Study of the LLE, VLE and VLLE of the Ternary System Water + 1-Butanol + Isoamyl Alcohol at 101.3 Kpa

Total Page:16

File Type:pdf, Size:1020Kb

Study of the LLE, VLE and VLLE of the Ternary System Water + 1-Butanol + Isoamyl Alcohol at 101.3 Kpa View metadata, citation and similar papers at core.ac.uk brought to you by CORE Submitted to Journal of Chemical & Engineering Data provided by Repositorio Institucional de la Universidad de Alicante This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies. Study of the LLE, VLE and VLLE of the ternary system water + 1-butanol + isoamyl alcohol at 101.3 kPa Journal: Journal of Chemical & Engineering Data Manuscript ID je-2018-00308r.R3 Manuscript Type: Article Date Submitted by the Author: 27-Aug-2018 Complete List of Authors: Saquete, María Dolores; Universitat d'Alacant, Chemical Engineering Font, Alicia; Universitat d'Alacant, Chemical Engineering Garcia-Cano, Jorge; Universitat d'Alacant, Chemical Engineering Blasco, Inmaculada; Universitat d'Alacant, Chemical Engineering ACS Paragon Plus Environment Page 1 of 21 Submitted to Journal of Chemical & Engineering Data 1 2 3 Study of the LLE, VLE and VLLE of the ternary system water + 4 1-butanol + isoamyl alcohol at 101.3 kPa 5 6 María Dolores Saquete, Alicia Font, Jorge García-Cano* and Inmaculada Blasco. 7 8 University of Alicante, P.O. Box 99, E-03080 Alicante, Spain 9 10 Abstract 11 12 In this work it has been determined experimentally the liquidliquid equilibrium of the 13 water + 1butanol + isoamyl alcohol system at 303.15K and 313.15K. The UNIQUAC, 14 NRTL and UNIFAC models have been employed to correlate and predict LLE and 15 16 compare them with the experimental data. Additionally, the vapor-liquid and vapor- 17 liquidliquid equilibria of this system have also been determined using a modified 18 Fischer labodest still. The data obtained have been used to correlate and obtain the 19 binary interaction parameters for UNIQUAC and NRTL. It has been analysed the 20 validity of the models to reproduce the VLE and VLLE data. 21 22 1. Introduction 23 24 The search for sustainable alternative fuels destined for use in industry has, in 25 general, been on the rise due to the growing concerns regarding: the future availability 26 of oil reserves; environmental problems (global warming and climate change) [1]; 27 increasing crude oil prices; the volatility of oil supply; and existing legislation that 28 29 restricts the use of nonrenewable energy sources and mandates the use of fuel from 30 renewable sources [2]. Several nonpetroleum based liquid biofuels obtained from 31 biomass may constitute viable alternatives. In this regard, alcohols such as methanol, 32 ethanol and butanol are competitive due to their advantageous physicochemical 33 properties. 34 35 Ethanol is the most widely used biofuel today, but it suffers from several 36 disadvantages that suggest it needs to be replaced. The most important disadvantage 37 is that ethanol produces only about threequarters of the energy obtained from 38 conventional gasoline [3]. Butanol is seen as a potential alternative to ethanol because 39 40 it is less volatile and explosive, has a higher flash point, and lower vapour pressure, 41 which makes it safer to handle. It contains more energy, it is less hygroscopic and can 42 easily mix with gasoline in any proportion. In addition, butanol and gasoline have a 43 similar air to fuel ratio and energy content. Butanol can be used directly or blended with 44 gasoline or diesel without any vehicle retrofit and supplied through existing gasoline 45 pipelines [4]. 46 47 These second-generation biofuels are made from the inedible parts of 48 lignocellulosic biomass. The biobutanol production process involves pretreatment and 49 hydrolysis of raw material followed by fermentation of sugars to butanol. The principal 50 51 obstacle is the high production cost which includes: the capital investment and the cost 52 of equipment, raw materials, pre-treatment, the enzyme, strain development, recovery, 53 as well as the cost of R&D, sales and marketing of butanol. Nowadays, numerous 54 research groups are working on the cost contributing factors while also analysing the 55 R&D strategies and the latest technologies that will render the process practical and 56 costeffective [5]. 57 58 59 *Corresponding author. Tel.: +34 965903365. E-mail address: [email protected] (J. Garcia-Cano). 60 ACS Paragon Plus Environment Submitted to Journal of Chemical & Engineering Data Page 2 of 21 1 2 3 4 5 Biofuel purification is an important step in the overall production process as it 6 involves the separation of biobutanol from the undesirable impurities, water in 7 particular. During the production of biobutanol by fermentation, or obtained through 8 reaction with bioethanol as a feed, several other by-products appear as impurities 9 (such as pentanols) [6]. Our research group has been investigating the viability of using 10 hydrocarbons as entrainers in the dehydration of butanol [7, 8, 9]. Going further into the 11 research of obtaining a biofuel for use as an additive in conventional fuel, it is 12 13 necessary to not only separate the 1butanol from the water, but also to separate it 14 from the other impurities present in the reaction media. This, in turn, requires obtaining 15 experimental data for the liquidliquid, vapour-liquid and vapour-liquidliquid equilibria 16 (LLE, VLE, and VLLE, respectively) of these ternary systems. One of the impurities is 17 isoamyl alcohol. 18 19 In the present work, we report experimental VLE and VLLE data for the water + 20 1butanol + isoamyl alcohol ternary system at a constant pressure of 101.3 kPa, as 21 well as LLE data at different temperatures (303.15 and 313.15 K) and the same 22 pressure. We also discuss the accuracy with which the activity coefficient models can 23 24 predict these various equilibria. Only LLE data for this system have been published 25 previously in the literature [14]. 26 27 Water + 1butanol + isoamyl alcohol is a type 2 heterogeneous ternary system 28 with two partially miscible pairs: water + 1butanol and water + isoamyl alcohol. It has 29 two binary heterogeneous azeotropes, water + 1butanol and water + isoamyl alcohol 30 [10]. 31 32 2. Experimental 33 34 2.1 Chemicals 35 36 Specifications for all chemical compounds used in the experiments are provided 37 in Table 1. Ethanol (used as internal standard), 1-butanol and isoamyl alcohol were 38 used as supplied by the provider without further purification. Ultrapure water was 39 obtained using a Mili-Q Plus system. The Karl-Fisher titration method was used to 40 determine the water content of the chemicals. 41 42 Table 1. Chemicals employed in this work. 43 44 Chemical Provider Initial purity (mass fraction) water content (mass fraction) Purification method Analysis method 45 a 46 1-butanol Merck >0.995 ≤0.001 None GC 47 Isoamyl alcohol Merck >0.990 ≤0.002 None GCa 48 Ethanol Merck >0.999 <0.001 None GCa 49 a GC, Gas Chromatography 50 51 52 53 2.2 Experimental procedure 54 55 2.2.1 LLE data determination 56 57 58 59 60 ACS Paragon Plus Environment Page 3 of 21 Submitted to Journal of Chemical & Engineering Data 1 2 3 Mixtures of known overall composition belonging to the heterogeneous region were 4 prepared in glass tubes and sealed with screw caps and Teflon septum. These tubes 5 were submerged partially inside a thermostatic bath maintained at a constant and 6 controlled temperature. They were also shaken vigorously to speed up equilibration. 7 Afterwards, the tubes were left in the bath at the same temperature in order to permit 8 decantation and promote phase separation. The bath temperature was 303.15 K in one 9 10 of the experiments and 313.15K in the other. 11 After the phase separation, weighed samples were extracted from both layers by 12 13 means of syringes and injected into vials. A measured amount of ethanol was added in 14 each of the vials as an internal standard for quantification purposes and to avoid phase 15 splitting when the samples began to cool down outside of the thermostatic bath. An 16 additional sample was taken from each of the organic layers and their water content 17 was checked against the Karl Fischer technique. The Water content determined by the 18 Karl Fischer titration is used to verify the value obtained from the chromatography. 19 20 Each of the vials were analysed by gas chromatography. The organic phases were 21 analysed in a Shimadzu GC14 with a Porapak Q packed column and a thermal 22 conductivity detector (TCD). The oven temperature was set to 463 K, the injector to 23 24 483 K, and the TCD to 483 K. The current was fixed at 100 mA. The carrier gas, 25 helium, was supplied at a flow rate of 30 mL/min. 26 27 The aqueous phases were analysed by means of an Agilent 7820A chromatograph. In 28 both GC systems the same chromatographic phase (Porapak Q) was used. A TCD and 29 a Flame Ionisation Detector (FID) were placed in series just after the column. The 30 helium flow rate was 20 mL/min. The temperatures were 503, 523, 523 and 523 K for 31 the oven, injector, TCD and FID. This chromatograph has been employed In order to 32 analyze the composition of the organic compounds in the aqueous phase whose 33 34 concentrations are low. It possesses not only a TCD but it also has a FID. The FID 35 being a more sensitive detector, it allows a better quantification of the organic 36 compounds. 37 38 In order to quantify the samples’ composition, standards of a known composition, and 39 with ethanol as internal standard, were prepared and analysed by the same procedure 40 used on the samples.
Recommended publications
  • Phase Diagrams and Phase Separation
    Phase Diagrams and Phase Separation Books MF Ashby and DA Jones, Engineering Materials Vol 2, Pergamon P Haasen, Physical Metallurgy, G Strobl, The Physics of Polymers, Springer Introduction Mixing two (or more) components together can lead to new properties: Metal alloys e.g. steel, bronze, brass…. Polymers e.g. rubber toughened systems. Can either get complete mixing on the atomic/molecular level, or phase separation. Phase Diagrams allow us to map out what happens under different conditions (specifically of concentration and temperature). Free Energy of Mixing Entropy of Mixing nA atoms of A nB atoms of B AM Donald 1 Phase Diagrams Total atoms N = nA + nB Then Smix = k ln W N! = k ln nA!nb! This can be rewritten in terms of concentrations of the two types of atoms: nA/N = cA nB/N = cB and using Stirling's approximation Smix = -Nk (cAln cA + cBln cB) / kN mix S AB0.5 This is a parabolic curve. There is always a positive entropy gain on mixing (note the logarithms are negative) – so that entropic considerations alone will lead to a homogeneous mixture. The infinite slope at cA=0 and 1 means that it is very hard to remove final few impurities from a mixture. AM Donald 2 Phase Diagrams This is the situation if no molecular interactions to lead to enthalpic contribution to the free energy (this corresponds to the athermal or ideal mixing case). Enthalpic Contribution Assume a coordination number Z. Within a mean field approximation there are 2 nAA bonds of A-A type = 1/2 NcAZcA = 1/2 NZcA nBB bonds of B-B type = 1/2 NcBZcB = 1/2 NZ(1- 2 cA) and nAB bonds of A-B type = NZcA(1-cA) where the factor 1/2 comes in to avoid double counting and cB = (1-cA).
    [Show full text]
  • Interval Mathematics Applied to Critical Point Transitions
    Revista de Matematica:´ Teor´ıa y Aplicaciones 2005 12(1 & 2) : 29–44 cimpa – ucr – ccss issn: 1409-2433 interval mathematics applied to critical point transitions Benito A. Stradi∗ Received/Recibido: 16 Feb 2004 Abstract The determination of critical points of mixtures is important for both practical and theoretical reasons in the modeling of phase behavior, especially at high pressure. The equations that describe the behavior of complex mixtures near critical points are highly nonlinear and with multiplicity of solutions to the critical point equations. Interval arithmetic can be used to reliably locate all the critical points of a given mixture. The method also verifies the nonexistence of a critical point if a mixture of a given composition does not have one. This study uses an interval Newton/Generalized Bisection algorithm that provides a mathematical and computational guarantee that all mixture critical points are located. The technique is illustrated using several ex- ample problems. These problems involve cubic equation of state models; however, the technique is general purpose and can be applied in connection with other nonlinear problems. Keywords: Critical Points, Interval Analysis, Computational Methods. Resumen La determinaci´onde puntos cr´ıticosde mezclas es importante tanto por razones pr´acticascomo te´oricasen el modelamiento del comportamiento de fases, especial- mente a presiones altas. Las ecuaciones que describen el comportamiento de mezclas complejas cerca del punto cr´ıticoson significativamente no lineales y con multipli- cidad de soluciones para las ecuaciones del punto cr´ıtico. Aritm´eticade intervalos puede ser usada para localizar con confianza todos los puntos cr´ıticosde una mezcla dada.
    [Show full text]
  • Chapter 9: Other Topics in Phase Equilibria
    Chapter 9: Other Topics in Phase Equilibria This chapter deals with relations that derive in cases of equilibrium between combinations of two co-existing phases other than vapour and liquid, i.e., liquid-liquid, solid-liquid, and solid- vapour. Each of these phase equilibria may be employed to overcome difficulties encountered in purification processes that exploit the difference in the volatilities of the components of a mixture, i.e., by vapour-liquid equilibria. As with the case of vapour-liquid equilibria, the objective is to derive relations that connect the compositions of the two co-existing phases as functions of temperature and pressure. 9.1 Liquid-liquid Equilibria (LLE) 9.1.1 LLE Phase Diagrams Unlike gases which are miscible in all proportions at low pressures, liquid solutions (binary or higher order) often display partial immiscibility at least over certain range of temperature, and composition. If one attempts to form a solution within that certain composition range the system splits spontaneously into two liquid phases each comprising a solution of different composition. Thus, in such situations the equilibrium state of the system is two phases of a fixed composition corresponding to a temperature. The compositions of two such phases, however, change with temperature. This typical phase behavior of such binary liquid-liquid systems is depicted in fig. 9.1a. The closed curve represents the region where the system exists Fig. 9.1 Phase diagrams for a binary liquid system showing partial immiscibility in two phases, while outside it the state is a homogenous single liquid phase. Take for example, the point P (or Q).
    [Show full text]
  • Definitions of Terms Relating to Phase Transitions of the Solid State
    Definitions of terms relating to phase transitions of the solid state Citation for published version (APA): Clark, J. B., Hastie, J. W., Kihlborg, L. H. E., Metselaar, R., & Thackeray, M. M. (1994). Definitions of terms relating to phase transitions of the solid state. Pure and Applied Chemistry, 66(3), 577-594. https://doi.org/10.1351/pac199466030577 DOI: 10.1351/pac199466030577 Document status and date: Published: 01/01/1994 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Notes on Phase Seperation Chem 130A Fall 2002 Prof
    Notes on Phase Seperation Chem 130A Fall 2002 Prof. Groves Consider the process: Pure 1 + Pure 2 Æ Mixture of 1 and 2 We have previously derived the entropy of mixing for this process from statistical principles and found it to be: ∆ =− − Smix kN11ln X kN 2 ln X 2 where N1 and N2 are the number of molecules of type 1 and 2, respectively. We use k, the Boltzmann constant, since N1 and N2 are number of molecules. We could alternatively use R, the gas constant, if we chose to represent the number of molecules in terms of moles. X1 and X2 represent the mole fraction (e.g. X1 = N1 / (N1+N2)) of 1 and 2, respectively. If there are interactions between the two ∆ components, there will be a non-zero Hmix that we must consider. We can derive an expression ∆H = 2γ ∆ ∆ for Hmix using H of swapping one molecule of type 1, in pure type 1, with one molecule of type 2, in pure type 2 (see adjacent figure). We define γ as half of this ∆H of interchange. It is a differential interaction energy that tells us the energy difference between 1:1 and 2:2 interactions and 1:2 interactions. By defining 2γ = ∆H, γ represents the energy change associated with one molecule (note that two were involved in the swap). ∆ γ Now, to calculate Hmix from , we first consider 1 molecule of type 1 in the mixed system. For the moment we need not be concerned with whether or not they actually will mix, we just want ∆ to calculate Hmix as if they mix thoroughly.
    [Show full text]
  • 1000 J Mole Μa ( ) = 4,0001.09 TJ Mole Μb
    3.012 PS 6 THERMODYANMICS SOLUTIONS 3.012 Issued: 11.28.05 Fall 2005 Due: THERMODYNAMICS 1. Building a binary phase diagram. Given below are data for a binary system of two materials A and B. The two components form three phases: an ideal liquid solution, and two solid phases α and β that exhibit regular solution behavior. Use the given thermodynamic data to answer the questions below. LIQUID PHASE: ALPHA PHASE: L J " J µo = "500 " 4.8T µo = #6000 ( A ) mole ( A ) mole L J " J µo = "1,000 "10T µo = #1,000 ( B ) mole ( B ) mole ! ! (T is temperature in K) Ω = 8,368 J/mole ! ! BETA PHASE: " J µo = #4,000 #1.09T ( A ) mole " J µo = #13,552 # 2.09T ( B ) mole ! (T is temperature in K) ! Ω = 7,000 J/mole a. Plot the free energy of L, alpha, and beta phases (overlaid on one plot) vs. XB at the following temperatures: 2000K, 1500K, 1000K, 925K, and 800K. For each plot, denote common tangents and drop vertical lines below the plot to a ‘composition bar’, as illustrated in the example plot below. For each graph, mark the stable phases as a function of XB in the composition bar below the graph, as illustrated in the example. 3.012 PS 6 1 of 18 12/11/05 EXAMPLE: 3.012 PS 6 2 of 18 12/11/05 3.012 PS 6 3 of 18 12/11/05 b. Using the free energy curves prepared in part (a), construct a qualitatively correct phase diagram for this system in the temperature range 800K – 2000K.
    [Show full text]
  • 16.7 PT Superheating and Supercooling
    The metastable state: Superheating and supercooling Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: November 10, 2019) 3.0 vr 2.5 Gas g 2.0 e pr 0.75 Super cooled state B 1.5 d c 1.0 K b A Super heated state l a 0.5 Liquid tr 0.85 0.90 0.95 1.00 The binodal line is known as phase separation line, since it separates the homogeneous gas and liquid states. For parameters within the binodal line the equilibrium shows two-phase co-existence. In the region between the binodal line and the spinodal line, the homogeneous system is in a metastable state. 3.0 vr 2.5 Gas p 0.70 r g pr 0.75 2.0 e pr 0.80 pr 0.85 B pr 0.90 1.5 d pr 0.95 c 1.0 K b A a l t 0.5 Liquid r 0.85 0.90 0.95 1.00 3.0 vr 2.5 Gas 2.0 g pr 0.80 e Super cooled state B 1.5 d c 1.0 K b A a l Super heated state 0.5 Liquid tr 0.85 0.90 0.95 1.00 e: the intersection of the ParametricPlot (denoted by black line) and the K-e line (binodal line) d: the intersection of the ParametricPlot (denoted by black line) and the K-d line (spinodal line) c: the intersection of the ParametricPlot (denoted by black line) and the K-c line b: the intersection of the ParametricPlot (denoted by black line) and the K-b line (spinodal line) a: the intersection of the ParametricPlot (denoted by black line) and the K-a line (binodal line) Point a: thermal equilibrium Point e: thermal equilibrium Point c: intermediate between the points a and b (temperature of point c is the same as that of points and e).
    [Show full text]
  • Phase Equilibria of Quasi-Ternary Systems Consisting of Multicomponent Polymers in a Binary Solvent Mixture IV
    Polymer Journal, Vol. 18, No.4, pp 347-360 (1986) Phase Equilibria of Quasi-Ternary Systems Consisting of Multicomponent Polymers in a Binary Solvent Mixture IV. Spinodal Curve and Critical Solution Point Kenji KAMIDE and Shigenobu MATSUDA Fundamental Research Laboratory of Fiber and Fiber-Forming Polymers, Asahi Chemical Industry Company, Ltd., 11-7, Hacchonawate, Takatsuki, Osaka 569, Japan (Received October 28, 1985) ABSTRACT: An attempt was made to construct a quasi-ternary system cons1stmg of multicomponent polymers dissolved in binary solvent mixture (solvents I and 2) to derive the equations of spinodal and neutral equilibrium conditions and to clarify the effects of three thermodynamic interaction x-parameters between solvent I and solvent 2, solvent I and polymer, and solvent 2 and polymer(x 12, x13, and x23) and the weight-average degree of polymerization and the ratio of to the number-average degree of polymerization of the original polymer on the spinodal curve and the critical points (the critical concentration calculated from the above mentioned equations. The cloud point curve was also calculated indirectly from coexisting curve evaluated according to a method in our previous papers and constant (starting polymer volume fraction) line. The cross point of a constant line and a coexisting curve is a cloud point. The cloud point curve thus calculated was confirmed to coincide, as theory predicted with the spinodal curve, at the critical point. decreases with an increase in X12, x23, and and increases with an increase in x13
    [Show full text]
  • Arxiv:2108.08140V2 [Hep-Ph] 21 Aug 2021 Cal Potentials [21, 22]
    Critical point and Bose-Einstein condensation in pion matter V. A. Kuznietsov,1 O. S. Stashko,1 O. V. Savchuk,2 and M. I. Gorenstein2, 3 1Taras Shevchenko National University of Kyiv, 03022 Kyiv, Ukraine 2Frankfurt Institute for Advanced Studies Frankfurt am Main, Germany 3Bogolyubov Institute for Theoretical Physics, 03680 Kyiv, Ukraine (Dated: August 24, 2021) The Bose-Einstein condensation and the liquid-gas first order phase transition are studied in the interacting pion matter. Two phenomenological models are used: the mean-field model and the hybrid model. Free model parameters are fixed by fitting the lattice QCD data on the pion Bose condensate density at zero temperature. In spite of some minor differences the two model demonstrate an identical qualitative and very close quantitative behavior for the thermodynamic functions and electric charge fluctuations. A peculiar property of the considered models is an intersection of the Bose-Einstein condensation line and the line of the first order phase transition at the critical end point. Keywords: Bose-Einstein condensation, liquid-gas phase transition, pion matter I. INTRODUCTION and charged pions). In this specific region of the (µ, T ) phase diagram the QCD matter is expected in a form of the interacting pions. The heavier hadrons and/or quark- The Bose statistics [1] and Bose-Einstein condensation gluon degrees of freedom are expected to be suppressed (BEC) phenomenon [2] were predicted almost hundred at T m and not too large µ. years ago. The BEC can take place in equilibrium sys- Various approaches to a description of the pion matter tems of non-interacting bosons when a macroscopic part were developed: chiral perturbation theory [25, 26], lin- of all particles begins to occupy a single zero-momentum ear sigma model [27, 28], Nambu-Jona-Lasinio model [29] state.
    [Show full text]
  • An Algebraic Geometric Method for Calculating Phase Equilibria from Fundamental Equations of State Hythem Sidky,1 Alan C
    An algebraic geometric method for calculating phase equilibria from fundamental equations of state Hythem Sidky,1 Alan C. Liddell, Jr,2 Dhagash Mehta,1, 2 Jonathan D. Hauenstein,2, a) and Jonathan Whitmer1, b) 1)Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA. 2)Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA. Computing saturation properties from highly{accurate Helmholtz equations of state can be challenging for many reasons. The presence of multiple Maxwell loops often results in incorrect solutions to equations defining fluid phase coexistence. Near the critical point, the same equations also become ill{conditioned. As a consequence, without highly accurate initial guesses, it is difficult to avoid the trivial solution. Here, we propose an algorithm applying the technique of Newton homotopy continuation to determine the coexistence curve for all vapor{liquid equilibrium conditions between the triple point and critical point. Importantly, our algorithm is entirely convergence{parameter free, does not rely on the use of auxiliary equations, requires no initial guesses, and can be used arbitrarily close to the critical point. It is also fully generalizable to arbitrary equations of state, only requiring that they be locally analytic away from the critical point. We demonstrate that the method is capable of handling both technical and reference quality fundamental equations of state, is computationally inexpensive, and is useful in both evaluating individual state points and plotting entire fluid phase envelopes. Keywords: phase equilibrium, saturation conditions, Newton homotopy, phase equilibrium, nonlinear equa- tions, numerical algebraic geometry I.
    [Show full text]
  • SOLUTIONS of EXERCISES 301 Central Role of Gibbs Energy 301:1
    SOLUTIONS OF EXERCISES 301 central role of Gibbs energy 301:1 characteristic Numerical values in SI units: m.p = 2131.3; ΔS = 7.95; ΔH = 16943; ΔCP = −11.47. 301:2 a coexistence problem 1) f = M[T,P] – N[2 conditions] = 0 ; this excludes the first option; 2) by eliminating lnP from the two equilibrium equations in the ideal-gas approximation, the invariant point should follow from [60000 + 16 (T/K) = 0]; this excludes the second option. 301:3 trigonometric excess Gibbs energy – spinodal and binodal . -1 2 RTspin(X) = (4000 J mol )π X(1−X)sin2πX; limits at zero K are X = 0 (obviously) and X = 0.75; at 0.75 Tc the binodal mole fractions are about 0.11 and 0.52 301:4 from experimental equal-G curve to phase diagram ΔΩ = 1342 J.mol-1; Xsol = 0.635; Xliq = 0.435; see also van der Linde et al. 2002. 301:5 an elliptical stability field * The property ΔG A , which invariably is negative, passes through a maximum, when plotted against temperature. The maximum is reached for a temperature which is about ‘in the middle of the ellipse’. The property ΔΩ is positive. 301:6 a metastable form stabilized by mixing The stable diagram has three three-phase equilibria: αI + liquid + β at left; eutectic; liquid + β + αII at right; peritectic; αI + β + αII (below the metastable eutectic αI + liquid + αII); eutectoid. 301:7 the equal-G curve and the region of demixing For the left-hand case, where the EGC has a minimum, the stable phase diagram has a eutectic three-phase equilibrium.
    [Show full text]
  • MSE Problems
    Materials Science and Engineering Problems MSE Faculty April 19, 2021 This document includes the assigned problems that have been included so far in the digitized portion of our course curriculum. Contents 1 301 Problems 3 1.1 Course Organization.................................................. 3 1.2 Atomic Structure and Bonding ............................................ 3 1.3 Crystal Structure .................................................... 5 1.4 Imperfections ...................................................... 8 1.5 Electrical Properties................................................... 10 1.6 Diffusion......................................................... 12 1.7 Phase Diagrams..................................................... 14 1.8 Phase Transformations................................................. 18 1.9 Mechanical Properties ................................................. 18 1.10 Fracture Mechanics................................................... 22 1.11 Corrosion......................................................... 23 1.12 Ceramics......................................................... 24 1.13 Polymers......................................................... 25 2 314 Problems 27 2.1 Phases and Components................................................ 27 2.2 Intensive and Extensive Properties.......................................... 27 2.3 Differential Quantities and State Functions ..................................... 27 2.4 Entropy.......................................................... 27 2.5
    [Show full text]