlin 108 (1981). vaal-garin = pale-blue fibrous riebeckite, Thrush 1193 (1968). vaalite = vermiculite, Dana 6th, 667 (1892). vabanite = red massive Fe-rich quartz, MM 39, 929 (1974). vad = wad (pyrolusite ± manganite ± romanèchite ± cryptomelane), László 284 (1995). vaeyrynenite = väyrynenite, Nickel & Nichols 250 (1991). vagdaltkvarc = quartz pseudomorph after baryte, László 153 (1995). vagearsite = germanocolusite, Pekov 91 (1998). vaidûrya = beryl, Bukanov 64 (2006). vairakit = wairakite, László 318 (1995). vairauit = wairauite, László 318 (1995). vajra = diamond, Bukanov 39 (2006). vakabajasilit = wakabayashilite, László 318 (1995). valahite = illite-smectite mixed-layer, MA 17, 138 (1965). Valait = bitumen, Dana 6th, 1051 (1892). valchovite = resin (C15H26O)n, Clark 729 (1993). Valencianit = orthoclase, Dana 6th, 315 (1892). valentianite = orthoclase, Chester 280 (1896). valeriite = valleriite, Dana 6th I, 71 (1899). valhovit = resin, László 318 (1995). vallachite = illite-smectite mixed-layer, MM 35, 1158 (1966); 38, 103 (1971). valléite = Ca-Mn-rich anthophyllite, AM 63, 1052 (1978). Vallendar Clay = kaolinite ?, Robertson 33 (1954). valleriite-(Fe) = FeCuS.1·5Fe(OH)2, AM 57, 1051 (1972). valleriite-(Mg,Al) = valleriite, AM 57, 1051 (1972). valleriite-(Mg,Fe) = haapalaite, AM 57, 1051 (1972). valleriite type II = tochilinite, AM 59, 190 (1974). vallerite = valleriite, R. Dixon. pers. comm. (1992). valley brown ore = goethite, Thrush 1195 (1968). Vallumdiamant = transparent quartz, Haditsch & Maus 229 (1974). vallum diamond = transparent quartz, AM 12, 385 (1927). vallum stone = transparent quartz, AM 12, 386 (1927). valpurgit = walpurgite, László 319 (1995). valuevite = Al-rich clintonite, AM 52, 1122 (1967). valujevit = Al-rich clintonite, László 284 (1995). vamaite = resin (C11H16O2 ?), Clark 730 (1993). vanadanite = vanadinite, Embrey & Fuller 173 (1980). vanadate of copper = volborthite, Dana 6th, 838 (1892).
    [Show full text]