2015 Physics @Berkeley Magazine

Total Page:16

File Type:pdf, Size:1020Kb

2015 Physics @Berkeley Magazine Fall2015PhysicsCover_NEW_OUTLN.pdf 1 11/4/15 3:07 PM C M Y CM MY CY CMY K LETTER FROM THE CHAIR DEAR ALUMNI, PARENTS, COLLEAGUES, AND FRIENDS, and staff are dedicated to maintaining the best education Greetings from Berkeley! and career opportunities for these students. Toward this 2015-2016 is shaping up to goal, we have been actively planning several major revisions be an incredible year for to our undergraduate curriculum, which we will roll out in Berkeley Physics. This stages over the coming years. issue of Physics at Berkeley Starting with the freshman curriculum, these revisions profiles groundbreaking will better prepare students to take advantage of research research our faculty is opportunities, maximizing their participation as undergradu- conducting in the areas of ates in cutting-edge research at Berkeley. The revisions will biophysics and quantum also create more flexibility in the curriculum during junior materials, remembers the and senior years, allowing students to better specialize for lives of esteemed colleagues Eugene Commins and Charles careers in industry, teaching, or academic research. Townes, and summarizes the past year in the department, The first of the curriculum changes began this year, with with faculty, staff, students, and alumni. the introduction of two new courses. This Fall, we are offering As I begin my third year, I am still proud and humbled “Introduction to Mathematical Physics,” a course designed to to be Chair of this remarkable department. Berkeley Physics launch majors into their sophomore year with all the math tools grows stronger each year – whether through expanding the they need to master higher-level physics subjects. In the Spring, frontiers of fundamental physics research, educating the next we are offering “Introduction to Computational Techniques in generation of scientific and educational leaders, or continuing Physics,” a freshman course designed to introduce students to to produce an impact on the community commensurate with basic concepts for solving physics problems numerically, a the distinguished history and tradition of this great department. powerful tool for succeeding in class and preparing for research. There are good reasons why Berkeley Physics is #1 - again! Next year, we hope to introduce two new laboratory In August, the 2015 Academic Ranking of World courses, “Introduction to Experimental Physics I & II,” Universities identified Berkeley Physics as the top physics designed specifically for freshman physics majors. More department worldwide for the second year in a row. This challenging and quantitative than our current undergraduate ranking reflects the combined research accomplishments of laboratory classes, which are targeted to the broader Cal our students, faculty, and alumni as well as the unmatched undergraduate population, the new classes will enable freshman support and loyalty of our friends and staff. I am thrilled to physics majors to begin exploring hands-on physics from the see that Berkeley continues to demonstrate to the world the critical role that public research universities play in advancing very start of their Cal adventure. These two lab courses will research, education, and service. I am grateful every day to also better prepare students for upper-division work in the be part of such a distinguished institution. Donald A. Glaser Advanced Lab. Making these new lab courses a reality will require support from our Berkeley Physics UNDERGRADUATE DIGS friends and family. Stay tuned for more details! As I write, construction is proceeding on the new Reading Room and Collaboration Center on first floor of LeConte ENSURING A SAFE, NURTURING CAMPUS ENVIRONMENT Hall, set to open in early 2016. This newly designed space, You might have read about recent events involving sexual accessible from the main entryway of our building, will welcome harassment on the Berkeley campus. This kind of behavior all Cal students to Berkeley Physics and provide a central home simply cannot be tolerated, and the Berkeley Physics faculty for our majors. The center provides space for quiet study and and staff have made it a top priority to create a respectful collaboration, social interaction, and tutoring. It’s designed to and welcoming atmosphere, starting from within our own enhance the undergraduate experience by supporting study, department. active learning, mentoring, advising, diversity, and community. As a first step, our faculty released a statement that reads, Your continued support is appreciated in making this center in part, “As faculty members in the UC Berkeley Physics a completed reality for our students. I hope to see many of Department, we stress our own commitment to developing you at the opening in 2016! and maintaining a supportive and open environment, free of sexual harassment and fear of retribution.” We are now PHYSICS MAJOR CURRICULUM Berkeley Physics is proud to graduate more physics majors developing department programs to ensure we have the type than any other research university in the country – a statistic of community that complements our world-renowned research, verified by the American Physical Society. We are even prouder faculty, and students. We are committed to this process and of the students themselves, who eagerly embrace their I look forward to updating you on our progress. opportunities here at Cal. We have 350 majors, and graduate Thank you again for your support. Fiat lux! roughly 120 physics undergraduate majors each year. Faculty - Steve Boggs 2 Biophysics at Berkeley 24 4 17 Department News Protein Motors and Telomere End Caps Invited Lectures Tracking cargo transport along cellular highways and learning how telomeres protect 18 44 Remembering chromosomes Eugene Commins 30 Commencement 2015 Faculty News 34 Physics in the Media Excerpts from print, 10 online, and broadcast Evolutionary Biophysics 20 media coverage of 46 Combining physics theory Remembering Berkeley physics research Class Notes with experimental biology Charles Townes to study population-scale biological phenomena 48 Historical Moment 22 Faculty Q&A 40 Barbara Jacak, 14 Nuclear Physicist Student Affairs Quantum Materials Finding new physics by creating new materials 23 Alumna Profile Lorraine Sadler uses physics to help protect the nation Biophysics at Berkeley Using physics to understand the complexities of living matter BIOPHYSICS seeks to uncover Carlos Bustamante, Berkeley Physics fundamental rules behind the emergence Professor and world-renowned biophysics of structure and function in living pioneer, puts it this way: “I believe a matter – to reveal how physical laws great deal of the excitement in biological govern biological processes, and how research is taking place at the interface the modeling of biological processes can between biology and these other shed light on the nature of physical laws. disciplines, and that significant increase in Biophysics is broadly interdisciplinary, our understanding of biological processes populated with experts from the fields of is resulting from development of novel physics, biology, chemistry, biochemistry, methodologies arising from this interface.” engineering, medicine, epidemiology, Several members of the Berkeley physics mathematics, and computer science. faculty are deeply immersed in biophysics This combination of disciplines has research. This issue of Physics at Berkeley led to groundbreaking advances in the spotlights their work, with special focus understanding of a variety of living on discoveries recently achieved by systems, from deciphering the structure Professors Ahmet Yildiz and Oskar and function of proteins and the DNA Hallatschek. double helix, to the sequencing of genomes, to the direct imaging and manipulation of individual biological molecules within living organisms. Fall 2015 | Physics at Berkeley 3 Protein Motors and Telomere End Caps Tracking cargo transport along cellular highways and learning how telomeres protect chromosomes he cytoplasm of a eukaryotic cell Materials prepared at one end, in the cell body, have to be teems with molecules and organelles transported to synapses at the opposite end. Diffusion along travelling from sites where they are the length of this cell could take years.” manufactured to where they are Eukaryotic cells have a way around this limitation. needed. Waste materials are col- Intracellular transport is accomplished by complex protein lected and disposed of. How are motors that carry cargo as they “walk” along tracks formed these activities organized? How are by the microtubules and actin filaments of the cytoskeleton. materials transported? These are Yildiz compares the structure of these proteins to the some of the questions Assistant Professor Ahmet Yildiz is bipedal structure of the human body. “We can use that analogy helping to answer. He is an experimental biophysicist who to name the different domains of these proteins,” he says. uses highly precise single-molecule imaging and manipulation “We can say they have two feet, two legs, a body, and two methods to study fundamental biological processes that take arms. With their arms they hold the cargo. With their feet place inside the cell. they walk along actin or microtubules. By consuming ATP energy, they take tiny little steps, on the order of nanometers PROTEINS THAT WALK (nm), along the track.” A primary research focus of Yildiz and his colleagues is the “There are many kinds of motors with a wide variety structure and function of motor proteins involved in intra- of biological functions,”
Recommended publications
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Discoverable Matter: an Optimist’s View of Dark Matter and How to Find It Permalink https://escholarship.org/uc/item/2sv8b4x5 Author Mcgehee Jr., Robert Stephen Publication Date 2020 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Discoverable Matter: an Optimist’s View of Dark Matter and How to Find It by Robert Stephen Mcgehee Jr. A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Hitoshi Murayama, Chair Professor Alexander Givental Professor Yasunori Nomura Summer 2020 Discoverable Matter: an Optimist’s View of Dark Matter and How to Find It Copyright 2020 by Robert Stephen Mcgehee Jr. 1 Abstract Discoverable Matter: an Optimist’s View of Dark Matter and How to Find It by Robert Stephen Mcgehee Jr. Doctor of Philosophy in Physics University of California, Berkeley Professor Hitoshi Murayama, Chair An abundance of evidence from diverse cosmological times and scales demonstrates that 85% of the matter in the Universe is comprised of nonluminous, non-baryonic dark matter. Discovering its fundamental nature has become one of the greatest outstanding problems in modern science. Other persistent problems in physics have lingered for decades, among them the electroweak hierarchy and origin of the baryon asymmetry. Little is known about the solutions to these problems except that they must lie beyond the Standard Model. The first half of this dissertation explores dark matter models motivated by their solution to not only the dark matter conundrum but other issues such as electroweak naturalness and baryon asymmetry.
    [Show full text]
  • Table of Contents (Print)
    NEWSPAPER The PandaX-II liquid xenon detector used for dark matter searches at the China Jin-Ping Underground Laboratory. Selected for an Editors’ Suggestion. [Andi Tan et al. (PandaX-II Collaboration), Phys. Rev. Lett. 117, 121303 (2016)] PHYSICAL REVIEW LETTERS Contents Articles published 10 September–16 September 2016 VOLUME 117, NUMBER 12 16 September 2016 General Physics: Statistical and Quantum Mechanics, Quantum Information, etc. Direct Measurement of the Density Matrix of a Quantum System .................................................................... 120401 G. S. Thekkadath, L. Giner, Y. Chalich, M. J. Horton, J. Banker, and J. S. Lundeen Accessing Many-Body Localized States through the Generalized Gibbs Ensemble ........................................................... 120402 Stephen Inglis and Lode Pollet Noise Threshold and Resource Cost of Fault-Tolerant Quantum Computing with Majorana Fermions in Hybrid Systems ................................................................................................................................................................. 120403 Ying Li Quasiprobability Representations of Quantum Mechanics with Minimal Negativity .......................................................... 120404 Huangjun Zhu Grover Search and the No-Signaling Principle ..................................................................................................................... 120501 Ning Bao, Adam Bouland, and Stephen P. Jordan Gravitation and Astrophysics Observation of Noise Correlated by
    [Show full text]
  • Constraining a Thin Dark Matter Disk with Gaia
    LCTP 17-03, MIT-CTP 4957 Constraining a Thin Dark Matter Disk with Gaia Katelin Schutz,1, ∗ Tongyan Lin,1, 2, 3 Benjamin R. Safdi,4 and Chih-Liang Wu5 1Berkeley Center for Theoretical Physics, University of California, Berkeley, CA 94720, USA 2Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 3Department of Physics, University of California, San Diego, CA 92093, USA 4Leinweber Center for Theoretical Physics, Department of Physics, University of Michigan, Ann Arbor, MI 48109 5Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 If a component of the dark matter has dissipative interactions, it could collapse to form a thin dark disk in our Galaxy that is coplanar with the baryonic disk. It has been suggested that dark disks could explain a variety of observed phenomena, including periodic comet impacts. Using the first data release from the Gaia space observatory, we search for a dark disk via its effect on stellar kinematics in the Milky Way. Our new limits disfavor the presence of a thin dark matter disk, and we present updated measurements on the total matter density in the Solar neighborhood. Introduction.| The particle nature of dark matter height of hDD 10 pc are required to meaningfully im- (DM) remains a mystery in spite of its large abundance pact the above∼ phenomena.1 in our Universe. Moreover, some of the simplest DM Here we present a comprehensive search for a local DD, models are becoming increasingly untenable. Taken to- using tracer stars as a probe of the local gravitational po- gether, the wide variety of null searches for particle DM tential.
    [Show full text]
  • Cora Dvorkin Curriculum Vitae
    Cora Dvorkin 1 Cora Dvorkin Curriculum Vitae Contact Address: Department of Physics, Harvard University 17 Oxford Street, Lyman 334 Cambridge, MA 02138 Telephone (773) 915-3857 Email: [email protected] Website: http : ==dvorkin:physics:harvard:edu=Home:html https : ==www:physics:harvard:edu=people=facpages=dvorkin Citizenship: Argentina EDUCATION July, 2011: Doctor of Philosophy in Physics University of Chicago Dissertation: \On the Imprints of Inflation in the Cosmic Microwave Background" Advisor: Prof. Wayne Hu September, 2006: Master of Science in Physics University of Chicago June, 2005: Diploma in Physics (M.S. equivalent) University of Buenos Aires (Summa cum laude) RESEARCH INTERESTS I am a theoretical cosmologist. My areas of interest are: the nature of dark matter, neutrinos and other light relics, and the physics of the early universe. I use observables such as the Cosmic Microwave Background (CMB), the large-scale structure of the universe, 21-cm radiation, and strong gravitational lensing to shed light on these questions. POSITIONS HELD July, 2019 - present Department of Physics, Harvard University Associate Professor July, 2015 - June, 2019 Department of Physics, Harvard University Assistant Professor 2014-2015 ITC - Center for Astrophysics, Harvard University Hubble Fellow and ITC Fellow 2011-2014 Institute for Advanced Study (Princeton), School of Natural Sciences Postdoctoral Member 2006-2011 University of Chicago, Department of Physics Research Assistant at Kavli Institute for Cosmological Physics (KICP) 2004-2005
    [Show full text]
  • Einstein's Wrong
    Einstein’s wrong way: from STR to GTR Adrian Ferent I discovered a new Gravitation theory which breaks the wall of Planck scale! Abstract My Nobel Prize - Discoveries “Starting from STR, it is not possible to find a Quantum Gravity theory” Adrian Ferent “Einstein was on the wrong way: from STR to GTR” Adrian Ferent “Starting from STR, Einstein was not able to explain Gravitation” Adrian Ferent “Starting from STR, Einstein was not able to explain Gravitation, he calculated Gravitation” Adrian Ferent “Einstein's equivalence principle is wrong because the gravitational force experienced locally is caused by a negative energy, gravitons energy and the force experienced by an observer in a non-inertial (accelerated) frame of reference is caused by a positive energy.” Adrian Ferent “Because Einstein's equivalence principle is wrong, Einstein’s gravitation theory is wrong.” Adrian Ferent “Because Einstein’s gravitation theory is wrong, LQG, String theory… are wrong theories” Adrian Ferent “Einstein bent the space, Ferent unbent the space” Adrian Ferent 1 “Einstein bent the time, Ferent unbent the time” Adrian Ferent “I am the first who Quantized the Gravitational Field!” Adrian Ferent “I quantized the gravitational field with gravitons” Adrian Ferent “Gravitational field is a discrete function” Adrian Ferent “Gravitational waves are carried by gravitons” Adrian Ferent In STR and GTR there are continuous functions. This is another proof that LIGO is a fraud. The 2017 Nobel Prize in Physics has been awarded for a project, the Laser Interferometer Gravitational-wave Observatory (LIGO) not for a scientific discovery; they did not detect anything because Einstein’s gravitational waves do not exist.
    [Show full text]
  • Tevpa 2017.Pdf
    東京大学 2004.2.12 シンボルマーク+ロゴタイプ 新東大ブルー 基本形 漢字のみ 英語のみ TeV frontier in particle astrophysics Hitoshi Murayama (Berkeley, Kavli IPMU) TeVPA 2017, Columbus, Aug 11, 2017 東京大学 2004.2.12 シンボルマーク+ロゴタイプ 新東大ブルー 基本形 漢字のみ 英語のみ sub-GeV frontier in particle astrophysics Hitoshi Murayama (Berkeley, Kavli IPMU) TeVPA 2017, Columbus, Aug 11, 2017 +Yonit Hochberg, Eric Kuflik matter Ωm changes the overall heights of the peaks matter Ωm changes the overall heights of the peaks nDM 10 GeV =4.4 10− WIMP Miracles ⇥ mDM DM SM DM SM “weak” coupling correct abundance “weak” mass scale Miracle2 nDM 10 GeV =4.4 10− WIMP Miracles ⇥ mDM DM SM ↵2 σ2 2v h ! i⇡m2 2 ↵ 10− ⇡ m 300 GeV DM SM ⇡ “weak” coupling correct abundance “weak” mass scale Miracle2 sociology • Particle physicists used to think sociology • Particle physicists used to think • need to solve problems with the SM sociology • Particle physicists used to think • need to solve problems with the SM • hierarchy problem, strong CP, etc sociology • Particle physicists used to think • need to solve problems with the SM • hierarchy problem, strong CP, etc • it is great if a solution also gives dark matter candidate as an option sociology • Particle physicists used to think • need to solve problems with the SM • hierarchy problem, strong CP, etc • it is great if a solution also gives dark matter candidate as an option • big ideas: supersymmetry, extra dim sociology • Particle physicists used to think • need to solve problems with the SM • hierarchy problem, strong CP, etc • it is great if a solution also gives dark
    [Show full text]
  • Signature Redacted Thesis Supervisor Certified By
    MASSACHUSETTS INSTMITE A Tale of Two Particles OF TECHNOLOGY by AU6 15 2014 Katelin Schutz LIBRARIES Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Bachelor of Science in Physics at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2014 @ Katelin Schutz, MMXIV. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature redacted Author .. .................................. Department of Physics Signature redacted May 9, 2014 Certified by. ........................... A. David Kaiser Germeshausen Professor of the History of Science Senior Lecturer, Department of Physics Signature redacted Thesis Supervisor Certified by.. ............................. Tracy Slatyer Assistant Professor of Physics Signature redacted Thesis Supervisor Accepted by.. ..................... Nergis Mavalvala Senior Thesis Coordinator A Tale of Two Particles by Katelin Schutz Submitted to the Department of Physics on May 9, 2014, in partial fulfillment of the requirements for the degree of Bachelor of Science in Physics Abstract It was the earliest of times, it was the latest of times, it was the age of inflation, it was the age of collapse, it was the epoch of perturbation growth, it was the epoch of perturbation damping, it was the CMB of light, it was the dwarf galaxy of dark- ness, it was the largest of cosmic scales, it was the smallest of Milky Way subhalos, we had multiple nonminimally coupled inflatons before us, we had inelastically self- interacting dark matter before us, we were all going direct to the Planck scale, we were all going direct the other way.
    [Show full text]
  • Neutrino Cosmology and Large Scale Structure
    Neutrino cosmology and large scale structure Christiane Stefanie Lorenz Pembroke College and Sub-Department of Astrophysics University of Oxford A thesis submitted for the degree of Doctor of Philosophy Trinity 2019 Neutrino cosmology and large scale structure Christiane Stefanie Lorenz Pembroke College and Sub-Department of Astrophysics University of Oxford A thesis submitted for the degree of Doctor of Philosophy Trinity 2019 The topic of this thesis is neutrino cosmology and large scale structure. First, we introduce the concepts needed for the presentation in the following chapters. We describe the role that neutrinos play in particle physics and cosmology, and the current status of the field. We also explain the cosmological observations that are commonly used to measure properties of neutrino particles. Next, we present studies of the model-dependence of cosmological neutrino mass constraints. In particular, we focus on two phenomenological parameterisations of time-varying dark energy (early dark energy and barotropic dark energy) that can exhibit degeneracies with the cosmic neutrino background over extended periods of cosmic time. We show how the combination of multiple probes across cosmic time can help to distinguish between the two components. Moreover, we discuss how neutrino mass constraints can change when neutrino masses are generated late in the Universe, and how current tensions between low- and high-redshift cosmological data might be affected from this. Then we discuss whether lensing magnification and other relativistic effects that affect the galaxy distribution contain additional information about dark energy and neutrino parameters, and how much parameter constraints can be biased when these effects are neglected.
    [Show full text]
  • Nobel Lecture: Accelerating Expansion of the Universe Through Observations of Distant Supernovae*
    REVIEWS OF MODERN PHYSICS, VOLUME 84, JULY–SEPTEMBER 2012 Nobel Lecture: Accelerating expansion of the Universe through observations of distant supernovae* Brian P. Schmidt (published 13 August 2012) DOI: 10.1103/RevModPhys.84.1151 This is not just a narrative of my own scientific journey, but constant, and suggested that Hubble’s data and Slipher’s also my view of the journey made by cosmology over the data supported this conclusion (Lemaˆitre, 1927). His work, course of the 20th century that has lead to the discovery of the published in a Belgium journal, was not initially widely read, accelerating Universe. It is complete from the perspective of but it did not escape the attention of Einstein who saw the the activities and history that affected me, but I have not tried work at a conference in 1927, and commented to Lemaˆitre, to make it an unbiased account of activities that occurred ‘‘Your calculations are correct, but your grasp of physics is around the world. abominable.’’ (Gaither and Cavazos-Gaither, 2008). 20th Century Cosmological Models: In 1907 Einstein had In 1928, Robertson, at Caltech (just down the road from what he called the ‘‘wonderful thought’’ that inertial accel- Edwin Hubble’s office at the Carnegie Observatories), pre- eration and gravitational acceleration were equivalent. It took dicted the Hubble law, and claimed to see it when he com- Einstein more than 8 years to bring this thought to its fruition, pared Slipher’s redshift versus Hubble’s galaxy brightness his theory of general Relativity (Norton and Norton, 1984)in measurements, but this observation was not substantiated November, 1915.
    [Show full text]
  • Electronic Newsletter December 15, 2016
    Electronic Newsletter December 15, 2016 In this issue • April Meeting (in January) Washington, DC • DAP Nominations • APS Fellows from DAP • 2017 Bethe Prize • April Meeting Overview • DAP Awards Ceremony • Public Lecture and Plenary Session Highlights • DAP Session Schedule • Focus Sessions sponsored by the DAP • Invited Session Highlights APS DAP Officers 2016–2017: Finalize your plans now to attend the April 2017 meeting held Chair: Julie McEnery this year in January in Washington, DC. A number of plenary and invited sessions will feature presentations by DAP mem- Chair-Elect: Fiona Harrison bers. Here are the key details: Vice Chair: Priyamvada Natarajan Past Chair: Paul Shapiro What: April 2017 APS Meeting Secretary/Treasurer: Scott Dodelson When: Saturday, Jan 28 – Tuesday, Jan 31, 2016 Deputy Sec./Treasurer: Where: Washington, DC (Marriott Wardman Park) Keivan Stassun Member-at-Large: Registration Deadline: January 6, 2017 Brenna Flaugher Division Councilor: The 2017 April Meeting will take place at the Marriott Ward- Miriam Forman man Park. Detailed information for the meeting, including details Member-at-Large: on registration and the scientific program can be found online at Daniel Kasen http://www.aps.org/meetings/april Member-at-Large: Marc Kamionkowski Note that you can still register on-site, if you don’t do so by the Member-at-Large: deadline. Tracy Slatyer Registration fees range from $30 for undergraduates to $480 for full members. Questions? Comments? Newsletter Editor: Keivan Stassun [email protected] Nominations for the APS DAP Executive Committee Officers Deadline: December 21, 2016 Each year the Division of Astrophysics (DAP) of the APS elects new members for the open positions on the DAP Executive Committee.
    [Show full text]
  • Issues in Physics & Astronomy
    Issues in Physics & Astronomy Board on Physics and Astronomy · The National Academies · Washington, D.C. · 202-334-3520 · national-academies.org/bpa · Summer 2009 Challenges and Opportunities in New Materials Synthesis and Crystal Growth James C. Lancaster, BPA Staff or much of the past 60 years, the Madison), was charged with the respon- ficiently interesting scientifically or relevant U.S. research community dominat- sibility of assessing the health of research for an application—or as often happens, Fed the discovery of new crystalline activities in the United States in this field, both—large single crystals of that material materials and the growth of large single identifying future opportunities and rec- are needed for detailed study. Because of crystals. These efforts placed the country at ommending strategies for the United States common heritage, shared resources, and the forefront of fundamental advances in to reinvigorate its efforts and thereby return strong educational bonds, it is natural to condensed-matter sciences and fueled the to a position of leadership in this field. The combine these related activities—the dis- development of many of the new technolo- committee issued its report this past spring. covery and growth of crystalline materials gies at the core of U.S. economic growth. The two activities in this field— (DGCM)—in a single study. The growth of The opportunities offered by future devel- discovering new crystalline materials and thin, two-dimensional crystalline films also opments in this field remain as promising growing large crystals of these materials— is included in this study because it shares as the achievements of the past.
    [Show full text]
  • Curriculum Vitae–Adam Guy Riess Office Johns Hopkins University 3400 North Charles Street Baltimore, MD 21218 (410) 516-4474
    Curriculum Vitae–Adam Guy Riess Office Johns Hopkins University 3400 North Charles Street Baltimore, MD 21218 (410) 516-4474 Education Harvard University, Ph.D., Astrophysics, 1996 Harvard University, A.M., Astrophysics, 1994 Massachusetts Institute of Technology, B.S, Physics, Minor in History 1992 Positions Held Johns Hopkins University, Professor of Physics and Astronomy, 2006-present Space Telescope Science Institute, Senior Science Staff, 1999-2005 U.C. Berkeley, Miller Fellow, 1996-1999 Harvard University, Doctoral Student, 1992-1996 Lawrence Livermore National Laboratory, Research Associate, Summer 1992 Massachusetts Institute of Technology, Undergraduate Research Assistant, 1990-1992 Honors and Awards– Recognition by Peers Fellow of the American Academy of Arts and Sciences, 2008 Kavli Frontier of Science Fellow, 2007 Gruber Prize in Cosmology, 2007 Shaw Prize, Hong Kong, 2006 Townes Prize in Cosmology, UC Berkeley, 2005 Raymond and Beverly Sackler Prize, Tel-Aviv University, 2004 International Academy of Astronautics, Laurels for Achievement Award, 2004 Helen B. Warner Prize, American Astronomical Society, 2003 Bok Prize, Harvard University, 2001 AURA Science Award, 2000 STScI Science Merit Award, 2000, 2001 Trumpler Award, Astronomical Society of the Pacific, 1999 Harvard GSAS Merit Fellow, 1995 Harvard Distinction in Teaching Award, 1994 Margaret Weyerhaeuser Jewett Memorial Fellowship, 1993 Phi Beta Kappa at MIT, GPA: 4.94/5.00 Honors and Awards– Public Recognition Esquire Magazine “Best and Brightest” Award, 2003 Discover Magazine Innovator Award, Finalist, 2003 Time Magazine Innovator Award, 2000 Science Magazine’s Research “Breakthrough of the Year”, 1998 Science Initiatives Principal Investigator of the Higher-z SN Team which has found and measured the 20 most distant type Ia supernovae known through the competitive awarding of more than 800 orbits of Hubble Space Telescope Time in 5 cycles and $2M in grants since 2002.
    [Show full text]