Spurlegged Phasmatids in Victoria's Forests

Total Page:16

File Type:pdf, Size:1020Kb

Spurlegged Phasmatids in Victoria's Forests Spurlegged Phasmatids in Victoria’s forests Forest Information Sheet - Forest Health June 2006 Factors Associated with Outbreaks Outbreaks of Spurlegged Phasmatids tend to occur in higher locations, even though the insect also occurs in Background lower elevation forests of mixed eucalypt species. The Spurlegged Phasmatid Didymuria violescens The eggs of the insect are incubated in the moist litter (Leach) is a native phasmatid (stick insect) found of the forest floor. The deeper and wetter the litter is, mainly in the mountain forests of south-eastern such as at higher elevations, the greater the rate of Australia. While it depends entirely on the foliage of egg survival as they are protected from drying out eucalypt trees for nutrition and water, preferably and from foraging predators, such as birds and ants. Mountain Ash (Eucalyptus regnans) and Alpine Ash A cool autumn and cold winter with heavy rainfall and (Eucalyptus delegatensis), it generally causes little fog drip, along with frequent frosts and occasional long-term damage or harm to trees or forests. Large snow cover, provide optimum survival rates of eggs outbreaks, however, occasionally occur that can by keeping the forest litter moist during most of the completely defoliate trees and pose a serious threat to year. The absence of fire over a period of years also Victoria’s mountain forests. contributes to greater egg survival. Mountain Ash is the world’s tallest flowering plant, Outbreaks of Spurlegged Phasmatids and the reaching heights of more than 100 metres, and Alpine subsequent extensive defoliation of eucalypts have Ash is the world’s second tallest. In Victoria, they are generally occurred in even-aged forests of between found in the Central Highlands region, in Gippsland, twenty and sixty years. and the Otway and Strezlecki Ranges. Mountain Ash and Alpine Ash play a vital role in the biodiversity of Victoria’s natural assets, providing essential habitat to important birds and mammals such as the Lyrebird, and the State’s animal emblem, the Leadbeater’s Possum. Both species can produce epicormic growth (sprouting of new growth from the trunk or branches) when under stress or defoliated. Both, however, only regenerate from seed, not from coppice or lignotubers (new shoots from stumps or roots). The potential Figure 1: Didymuria violescens - the Spurlegged Phasmatid impact of damage from Spurlegged Phasmatids in large outbreaks is therefore great, as the trees have limited ability to recover. Spurlegged Phasmatids were first described in 1814, Biology of Spurlegged Phasmatids though little historical data exists on population The lifecycle of Spurlegged Phasmatids is usually outbreaks and their impact on Mountain and Alpine biennial (two years) although this can vary between Ash forests since. The first significant outbreaks were one and four years (Figure 2). recorded in the 1950’s in south-eastern New South This biennial lifecycle produces large (peak) Wales and in the Kiewa Valley of north-eastern populations alternating with small (trough) Victoria. More extensive outbreaks followed in populations. In certain instances, two distinct peak Victoria’s Central Highlands region during the 1960’s and trough populations may exist in the same area, and early 1970’s. leading to situations where a peak population in one group is followed in the next year by a peak More recently, small outbreaks have been observed population in the second group. This leads to around Tumut in southern New South Wales, and in continual defoliation of trees over a prolonged period, north-east Victoria during 2001, when forests which means they may be unable to recover, and will containing Mountain Ash and other species of die over the next few years. eucalypts in the Mount Pinnibar, Upper Ovens and Kiewa catchments were defoliated (Figure 5). Forest Information Sheet - Forest Health June 2006 Spurlegged Phasmatids in Victoria’s forests The female usually lays her eggs in the litter of the forest floor from late summer through to late autumn, with peak egg production occurring in early autumn. Mating is not necessary, and unfertilised eggs will always produce female Spurlegged Phasmatids. The eggs have a significant incubation time of 18 to 20 months. They hatch between spring and early summer, and the insects are initially light green and soft bodied. Immediately after hatching, Spurlegged Phasmatids nstinctively begin moving across the forest floor and climb the first vertical object in their path. To survive, they must reach eucalypt foliage within one to three days. Most spend their entire lives in the first eucalypt canopy they reach, although some males may glide down in search of a mate. Figure 3: Dorsal view of a male adult (A) and a female adult (B) Spurlegged Phasmatid. Note the wider abdomen and shorter antennae of the female compared with the male (Neumann et al. 1977) Effects on Forests Spurlegged Phasmatids cut characteristic crescent- shaped indentations into leaf margins when feeding. Young Spurlegged Phasmatids feed only on soft immature foliage and new shoots, and tend to spend time eating the entire leaf before moving on. In contrast, adults can feed on much tougher mature leaves and tend to be more wasteful, cutting off large leaf pieces that drop the ground. This means when outbreaks occur, the immature outer periphery of trees are eaten first, with older foliage following. Figure 2: One and two year life cycles of Spurlegged Phasmatid (Neumann et al. 1977) It takes just two weeks for Spurlegged Phasmatids to move through five distinct instars (growth stages) before reaching adult stage. This is when they can become most destructive (more on that later). Adult Spurlegged Phasmatids usually grow to around 80mm long (excluding antennae), with the males coloured brownish-green and the females leaf-green. Females have a wider abdomen and shorter antenna than Figure 4: Leaf cut characteristics of Spurlegged Phasmatid males, and while both have wings only the male of the species can fly, as the wings of females are too small (Figure 3). The effects of Spurlegged Phasmatid outbreaks in Victoria’s forests depend on the number of trees affected, the amount of foliage eaten, the length of time over which outbreaks and defoliation occurs, the age and species of affected trees, and their ability to recover. Recorded outbreaks that have harmed or killed trees have occurred in areas measuring 50 hectares to hundreds of hectares of forest. Outbreaks of Spurlegged Phasmatids tend to be greatest between late summer and late autumn, Forest Health 2 Forest Information Sheet - Forest Health June 2006 Spurlegged Phasmatids in Victoria’s forests which coincides with starch reserves in the sapwood Monitoring and Managing Outbreaks (the soft wood just beneath the bark that contains Controlling outbreaks of Spurlegged Phasmatids living tissue) dropping to low levels following flushes depends upon predicting where and when they might of tree growth in spring and early summer. occur, along with developing suitable methods to address them. Trees defoliated during this time may struggle to survive as they attempt to regenerate foliage, and a Predictions are based on two key activities: analysing tree may stop growing or die as it completely the number and incubation period of eggs in forest exhausts its starch reserves. Trees that do survive litter, and aerial surveying to assess the level of may die in subsequent years if repeated defoliation defoliation in forest canopies. occurs that fully deplete their starch reserves. Litter samples to soil level on an area measuring The effects on forests are highlighted by a number of approximately 0.4m2 are taken during winter months case studies published in forest research journals: at fixed sites where the potential for outbreaks exist. Samples are dried for around ten days below 25oC • Artificial defoliation experiments showed that before being sieved. The eggs are then hand sorted eucalypt seedlings can be killed if Spurlegged from this material, and bleached to reveal their Phasmatids consume all their foliage between contents. January and June (Cremer, 1960 and 1973). This implies that forests regenerating after a fire or Eggs that are uniformly yellow inside are classified as timber harvesting are more susceptible to viable and undeveloped, requiring around 15 damage from outbreaks. additional months of incubation. Eggs that contain • All of the 24 year old Mountain Ash trees in the distinct embryos (pharate nymphs) featuring Tarago-Tin Creek area south of Powelltown in conspicuous black compound eyes are classified as Victoria’s Central Highlands region which were viable and developed. These eggs are expected to completely defoliated by Spurlegged Phasmatids hatch in the next spring/summer period. Control during the summer and autumn months of 1962 options are considered when four viable eggs are 2 and 1963 had died by the winter of 1965. Trees found per 0.4m litter sample. that were partially defoliated in the area The timing of the control activities depends on the recovered over the same period.(Neumann, age of eggs. If most eggs found in the litter are due Harris, and Wood, 1977). to hatch in the coming spring and summer months, • Up to 40% of trees in 27 year old stands of more immediate action may be taken than for those Mountain Ash that were completely defoliated by not due to hatch in the second summer. Spurlegged Phasmatids in Victoria’s Central Methods for controlling outbreaks of Spurlegged Highlands region during 1966 and 1967 died, Phasmatids have changed since the 1960’s, when along with 20% of trees that were partially insecticide was routinely sprayed over affected areas defoliated (these were mainly younger trees). at ultra low volumes. While this effectively reduced (Neumann, Harris, and Wood, 1977). adult feeding populations and, as a consequence, the • Over 80% of 22 year old Mountain Ash that number of eggs subsequently laid and incubating in suffered two severe defoliations over three years the forest litter, this control method is unlikely to be in Victoria’s Central Highlands died within two used today.
Recommended publications
  • Insects, Beetles, Bugs and Slugs of Mt Gravatt Conservation Reserve
    Insects, beetles, bugs and slugs of Mt Gravatt Conservation Reserve Compiled by: Michael Fox www.megoutlook.org/flora-fauna/ © 2015-20 Creative Commons – free use with attribution to Mt Gravatt Environment Group Ants Dolichoderinae Iridomyrmex sp. Small Meat Ant Attendant “Kropotkin” ants with caterpillar of Imperial Hairstreak butterfly. Ants provide protection in return for sugary fluids secreted by the caterpillar. Note the strong jaws. These ants don’t sting but can give a powerful bite. Kropotkin is a reference to Russian biologist Peter Kropotkin who proposed a concept of evolution based on “mutual aid” helping species from ants to higher mammals survive. 4-Nov-20 Insects Beetles and Bugs - ver 5.9.docx Page 1 of 59 Mt Gravatt Environment Group – www.megoutlook.wordpress.com Insects, beetles, bugs and slugs of Mt Gravatt Conservation Reserve Formicinae Opisthopsis rufithorax Black-headed Strobe Ant Formicinae Camponotus consobrinus Banded Sugar Ant Size 10mm Eggs in rotting log 4-Nov-20 Insects Beetles and Bugs - ver 5.9.docx Page 2 of 59 Mt Gravatt Environment Group – www.megoutlook.wordpress.com Insects, beetles, bugs and slugs of Mt Gravatt Conservation Reserve Formicinae Camponotus nigriceps Black-headed Sugar Ant 4-Nov-20 Insects Beetles and Bugs - ver 5.9.docx Page 3 of 59 Mt Gravatt Environment Group – www.megoutlook.wordpress.com Insects, beetles, bugs and slugs of Mt Gravatt Conservation Reserve Formicinae Polyrhachis ammon Golden-tailed Spiny Ant Large spines at rear of thorax Nest 4-Nov-20 Insects Beetles and Bugs - ver 5.9.docx Page 4 of 59 Mt Gravatt Environment Group – www.megoutlook.wordpress.com Insects, beetles, bugs and slugs of Mt Gravatt Conservation Reserve Formicinae Polyrhachis australis Rattle Ant Black Weaver Ant or Dome-backed Spiny Ant Feeding on sugar secretions produced by Redgum Lerp Psyllid.
    [Show full text]
  • The Biology of the Three Species of Phasmatids (Phasmatodea) Which Occur in Plague Numbers in Forests of Southeastern Australia K
    This document has been scanned from hard-copy archives for research and study purposes. Please note not all information may be current. We have tried, in preparing this copy, to make the content accessible to the widest possible audience but in some cases we recognise that the automatic text recognition maybe inadequate and we apologise in advance for any inconvenience this may cause. sL.df /0 fl.u I /4r~ / FORESTRY COMMISSION OF N.S.W. DIVISION OF FOREST MANAGEMENT RESEARCH NOTE No. 20 Published January, 1967 THE BIOLOGY OF THE THREE SPECIES OF PHASMATIDS (PHASMATODEA) WmCH OCCUR IN PLAGUE NUMBERS IN FORESTS OF SOUTHEASTERN AUSTRALIA AUTHORS K. G. CAMPBELL, D.F.C., B.Se.(For.), Dip.For., M.Se. and P. HADLINGTON, B.Se.Agr. G771 ~- Issued under the authority of -J The Hon. J. G. Beale, M.E., M.L.A., Minister for Conservation, New South Wales THE BIOLOGY OF THE THREE SPECIES OF PHASMATIDS (PHASMATODEA) WHICH OCCUR IN PLAGUE NUMBERS IN FORESTS OF SOUTHEASTERN AUSTRALIA K. G. CAMPBELL AND P. HADLINGTON FORESTRY COMMISSION OF N.S.W. INTRODUCTION Most species of the Phasmatodea usually occur in low numbers, but some species have occurred in plagues and in such instances serious defoliation of trees has resulted. Plagues have been recorded from the D.S.A. by Craighead (1950), from Fiji by O'Connor (1949) and from the highland areas of southeastern Australia by various workers. The species involved in the defoliation of the eucalypt forests of southeastern Australia are Podacanthus wilkinsoni Mac!., Didymuria violescens (Leach) and Ctenomorphodes tessulatus (Gray).
    [Show full text]
  • Sipyloidea Sipylus) Tara L
    Proc. R. Soc. B (2006) 273, 1811–1814 doi:10.1098/rspb.2006.3508 Published online 30 March 2006 Leg regeneration stunts wing growth and hinders flight performance in a stick insect (Sipyloidea sipylus) Tara L. Maginnis* Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA Major morphological structures are sometimes produced not once, but twice. For example, stick insects routinely shed legs to escape a predator or tangled moult, and these legs are subsequently re-grown. Here, I show that in Sipyloidea sipylus, re-growth of a leg during development causes adults to have disproportionately smaller wings and increases wing loading. These morphological consequences of leg regeneration led to significant reductions in several biologically relevant measures of individual flight performance. This previously unrecognized tradeoff between legs and wings reveals the integrated nature of phasmid phenotypes, and I propose how this tradeoff may have shaped phasmid evolution. Keywords: tradeoffs; regeneration; stick insects; evolution; flight 1. INTRODUCTION significantly reduced fecundity (Smyth 1974; Maiorana Tradeoffs are fundamental to life history and evolution, 1977; Dial & Fitzpatrick 1981; Norman & Jones 1993). since they can link the expression of multiple traits, However, tradeoffs between somatic and reproductive impeding the independent evolution of either trait growth are not the only types of allocation tradeoffs that (Needham & Stearns 1992; Roff 1992). One intuitive can affect fitness. Here I show for a species of stick insect, way to study tradeoffs is to quantify the costs of Sipyloidea sipylus (Westwood, figure 1), that producing a allocating resources to the production of a focal trait; leg for a second time can affect animal shape, and that this although it is obvious that developing structures require negatively impacts animal performance.
    [Show full text]
  • Indicators of Sustainability for Australian Commercial Forests
    This document has been scanned from hard-copy archives for research and study purposes. Please note not all information may be current. We have tried, in preparing this copy, to make the content accessible to the widest possible audience but in some cases we recognise that the automatic text recognition maybe inadequate and we apologise in advance for any inconvenience this may cause. I I FOREST & WOOD PRODUCTS RESEARCH & DEVELOPMENT CORPORATION TECHNICAL PUBLICATION NO.3 EVALUATION OF SANTIAGO DECLARATION (MONTREAL PROCESS) INDICATORS OF SUSTAINABILITY FOR AUSTRALIAN COMMERCIAL FORESTS. A NEW SOUTH WALES ALPINE ASH FOREST AS A CASE STUDY John Turner fORfSl &WOOD PRODDC'S EvALUATION OF SANTIAGO (MONTREAL) DECLARATION INDICATORS OF SUSTAINABILl1Y FOR AUSTRALIAN COMMERCIAL FORESTS. A NEW SOUTH WALES ALPINE AsH FOREST AS A CASE STUDY John Turner Forest and Wood Products Research and Development Corporation (FWPRDC) March,1996 The Author: John Turner, Director Research, Research Division, State Forests of New South Wales Scientific Editor: Michelle Johnstone Published by: Research Division, State Forests of New South Wales, 121-131 Oratava Avenue, West Pennant Hills, 211:; P.D. Box 100, Beecroft. 2119 Australia. Copyright © 1996 by State Forests of New South Wales ISBN 07310 6727 4 The research and development activities described in this publication were jointly funded by the Forest and Wood Products Research and Development Corporation (FWPRDC) and organisations listed in the study. The information and recommendations contained in this publication do not necessarily represent the policy ofFWPRDC, or collectively or individually the participating organisations. No person should act on the basis of the contents of this publication, whether as to matters of fact or opinion or other content, without fIrst obtaining specific, independent professional advice which confIrms the information contained in this publication.
    [Show full text]
  • A Monograph of the Amiseginae and Loboscelidiinae (Hymenoptera: Chrysididae)
    Biosystematic Studies of Ceylonese Wasps, XI: A Monograph of the Amiseginae and Loboscelidiinae (Hymenoptera: Chrysididae) KARL V. KROMBEIN miut. SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 376 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world of science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • The Cause of Autotomy in a Stick Insect
    University of Portland Pilot Scholars Biology Faculty Publications and Presentations Biology 2008 The aC use of Autotomy in a Stick Insect: Predation Versus Molting Tara Lynne Maginnis University of Portland, [email protected] Follow this and additional works at: http://pilotscholars.up.edu/bio_facpubs Part of the Entomology Commons Citation: Pilot Scholars Version (Modified MLA Style) Maginnis, Tara Lynne, "The aC use of Autotomy in a Stick Insect: Predation Versus Molting" (2008). Biology Faculty Publications and Presentations. 3. http://pilotscholars.up.edu/bio_facpubs/3 This Journal Article is brought to you for free and open access by the Biology at Pilot Scholars. It has been accepted for inclusion in Biology Faculty Publications and Presentations by an authorized administrator of Pilot Scholars. For more information, please contact [email protected]. 126 Florida Entomologist 91(1) March 2008 AUTOTOMY IN A STICK INSECT (INSECTA: PHASMIDA): PREDATION VERSUS MOLTING TARA LYNNE MAGINNIS The University of Montana, Division of Biological Sciences, Missoula, MT 59812 Current address: St. Edward’s University, Department of Biology, 3001 South Congress Ave., Austin, TX 78704 Autotomy, or appendage loss, is common in later), at which time they were removed and in- many animals, including reptiles, amphibians, spected for leg loss and/or evidence of regenera- mammals, birds, fish, echinoderms, crustaceans, tion. Nymphs always commence regeneration af- spiders, and insects (see Maginnis 2006a; Flem- ter autotomy, and regenerated legs are always ing et al. 2007 for reviews). In arthropods, there smaller than non-regenerated legs (Bordage 1905; are 2 hypotheses for this phenomenon. First, Ramme 1931; Carlberg 1992; Maginnis 2006b).
    [Show full text]
  • As Pests of Agriculture and Forestry, with a Generalised Theory of Phasmid Outbreaks Edward Baker*
    Baker Agric & Food Secur (2015) 4:22 DOI 10.1186/s40066-015-0040-6 REVIEW Open Access The worldwide status of phasmids (Insecta: Phasmida) as pests of agriculture and forestry, with a generalised theory of phasmid outbreaks Edward Baker* Abstract Stick insects have been reported as significant phytophagous pests of agricultural and timber crops since the 1880s in North America, China, Australia and Pacific Islands. Much of the early literature comes from practical journals for farmers, and even twentieth Century reports can be problematic to locate. Unlike the plaguing Orthoptera, there has been no synthesis of the pest status of this enigmatic order of insects. This paper provides a literature synthesis of those species known to cause infestation or that are known to damage plants of economic importance; summarises historical and modern techniques for infestation management; and lists known organisms with potential for use as biological control agents. A generalised theory of outbreaks is presented and suggestions for future research efforts are made. Keywords: Pests, Infestation, Agriculture, Forestry Background a significant factor in the scale of phasmid outbreaks— in most species, females lay several hundred eggs [6]. In “The unexampled multiplication and destructive- addition, their wasteful eating habits [7] and their often ness of this insect at Esperance farm is but one of the rapid growth [8] means they consume a large quantity many illustrations of the fact, long since patent to all of vegetation [9]. Considerable efforts have been put close students of economic entomology, that species into controlling the three species of Australian phasmid normally harmless may suddenly become very inju- known to cause periodic infestation [10].
    [Show full text]
  • Logs and Chips of Eighteen Eucalypt Species from Australia
    United States Department of Agriculture Pest Risk Assessment Forest Service of the Importation Into Forest Products Laboratory the United States of General Technical Report Unprocessed Logs and FPL−GTR−137 Chips of Eighteen Eucalypt Species From Australia P. (=Tryphocaria) solida, P. tricuspis; Scolecobrotus westwoodi; Abstract Tessaromma undatum; Zygocera canosa], ghost moths and carpen- The unmitigated pest risk potential for the importation of unproc- terworms [Abantiades latipennis; Aenetus eximius, A. ligniveren, essed logs and chips of 18 species of eucalypts (Eucalyptus amyg- A. paradiseus; Zelotypia stacyi; Endoxyla cinereus (=Xyleutes dalina, E. cloeziana, E. delegatensis, E. diversicolor, E. dunnii, boisduvali), Endoxyla spp. (=Xyleutes spp.)], true powderpost E. globulus, E. grandis, E. nitens, E. obliqua, E. ovata, E. pilularis, beetles (Lyctus brunneus, L. costatus, L. discedens, L. parallelocol- E. regnans, E. saligna, E. sieberi, E. viminalis, Corymbia calo- lis; Minthea rugicollis), false powderpost or auger beetles (Bo- phylla, C. citriodora, and C. maculata) from Australia into the strychopsis jesuita; Mesoxylion collaris; Sinoxylon anale; Xylion United States was assessed by estimating the likelihood and conse- cylindricus; Xylobosca bispinosa; Xylodeleis obsipa, Xylopsocus quences of introduction of representative insects and pathogens of gibbicollis; Xylothrips religiosus; Xylotillus lindi), dampwood concern. Twenty-two individual pest risk assessments were pre- termite (Porotermes adamsoni), giant termite (Mastotermes dar- pared, fifteen dealing with insects and seven with pathogens. The winiensis), drywood termites (Neotermes insularis; Kalotermes selected organisms were representative examples of insects and rufinotum, K. banksiae; Ceratokalotermes spoliator; Glyptotermes pathogens found on foliage, on the bark, in the bark, and in the tuberculatus; Bifiditermes condonensis; Cryptotermes primus, wood of eucalypts. C.
    [Show full text]
  • Barbed Wire Vine
    Insects, beetles, bugs and slugs of Mt Gravatt Conservation Reserve Compiled by: Michael Fox www.megoutlook.org/flora-fauna/ © 2015-19 Creative Commons – free use with attribution to Mt Gravatt Environment Group Ants Dolichoderinae Iridomyrmex sp. Small Meat Ant Attendant “Kropotkin” ants with caterpillar of Imperial Hairstreak butterfly. Ants provide protection in return for sugary fluids secreted by the caterpillar. Note the strong jaws. These ants don’t sting but can give a powerful bite. Kropotkin is a reference to Russian biologist Peter Kropotkin who proposed a concept of evolution based on “mutual aid” helping species from ants to higher mammals survive. 30-May-20 Insects Beetles and Bugs - ver 5.8.docx Page 1 of 57 Mt Gravatt Environment Group – www.megoutlook.wordpress.com Insects, beetles, bugs and slugs of Mt Gravatt Conservation Reserve Formicinae Opisthopsis rufithorax Black-headed Strobe Ant Formicinae Camponotus consobrinus Banded Sugar Ant Size 10mm Eggs in rotting log 30-May-20 Insects Beetles and Bugs - ver 5.8.docx Page 2 of 57 Mt Gravatt Environment Group – www.megoutlook.wordpress.com Insects, beetles, bugs and slugs of Mt Gravatt Conservation Reserve Formicinae Camponotus nigriceps Black-headed Sugar Ant 30-May-20 Insects Beetles and Bugs - ver 5.8.docx Page 3 of 57 Mt Gravatt Environment Group – www.megoutlook.wordpress.com Insects, beetles, bugs and slugs of Mt Gravatt Conservation Reserve Formicinae Polyrhachis ammon Golden-tailed Spiny Ant Large spines at rear of thorax Nest 30-May-20 Insects Beetles and Bugs - ver 5.8.docx Page 4 of 57 Mt Gravatt Environment Group – www.megoutlook.wordpress.com Insects, beetles, bugs and slugs of Mt Gravatt Conservation Reserve Formicinae Polyrhachis australis Rattle Ant Black Weaver Ant or Dome-backed Spiny Ant Feeding on sugar secretions produced by Redgum Lerp Psyllid.
    [Show full text]
  • Stick Insects: Parthenogenesis, Polyploidy and Beyond
    S. Casellato, P. Burighel & A. Minelli, eds. Life and Time: The Evolution of Life and its History. Cleup, Padova 2009. Stick insects: parthenogenesis, polyploidy and beyond Valerio Scali Dipartimento di Biologia Evoluzionistica Sperimentale, Università di Bologna Via Selmi 3, 40126 Bologna, Italy Email: [email protected] Introduction Metasexual animals The most common way animals reproduce is bisexuality, namely through the mixis of male and female gametes. Bisexual reproduction relies on the Mendelian mechanism, although several additional modes also occur. In turn, the Mendelian inheritance of genetic variability stands on the meiotic process, which entrains recombination and chromosome reshuffling within the frame of a balanced segregation: any departure from these standard features will of necessity have a bearing on the genetic structure at both individual and population level. Sexual systems are typically eu-Mendelian when an equal complement of chromosomes is inherited from both parents and it is also likely to be transmitted to the following generations the same way (Normark 2006). Some genetic systems clearly derive from the sexual one but do not completely maintain the above defined symmetries: if they skip any of them, they are termed asymmetric and typically give rise to thelytoky, haplodiploidy and/or parent-specific gene expression (Normark 2006). Collectively, those sex-derived asymmetric reproductive systems have been defined as metasexual, leaving the term asexual to those genetic systems/reproductive modes which did not evolve from the Mendelian mechanism and do not make use of gametes (Scali et al. 2003 and quotations therein). The widespread identification of asexuality with the lack of recombination and/or fertilization and also the assumption that unisexuals invariably lack both of them, thus being therefore barred from any genetic variance and evolutionary potential, is ill-adviced (e.g., Bell 1982; Baxevanis et al.
    [Show full text]
  • Autotomy in a Stick Insect (Insecta: Phasmida): Predation Versus Molting
    126 Florida Entomologist 91(1) March 2008 AUTOTOMY IN A STICK INSECT (INSECTA: PHASMIDA): PREDATION VERSUS MOLTING TARA LYNNE MAGINNIS The University of Montana, Division of Biological Sciences, Missoula, MT 59812 Current address: St. Edward’s University, Department of Biology, 3001 South Congress Ave., Austin, TX 78704 Autotomy, or appendage loss, is common in later), at which time they were removed and in- many animals, including reptiles, amphibians, spected for leg loss and/or evidence of regenera- mammals, birds, fish, echinoderms, crustaceans, tion. Nymphs always commence regeneration af- spiders, and insects (see Maginnis 2006a; Flem- ter autotomy, and regenerated legs are always ing et al. 2007 for reviews). In arthropods, there smaller than non-regenerated legs (Bordage 1905; are 2 hypotheses for this phenomenon. First, Ramme 1931; Carlberg 1992; Maginnis 2006b). limbs may be lost through predation attempts; if The results revealed that 17.3% of adults a predator were to grab a leg instead of the body, within the predator-excluded trees were missing the animal can shed the leg and flee to escape pre- and/or regenerated at least one leg during develop- dation (McVean 1982; Carlberg 1986; Formanow- ment (n = 112; 4 of the 10 trees were destroyed by icz 1990; Robinson et al. 1991). And second, limbs cattle (100 individuals), 29 individuals died, 6 in- can be shed during complications with molting. dividuals were still nymphs, and 3 individuals As a result of having a skeleton on the outside of were unaccounted for (original n = 250 - 100 - 29 - the body, arthropods must repeatedly shed their 6 - 3 = 112).
    [Show full text]
  • Impact of Insects on Eucalypt Plantations in the Murray Valley Publication No
    Impact of Insects on Eucalypt Plantations in the Murray Valley A report for the RIRDC/L&WA/FWPRDC/MDBC Joint Venture Agroforestry Program by Rob Floyd and Grant Farrell June 2007 RIRDC Publication No 07/085 RIRDC Project No CSE-72A © 2007 Rural Industries Research and Development Corporation. All rights reserved. ISBN 1 74151 482 7 ISSN 1440-6845 Impact of insects on eucalypt plantations in the Murray Valley Publication No. 07/085 Project No. CSE-72A The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors.. The Commonwealth of Australia does not necessarily endorse the views in this publication. This publication is copyright. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved.
    [Show full text]