Tevpa 2017.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
東京大学 2004.2.12 シンボルマーク+ロゴタイプ 新東大ブルー 基本形 漢字のみ 英語のみ TeV frontier in particle astrophysics Hitoshi Murayama (Berkeley, Kavli IPMU) TeVPA 2017, Columbus, Aug 11, 2017 東京大学 2004.2.12 シンボルマーク+ロゴタイプ 新東大ブルー 基本形 漢字のみ 英語のみ sub-GeV frontier in particle astrophysics Hitoshi Murayama (Berkeley, Kavli IPMU) TeVPA 2017, Columbus, Aug 11, 2017 +Yonit Hochberg, Eric Kuflik matter Ωm changes the overall heights of the peaks matter Ωm changes the overall heights of the peaks nDM 10 GeV =4.4 10− WIMP Miracles ⇥ mDM DM SM DM SM “weak” coupling correct abundance “weak” mass scale Miracle2 nDM 10 GeV =4.4 10− WIMP Miracles ⇥ mDM DM SM ↵2 σ2 2v h ! i⇡m2 2 ↵ 10− ⇡ m 300 GeV DM SM ⇡ “weak” coupling correct abundance “weak” mass scale Miracle2 sociology • Particle physicists used to think sociology • Particle physicists used to think • need to solve problems with the SM sociology • Particle physicists used to think • need to solve problems with the SM • hierarchy problem, strong CP, etc sociology • Particle physicists used to think • need to solve problems with the SM • hierarchy problem, strong CP, etc • it is great if a solution also gives dark matter candidate as an option sociology • Particle physicists used to think • need to solve problems with the SM • hierarchy problem, strong CP, etc • it is great if a solution also gives dark matter candidate as an option • big ideas: supersymmetry, extra dim sociology • Particle physicists used to think • need to solve problems with the SM • hierarchy problem, strong CP, etc • it is great if a solution also gives dark matter candidate as an option • big ideas: supersymmetry, extra dim • probably because dark matter problem was not so established in 80’s 10 7 Interpretation -36 -36 superCDMS ] 10 ] 10 CDMSlite 2 CMS 2 CMS 10-37 10-37 -38 -38 SIMPLE 2012 direct detection 10 CMS, 90% CL, 7 TeV, 5.0 fb-1 10 - COUPP 2012+ 10-39 10-39 W CMS, 90% CL, 8 TeV, 19.7 fb-1 Super-K W µ -1 -40 (χγ χ)(qγ q) -40 CMS, 90% CL, 7 TeV, 5.0 fb µ - 10 10 +W CoGeNT 2011 Λ2 IceCube W -41 Vector -41 CMS, 90% CL, 8 TeV, 19.7 fb-1 10 SIMPLE 2012 10 (χγ γ χ)(qγ µγ q) 10-42 10-42 µ 5 5 Axial-vector operator 2 COUPP 2012 Λ -43 -43 10 CDMS II 10 χχα (Ga )2 -1 XENON1t s µν CMS, 90% CL, 8 TeV, 19.7LHC fb -44 -44 10 3 10 4Λ XENON100 -Nucleon Cross Section [cm -45 Scalar -Nucleon Cross Section [cm -45 χ 10 LUX 2013 χ 10 Spin Dependent Spin Independent 10-46 10-46 1 10 102 103 1 10 102 103 Mχ [GeV] Mχ [GeV] Figure 5: Upper limits on the DM-nucleon cross section, at 90% CL, plotted against DM particle mass and compared with previously published results. Left: limits for the vector and scalar operators from the previous CMS analysis [10], together with results from the CoGeNT [60], SIMPLE [61], COUPP [62], CDMS [63, 64], SuperCDMS [65], XENON100 [66], and LUX [67] collaborations. The solid and hatched yellow contours show the 68% and 90% CL contours + respectively for a possible signal from CDMS [68]. Right: limits for the axial-vector operator e from the previous CMS analysis [10], together with results from the SIMPLE [61], COUPP [62], γSuper-K from [69], dSph and IceCube [70] collaborations. Figure 6: Observed limits on the mediator mass divided by coupling, M/pgcgq, as a function of the mass of the mediator, M, assuming vector interactions and a dark matter mass of 50 GeV (blue, filled) and 500 GeV (red, hatched). The width, G, of the mediator is varied between M/3 and M/8p. The dashed lines show contours of constant coupling pgcgq. K = s /s of 1.4 for d = 2, 3 , 1.3 for d = 4, 5 , and 1.2 for d = 6 [71]. Figure 7 shows 95% NLO LO { } { } CL limits at LO, compared to published results from ATLAS, LEP, and the Tevatron. Table 7 shows the expected and observed limits at LO and NLO for the ADD model. Figure 8 shows the expected and observed 95% CL limits on the cross-sections for scalar un- ~~ ~ 0 ~ 0 ~ 0 ~ 0 t t production, t → b f f' χ∼ / t → c χ∼ / t → W b χ∼ / t → t χ∼ Status: ICHEP 2016 1 1 1 1 1 1 1 1 1 1 600 ATLAS Preliminary s=13 TeV ~ 0 ~ 0 -1 t → t ∼χ / t → W b ∼χ t0L 13.2 fb [CONF-2016-077] [GeV] 1 1 1 1 0 1 ~ 0 -1 ∼ χ t → t ∼χ t1L 13.2 fb [CONF-2016-050] 500 1 1 m ~ 0 t → W b ∼χ -1 1 1 t2L 13.3 fb [CONF-2016-076] ~ 0 -1 t → c ∼χ MJ 3.2 fb [1604.07773] 1 1 s=8 TeV, 20 fb-1 Run 1 [1506.08616] 400 Observed limits Expected limits All limits at 95% CL 300 W t + m 0 ) < m b 0 ) < 0 ∼ 1 ,χ ∼ 1 χ ~ t 1 , 0 ) < m ~ t 1 ∼χ 1 m( ~ , m( t 1 ∆ ∆ 0 m( c ∼ ∆ 200 χ1 0 b f f' ∼ χ1 100 13 TeV 8 TeV LQ1(ej) x2 LQ1(ej)+LQ1(νj) β=0.5 0 coloron(jj) x2 W b ∼ LQ2(μj) x2 χ1 LQ2(μj)+LQ2(νj) β=0.5 coloron(4j) x2 LQ3(τb) x2 Leptoquarks Multijet LQ3(νb) x2 gluino(3j) x2 LQ3(τt) x2 Resonances LQ3(vt) x2 gluino(jjb) x2 0 Single LQ1 (λ=1) 200 300 400 500 600 700 800 900Single LQ2 (λ=1) 0 1 2 3 4 TeV 0 1 2 3 4 TeV ~ ADD (γ+MET), nED=4, MD m [GeV] RS Gravitons ADD (jj), nED=4, MS t1 RS1(jj), k=0.1 RS1(γγ), k=0.1 QBH, nED=6, MD=4 TeV RS1(ee,μμ), k=0.1 NR BH, nED=6, MD=4 TeV 0 1 2 3 4 TeV String Scale (jj) QBH (jj), nED=4, MD=4 TeV CMS Preliminary ADD (j+MET), nED=4, MD no sign of ADD (ee,μμ), nED=4, MS Large Extra Heavy Gauge ADD (γγ), nED=4, MS Dimensions SSM Z'(ττ) Jet Extinction Scale Bosons SSM Z'(jj) 0 1 2 3 4 5 6 7 8 9 10 new physics SSM Z'(ee)+Z'(µµ) TeV SSM W'(jj) dijets, Λ+ LL/RR SSM W'(lv) dijets, Λ- LL/RR SSM Z'(bb) dimuons, Λ+ LLIM that explains 0 1 2 3 4 5 TeV dimuons, Λ- LLIM dielectrons, Λ+ LLIM Excited dielectrons, Λ- LLIM e* (M=Λ) Fermions single e, Λ HnCM μ* (M=Λ) single μ, Λ HnCM Compositeness q* (qg) hierarchy problem! inclusive jets, Λ+ q* (qγ) f=1 b* inclusive jets, Λ- 0 1 2 3 4 5 6 TeV 0 1 2 3 4 5 6 7 8 9 1011121314151617181920TeV21 CMS Exotica Physics Group Summary – ICHEP, 2016! recent thinking recent thinking • dark matter definitely exists recent thinking • dark matter definitely exists • hierarchy problem may be optional? recent thinking • dark matter definitely exists • hierarchy problem may be optional? • need to explain dark matter on its own recent thinking • dark matter definitely exists • hierarchy problem may be optional? • need to explain dark matter on its own • perhaps we should decouple these two recent thinking • dark matter definitely exists • hierarchy problem may be optional? • need to explain dark matter on its own • perhaps we should decouple these two • do we really need big ideas like SUSY? recent thinking • dark matter definitely exists • hierarchy problem may be optional? • need to explain dark matter on its own • perhaps we should decouple these two • do we really need big ideas like SUSY? • perhaps we can solve it with ideas more familiar to us? mass [GeV] 1050 1040 1030 1020 1010 100 10–10 10–20 10–30 mass [GeV] 1050 etc mirolensing 1040 1030 1020 1010 100 10–10 10–20 10–30 mass [GeV] 1050 etc mirolensing 1040 1030 1020 1010 100 10–10 10–20 –30 10 to fluffy to mass [GeV] 1050 etc mirolensing 1040 1030 no good idea good no 1020 1010 100 10–10 10–20 –30 10 to fluffy to mass mass [GeV] [GeV] 1050 etc mirolensing 106 1040 1030 no good idea good no 1020 100 1010 100 10–10 10–20 –30 10–10 10 to fluffy to mass mass [GeV] [GeV] defects 1050 etc mirolensing 106 non-thermal 1040 30 10 WIMP asymmetric DM asymmetric no good idea good no 1020 100 1010 gravitino 100 sterile neutrino sterile 10–10 vector vector mediation 10–20 w/ moduli 10–30 10–10 to fluffy to axion QCD mass mass [GeV] [GeV] defects 1050 etc mirolensing 106 non-thermal 1040 30 10 WIMP asymmetric DM asymmetric no good idea good no 1020 100 SIMP 1010 gravitino 100 sterile neutrino sterile 10–10 vector vector mediation 10–20 w/ moduli 10–30 10–10 to fluffy to axion QCD Seminar in Berkeley Strongly Interacting Massive Particle (SIMP) Yonit Hochberg nDM 10 GeV =4.4 10− Miracles s ⇥ mDM DM SM ↵2 σ2 2v h ! i⇡m2 2 ↵ 10− ⇡ m 300 GeV DM SM ⇡ WIMP miracle! nDM 10 GeV =4.4 10− Miracles s ⇥ mDM DM SM ↵2 σ2 2v h ! i⇡m2 2 ↵ 10− ⇡ m 300 GeV DM SM ⇡ WIMP miracle! DM DM DM DM DM nDM 10 GeV =4.4 10− Miracles s ⇥ mDM DM SM ↵2 σ2 2v h ! i⇡m2 2 ↵ 10− ⇡ m 300 GeV DM SM ⇡ WIMP miracle! DM DM 3 2 ↵ σ3 2v h ! i⇡m5 DM ↵ 4⇡ ⇡ m 300MeV DM DM ⇡ nDM 10 GeV =4.4 10− Miracles s ⇥ mDM DM SM ↵2 σ2 2v h ! i⇡m2 2 ↵ 10− ⇡ m 300 GeV DM SM ⇡ WIMP miracle! DM DM 3 2 ↵ σ3 2v h ! i⇡m5 DM ↵ 4⇡ ⇡ m 300MeV DM DM ⇡ SIMP miracle! nDM 10 GeV =4.4 10− Miracles s ⇥ mDM DM SM ↵2 σ2 2v h ! i⇡m2 2 ↵ 10− ⇡ m 300 GeV DM SM ⇡ WIMP miracle! DM DM 3 2 ↵ σ3 2v h ! i⇡m5 DM ↵ 4⇡ Hochberg, Kuflik, ⇡ Volansky, Wacker m 300MeVarXiv:1402.5143 DM DM ⇡ SIMP miracle! LEE-WEINBERG FREEZE-OUT Back of the envelope calculation Γ H ann ' |freezeout T 2 H Γann ndm σv 2 2 ' Mpl ' h i ! ↵2 mdmndm mpnb σv ⇠ 2 2 2 h i ! ' mdm nb ⌘bs ⇠ Eric Kuflik ⌘ T /m s T 3 b ' eq p ' 2 2 Teq↵ mdm Γann 3 H 2 ' xF ' MplxF 3→2 LEE-WEINBERG FREEZE-OUT Back of the envelope calculation Γ H ann ' |freezeout T 2 H Γann ndm σv 2 2 ' Mpl ' h i ! ↵2 mdmndm mpnb σv ⇠ 2 2 2 h i ! ' mdm nb ⌘bs ⇠ Eric Kuflik ⌘ T /m s T 3 b ' eq p ' 2 2 Teq↵ mdm Γann 3 H 2 ' xF ' MplxF 3→2 LEE-WEINBERG FREEZE-OUT Back of the envelope calculation Γ H ann ' |freezeout T 2 2 2 H Γann ndm σv 3 2 ' Mpl ' h i ! ↵2 mdmndm mpnb σv ⇠ 2 2 2 h i ! ' mdm nb ⌘bs ⇠ Eric Kuflik ⌘ T /m s T 3 b ' eq p ' 2 2 Teq↵ mdm Γann 3 H 2 ' xF ' MplxF 3→2 LEE-WEINBERG FREEZE-OUT Back of the envelope calculation Γ H ann ' |freezeout T 2 2 2 H Γann ndm σv 3 2 ' Mpl ' h i ! 3 2 ↵ mdmndm mpnb σv ⇠ 3 2 5 h i ! ' mdm nb ⌘bs ⇠ Eric Kuflik ⌘ T /m s T 3 b ' eq p ' 2 2 Teq↵ mdm Γann 3 H 2 ' xF ' MplxF 3→2 LEE-WEINBERG FREEZE-OUT Back of the envelope calculation Γ H ann ' |freezeout T 2 2 2 H Γann ndm σv 3 2 ' Mpl ' h i ! 3 2 ↵ mdmndm mpnb σv ⇠ 3 2 5 h i ! ' mdm nb ⌘bs ⇠ Eric Kuflik ⌘ T /m s T 3 b ' eq p ' T 2 ↵3 m2 Γ eq H dm ann ' x4 m ' M x2 F ⇥ dm pl F nDM 10 GeV =4.4 10− SIMPlest Miracles ⇥ mDM • Not only the mass scale is similar to QCD DM DM • dynamics itself can be QCD! Miracle3 DM • DM = pions = qq¯ • e.g.